當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 平行四邊形教案

平行四邊形教案

時(shí)間:2024-10-21 10:20:32 教案 我要投稿

關(guān)于平行四邊形教案匯編七篇

  作為一位兢兢業(yè)業(yè)的人民教師,時(shí)常需要編寫教案,編寫教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。那么寫教案需要注意哪些問題呢?以下是小編為大家整理的平行四邊形教案7篇,僅供參考,歡迎大家閱讀。

關(guān)于平行四邊形教案匯編七篇

平行四邊形教案 篇1

  教學(xué)內(nèi)容:第70-73頁練習(xí)十七第1-3題

  教學(xué)要求:

  1、理解平行四邊形面積計(jì)算公式,能正確地計(jì)算平行四邊形面積;

  2、在割補(bǔ)、觀察與比較中,初步感知與學(xué)習(xí)轉(zhuǎn)化、變化的數(shù)學(xué)思想方法,并發(fā)展學(xué)生的空間觀念。

  教學(xué)重點(diǎn):運(yùn)用面積公式解答實(shí)際問題。

  教具、學(xué)具準(zhǔn)備:教師準(zhǔn)備微機(jī)及多邊形、平行四邊形課件兩組、邊可活動(dòng)的平行四邊形框架。學(xué)生準(zhǔn)備任意大。ó嬘懈撸┑钠叫兴倪呅渭埰、剪刀。

  教學(xué)過程:

  一、質(zhì)疑導(dǎo)入

 。、指出下面平行四邊形的底和高各是幾厘米?

 。病⑾?qū)W生出示可拉動(dòng)的長方形框架,問:要求這個(gè)長方形的面積,怎么辦?(學(xué)生回答,教師板書:長方形面積=長×寬)

 。场⒎謩e用手拉長方形相對的一對角,使其變形為平行四邊形后,問:原來的`平行四邊形變成了什么圖形?它的面積怎樣求呢?(揭示課題:平行四邊形面積計(jì)算)

  二、引導(dǎo)探究

  (一)、初探

  1、微機(jī)出示第70頁左圖,讓學(xué)生說出平行四邊形底和高各是多少厘米,然后數(shù)出它的面積。

  2、出示第70頁右圖,讓學(xué)生說出長方形長和寬各是多少厘米,然后算出它的面積。

 。、讓學(xué)生觀察、比較:

 。ǎ保﹥蓤D形的面積都是18平方厘米,那么平行四邊形的底和高與長方形的長和寬有什么關(guān)系?

  (2)從上面的比較中你想到什么?

  (二)、深究

 。、做導(dǎo)引題下圖中陰影部分面積是多少?

  微機(jī)演示剪拼過程后讓學(xué)生回答:

 。ǎ保┘羝辞昂,圖形形狀變了沒有?面積改變沒有?

 。ǎ玻╆幱安糠置娣e是多少?

  (3)解這道題你想到什么?

  2、剪拼

 。ǎ保﹦偛庞眉羝吹姆椒ń鉀Q了一個(gè)求面積的問題,你能不能用剪拼的方法,把平行四邊形轉(zhuǎn)化成學(xué)過的圖形,求出它的面積呢?拿出平行四邊形紙片,剪一剪,拼一拼,試試怎么樣。

  (2)請剪拼方法不同的學(xué)生展示剪拼結(jié)果,說一說是怎樣想的。根據(jù)學(xué)生的回答,教師演示。

  3、引導(dǎo)學(xué)生分析得出:沿著平行四邊形底邊上的任意一條高,都可以把平行四邊形剪拼成一個(gè)長方形。

  4、歸納

 。ǎ保┯懻摚

 。疗叫兴倪呅渭羝闯砷L方形后,兩種圖形的面積是否改變了?

 。录羝闯傻拈L方形的長和寬分別與原平行四邊形什么線段長度相同?

 。眉羝闯缮厦嫒N情況的圖形后,哪些面積可以直接求出來?怎樣算?

 。ǎ玻w納、總結(jié),推導(dǎo)公式。

  A因?yàn)殚L方形面積=長×寬

  所以平行四邊形面積=底×高

 。孪葐l(fā)學(xué)生用字母分別表示三個(gè)量,寫出字母公式,再告訴學(xué)生一般的字母表示公式:S=ah

 。靡龑(dǎo)學(xué)生分析公式,使學(xué)生知道,要求平行四邊形面積必須知道兩個(gè)條件,平行四邊形的底和高。

  三、深化認(rèn)識(shí)

 。、驗(yàn)證公式:

  讓學(xué)生用面積公式算出課本第70頁平行四邊形面積,看結(jié)果與數(shù)方格法得出的結(jié)果是否一樣。

 。病(yīng)用公式:

 。ǎ保┮龑(dǎo)學(xué)生解課本第72頁例

  (2)完成課本第72頁做一做1

 。、求下圖表示的平行四邊形的面積,列式為3×2.7,對嗎?為什么?

  四、全課總結(jié)

  五、課堂作業(yè)

  1、第72頁做一做2

 。、練習(xí)十七1

  3、練習(xí)十七2、3

  板書設(shè)計(jì):

  平行四邊形的面積

平行四邊形教案 篇2

  一、創(chuàng)設(shè)情境,呈現(xiàn)真實(shí)

  師:我們一起回憶一下,已經(jīng)學(xué)過關(guān)于長方形的哪些知識(shí)?(出示長方形,并且讓學(xué)生回憶有關(guān)它的周長和面積的知識(shí))

  師:今天我們來研究平行四邊形的面積。這里有兩個(gè)圖形,請大家先測量有關(guān)數(shù)據(jù),再計(jì)算它們的面積。(圖略)

  生活動(dòng)后匯報(bào)如下:

  長方形的長6厘米,寬4厘米,長方形的面積=6×4=24平方厘米

  (1)平行四邊形底6厘米,另一條底4厘米,它的面積=6×4=24平方厘米

 。2)平行四邊形底6厘米,高3厘米,它的面積=6×3=18平方厘米

  二、否定錯(cuò)誤猜想

  1、師:計(jì)算同一個(gè)平行四邊形的面積,大家有幾種不同的想法,可以肯定其中必定有錯(cuò)誤。請大家看清楚,每種猜想的`意思,然后作出判斷。

  你覺得哪種更合理?能不能舉個(gè)例子,證明哪種是錯(cuò)誤的。

  生:我覺得可以用底乘底來計(jì)算。我們知道平行四邊形容易變形,如果把一條底邊拉直,就變成了長方形,長方形的面積等于長乘寬,所以平行四邊形的面積等于底乘底。

  師:這位同學(xué)想到了平行四邊形容易變形的特征。大家覺得有道理嗎?

  生:老師,我不同意這樣的想法,按照他的說法,如果把這個(gè)平行四邊形壓扁,它的面積難道還是24平方厘米嗎?

  2、師:(演示平行四邊形變形的過程)請同學(xué)們仔細(xì)觀察,平行四邊形在變形過程中,什么發(fā)生了變化?什么始終沒變?

  生:我發(fā)現(xiàn)平行四邊形在變形過程中,面積邊了,而兩條邊的長度始終不變。所以用“底乘底”計(jì)算平行四邊形的面積是錯(cuò)誤的。

  師:在平行四邊形變形過程中,隨著面積的變化,什么也同時(shí)發(fā)生了變化?(再次演示長方形漸變成平行四邊形。)

  生:(興奮地)高!

  師:現(xiàn)在,你覺得平行四邊形的面積與它的什么有關(guān)?

  生:我覺得平行四邊形的面積與它的高有很大的關(guān)系。

  3、師:用什么辦法可以比較它們的面積大小呢?

  生:把平行四邊形多出來的三角形剪下來,補(bǔ)到另一邊,看出長方形大,平行四邊形小。

  師:變成長方形后,面積大小變了沒有?

  生:沒有

  師:那么要計(jì)算平行四邊形的面積,應(yīng)該怎么辦?

  生:要求出平行四邊形的面積,就知道長方形的面積,所以這個(gè)平行四邊形的面積應(yīng)是6乘3來計(jì)算,而不是6乘4。

  生:6是長方形的長,也是平行四邊形的底,3是拼成后的長方形的寬,也是平行四邊形的高,所以第二種猜想是正確的。

  師:這位同學(xué)把“計(jì)算平行四邊形的面積”這個(gè)問題轉(zhuǎn)化成了“計(jì)算長方形的面積”,利用舊知識(shí)解決了新問題。

  三、歸納計(jì)算方法

  師:是不是所有的平行四邊形都可以剪拼成長方形呢?請同學(xué)們?nèi)我饽靡粋(gè)平行四邊形,想一想,怎樣可以把它轉(zhuǎn)化成一個(gè)長方形。

  根據(jù)學(xué)生反饋情況進(jìn)行課件演示,出現(xiàn)幾種拼法(略)

  師:這幾種剪拼方法有什么相同之處?

  生:都是先沿著平行四邊形底邊上的高剪開,再拼成一個(gè)長方形。

  生:在剪拼過程中,圖形的形狀變了,面積不變。

  師:為什么平行四邊形的面積可以用“底乘高”來計(jì)算?

  生:因?yàn)殚L方形的長相當(dāng)于平行四邊形的底,長方形的寬相當(dāng)于平行四邊形的高,長方形面積等于長乘寬,所以平行四邊形面積等于底乘高。

  師:這個(gè)平行四邊形公式是不是適用于所有的平行四邊形呢?為什么?

  生:對任何一個(gè)平行四邊形,只要沿著底邊上的高剪開,一定都可以拼成長方形,所以平行四邊形的面積=底×高。

  師:我們用S表示平行四邊形的面積,用a表示底,用h表示高,那么計(jì)算平行四邊形的面積公式用字母表示為S=ah。

  四、反思探究過程

  師:今天我們遇到了一個(gè)什么新問題?我們是怎樣解決的?有什么收獲?

平行四邊形教案 篇3

  一、教學(xué)目標(biāo)

  經(jīng)歷探索平行四邊形判別條件的過程,培養(yǎng)學(xué)生操作、觀察和說理能力;掌握兩組對邊分別相等的四邊形是平行四邊形這一判別條件。

  二、教材分析

  本節(jié)課是在學(xué)生學(xué)習(xí)了平行四邊形的兩個(gè)判定定理之后即將學(xué)習(xí)的第三個(gè)判定定理——兩組對邊分別相等的四邊形是平行四邊形。

  三、教學(xué)重難點(diǎn)

  重點(diǎn):

  探索并掌握平行四邊形的判別條件。

  難點(diǎn):

  對平行四邊形判別條件的理解及說理的基本方法的掌握。

  四、教學(xué)準(zhǔn)備

  兩根長40厘米 和兩根長30厘米的.木條

  五、教學(xué)設(shè)計(jì)

  首先復(fù)習(xí)平行四邊形的定義,然后通過學(xué)生活動(dòng)發(fā)現(xiàn)平行四邊形的另一判定定理,然后借助各種方法加以驗(yàn)證。最后依靠課本所設(shè)計(jì)的“做一做” ,“議一議” 以及“隨堂練習(xí)”加深對平行四邊形判定定理的理解。

  六、教學(xué)過程

  1、復(fù)習(xí)平行四邊形的定義。(旨在為證明一個(gè)四邊形是平行四邊形做鋪墊)

  2、小組活動(dòng)

  用兩根長40厘米和兩根30厘米的木條作為四邊形的四條邊,能否拼成平行四邊形?與同伴進(jìn)行交流。 (通過小組活動(dòng),學(xué)生親自動(dòng)手操作,得出結(jié)論——當(dāng)兩組對邊相等時(shí),四邊形是平行四邊形;對邊不相等時(shí),所圍成的四邊形不是平行四邊形)。 平行四邊形的判定定理——兩組對邊相等的四邊形是平行四邊形。

  3、課本91頁的“做一做” (其目的是鞏固和應(yīng)用“兩組對邊相等的四邊形是平行四邊形”的判定定理。)

  4、“議一議”

  問題1、一組對邊平行,另一組對邊相等的四邊形一定是平行四邊形嗎?說說你的想法。 (先鼓勵(lì)學(xué)生自主探索,再分組討論,最后全班交流得出正確結(jié)論)

  問題2、要判別一個(gè)四邊形是平行四邊形,你有哪些方法?

  5、通過課本的“隨堂練習(xí)”,使學(xué)生對平行四邊形的判別條件加以應(yīng)用和鞏固

平行四邊形教案 篇4

  教學(xué)目的:

  1、深入了解平行四邊形的不穩(wěn)定性;

  2、理解兩條平行線間的距離定義(區(qū)別于兩點(diǎn)間的距離、點(diǎn)到直線的距離)

  3、熟練掌握平行四邊形的定義,平行四邊形性質(zhì)定理1、定理2及其推論、定理3和四個(gè)平行四邊形判定定理,并運(yùn)用它們進(jìn)行有關(guān)的論證和計(jì)算;

  4、在教學(xué)中滲透事物總是相互聯(lián)系又相互區(qū)別的辨證唯物主義觀點(diǎn),體驗(yàn)“特殊--一般--特殊”的辨證唯物主義觀點(diǎn)。

  教學(xué)重點(diǎn):

  平行四邊形的性質(zhì)和判定。

  教學(xué)難點(diǎn):

  性質(zhì)、判定定理的運(yùn)用。

  教學(xué)程序:

  一、復(fù)習(xí)創(chuàng)情導(dǎo)入

  平行四邊形的性質(zhì):

  邊:對邊平行(定義);對邊相等(定理2);對角線互相平分(定理3)夾在平行線間的平行線段相等。

  角:對角相等(定理1);鄰角互補(bǔ)。

  平行四邊形的判定:

  邊:兩組 對邊平行(定義);兩組對邊相等(定理2);對角線互相平分(定理3);一組對邊平行且相等(定理4);兩組對角分別相等(定理1)

  二、授新

  1、提出問題:平行四邊形有哪些性質(zhì):判定平行四邊形有哪些方法:

  2、自學(xué)質(zhì)疑:自學(xué)課本P79-82頁,并提出疑難問題。

  3、分組討論:討論自學(xué)中不能解決的問題及學(xué)生提出問題。

  4、反饋歸納:根據(jù)預(yù)習(xí)和討論的'效果,進(jìn)行點(diǎn)撥指導(dǎo)。

  5、嘗試練習(xí):完成習(xí)題,解答疑難。

  6、深化創(chuàng)新:平行四邊形的性質(zhì):

  邊:對邊平行(定義);對邊相等(定理2);對角線互相平分(定理3)夾在平行線間的平行線段相等。

  角:對角相等(定理1);鄰角互補(bǔ)。

  平行四邊形的判定:

  邊:兩組 對邊平行(定義);兩組對邊相等(定理2);對角線互相平分(定理3);一組對邊平行且相等(定理4);兩組對角分別相等(定理1)

  7、推薦作業(yè)

  1、熟記“歸納整理的內(nèi)容”;

  2、完成《練習(xí)卷》;

  3、預(yù)習(xí):(1)矩形的定義?

  (2)矩形的性質(zhì)定理1、2及其推論的內(nèi)容是什么?

  (3)怎樣證明?

 。4)例1的解答過程中,運(yùn)用哪些性質(zhì)?

  思考題

  1、平行四邊形的性質(zhì)定理3的逆命題是否是真命題?根據(jù)題設(shè)和結(jié)論寫出已 知求證; 2、如何證明性質(zhì)定理3的逆命題? 3、有幾種方法可以證明? 4、例2的證明中,運(yùn)用了哪些性質(zhì)及判定?是否有其他方法? 5、例3的證明中,運(yùn)用了哪些性質(zhì)及判定?是否有其他方法?

  跟蹤練習(xí)

  1、在四邊形ABCD中,AC交BD 于點(diǎn)O,若AO=1/2AC,BO=1/2BD,則四邊形ABCD是平行四邊形。( )

  2、在四邊形ABCD中,AC交BD 于點(diǎn)O,若OC= 且 ,則四邊形ABCD是平行四邊形。

  3、下列條件中,能夠判斷一個(gè)四邊形是平行四邊形的是( )

 。ˋ)一組對角相等; (B)對角線相等;

  (C)兩條鄰邊相等; (D)對角線互相平分。

  創(chuàng)新練習(xí)

  已知,如圖,平行四邊形ABCD的AC和BD相交于O點(diǎn),經(jīng)過O點(diǎn)的直線交BC和AD于E、F,求證:四邊形BEDF是平行四邊形。(用兩種方法)

  達(dá)標(biāo)練習(xí)

  1、已知如圖,O為平行四邊形ABCD的對角線AC的中點(diǎn),EF經(jīng)過點(diǎn)O,且與AB交于E,與CD 交于F。求證:四邊形AECF是平行四邊形。

  2、已知:如圖,平行四邊形ABCD的對角線AC、BD相交于點(diǎn)O,M、N分別是OA、OC的中點(diǎn),求證:BM∥DN,且BM=DN 。

  綜合應(yīng)用練習(xí)

  1、下列條件中,能做出平行四邊形的是( )

 。ˋ)兩邊分別是4和5,一對角線為10;

 。˙)一邊為4,兩條對角線分別為2和5;

 。–)一角為600,過此角的對角線為3,一邊為4;

 。―)兩條對角線分別為3和5,他們所夾的銳角為450。

  推薦作業(yè)

  1、熟記“判定定理3”;

  2、完成《練習(xí)卷》;

  3、預(yù)習(xí):

  (1)“平行四邊形的判定定理4”的內(nèi)容 是什么?

  (2)怎樣證明?還有沒有其它證明方法?

 。3)例4、例5還有哪些證明方法?

平行四邊形教案 篇5

  教學(xué)目標(biāo)

  1.在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生合情推理的能力,進(jìn)一步培養(yǎng)學(xué)生數(shù)學(xué)說理的習(xí)慣與能力。

  2.在理解平行四邊形的簡單識(shí)別方法的活動(dòng)中,讓學(xué)生獲得成功的喜悅,體驗(yàn)到數(shù)學(xué)活動(dòng)充滿著探索和創(chuàng)造,感受到數(shù)學(xué)推理的嚴(yán)謹(jǐn)性。

  3.培養(yǎng)學(xué)生獨(dú)立思考的習(xí)慣。

  教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):探索平行四邊形的識(shí)別方法。

  難點(diǎn):理解平行四邊形的識(shí)別方法與應(yīng)用。

  教學(xué)準(zhǔn)備

  方格紙、直尺、圖釘、剪刀。

  教學(xué)過程

  一、提問。

  1.平行四邊形對邊( ),對角( ),對角線( )。

  2.( )是平行四邊形。

  二、探索,概括。

  1.探索。

  (1)按照下面的步驟,在力格紙上畫一個(gè)有一組對邊平行且相等的四邊形。

  步驟1:畫一線段AB。

  步驟2:平移線段AD到BC。

  步驟3:連結(jié)AB、DC,得到四邊形ABCD,其中AD∥BC,AD=BC。

  (2)如圖,沿四邊形的邊剪下四邊形,再在一張紙上沿四邊形的邊畫出一個(gè)四邊形。把兩個(gè)四邊形重合放在一起,重合的點(diǎn)分別記為A、B、C、D。通過連結(jié)對角線確定對角線的交點(diǎn)O,用一枚圖釘穿過點(diǎn)O,把其中一個(gè)四邊形繞點(diǎn)O旋轉(zhuǎn),觀察旋轉(zhuǎn)180后的四邊形與原來的四邊形是否重合,重復(fù)旋轉(zhuǎn)幾次,看看是否得到同樣的結(jié)果。

  根據(jù)上述的過程,能否斷定這個(gè)四邊形是平行四邊形?

  2.概括。

  我們可以看到旋轉(zhuǎn)后的四邊形與原來的四邊形重合,即C點(diǎn)與A點(diǎn)重合,B點(diǎn)與D點(diǎn)重合。這樣,我們就可以得到_BAC=ACD,從而AB∥DC,又AD∥BC,根據(jù)平行四邊形的定義,可知道四邊形ABCD是平行四邊形。由此可以得到:

  一組對邊平行且相等的.四邊形是平行四邊形。

  (一步一步的引導(dǎo)學(xué)生得出結(jié)論,然后讓學(xué)生用自己的語言敘述。)

  三、應(yīng)用舉例。

  例4 如圖,在平行四邊形ABCD中,已知點(diǎn)E和點(diǎn)F分別在AD和BC上,且AE =CF,連結(jié)CE和AF,試說明四邊形AFCE是平行四邊形。

  四、鞏固練習(xí)。

  如圖,在平行四邊形ABCD中,已知M和N分別是AB、CD上的中點(diǎn),試說明四邊形BMDN也是平行四邊形。

  五、拓展延伸。

  在下面的格點(diǎn)圖中,以格點(diǎn)為頂點(diǎn),你能畫出多少個(gè)平行四邊形?

  六、看誰做的既快又正確?

  七、課堂小結(jié)。

  這節(jié)課你有什么收獲?學(xué)到了什么?還有什么疑問嗎?

  八、布置作業(yè)。

  補(bǔ)充習(xí)題

平行四邊形教案 篇6

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  平行四邊形對角線的性質(zhì).

  2.內(nèi)容解析

  這節(jié)課承接了上一節(jié)平行四邊形的性質(zhì):對邊相等,對角相等,本節(jié)繼續(xù)研究對角線互相平分的性質(zhì),課本先設(shè)置一個(gè)探究欄目,讓學(xué)生發(fā)現(xiàn)結(jié)論,形成猜想,然后利用三角形全等證明這個(gè)結(jié)論,對角線互相平分是平行四邊形的重要性質(zhì),在九年級(jí)上冊“旋轉(zhuǎn)”一章,通過旋轉(zhuǎn)平行四邊形,得到平行四邊形是中心對稱圖形和對角線互相平分,學(xué)生會(huì)有進(jìn)一步體會(huì).平行四邊形是最基本的幾何圖形,它在生活中有著十分廣泛的應(yīng)用.這不僅表現(xiàn)在日常生活中有許多平行四邊形的圖案,還包括其性質(zhì)在生產(chǎn)、生活各領(lǐng)域的實(shí)際應(yīng)用.是中心對稱圖形的具體化,是以后學(xué)習(xí)平行四邊形判定的重要依據(jù).

  教科書例2是的平行四邊形對角線的性質(zhì)的直接運(yùn)用,而且涉及勾股定理以及平行四邊形面積的計(jì)算.

  基于以上分析,本節(jié)課的教學(xué)重點(diǎn)是:平行四邊形對角線性質(zhì)的探究與應(yīng)用.

  二、目標(biāo)和目標(biāo)解析

  1.目標(biāo)

  (1)探究并掌握平行四邊形對角線互相平分的性質(zhì).

  (2)能綜合運(yùn)用平行四邊形的性質(zhì)解決平行四邊形的有關(guān)計(jì)算問題,和簡單的證明題.

  2.目標(biāo)解析

  達(dá)成目標(biāo)(1)的標(biāo)志是:能發(fā)現(xiàn)平行四邊形對角線互相平分這一結(jié)論并形成猜想,會(huì)利用三角形全等證明猜想.

  達(dá)成目標(biāo)(2)的標(biāo)志是:能發(fā)現(xiàn)平行四邊形的邊、角、對角線等基本要素間的關(guān)系,會(huì)運(yùn)用等量代換等進(jìn)行線段長、圖形面積等的計(jì)算,掌握簡單的邏輯論證.

  三、教學(xué)問題診斷分析

  本節(jié)課在已學(xué)習(xí)了三角形全等證明,平行四邊形定義,平行四邊形邊、角的性質(zhì)的基礎(chǔ)上,在積累了一定的經(jīng)驗(yàn)的情況下學(xué)習(xí)本節(jié)課內(nèi)容.例2是既是鞏固平行四邊形對角線互相平分的性質(zhì),又復(fù)習(xí)了勾股定理以及平行四邊形面積的計(jì)算.這些問題常常需要運(yùn)用勾股定理求平行四邊形的高或底.這些問題比較綜合,需要靈活運(yùn)用所學(xué)的有關(guān)知識(shí)加以解決.

  基于以上分析,本節(jié)課的教學(xué)難點(diǎn)是:綜合運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算.

  四、教學(xué)過程設(shè)計(jì)

  引言:前面我們研究了平行四邊形的邊、角這兩個(gè)基本要素的性質(zhì),下面我們研究平行四邊形對角線的性質(zhì).

  1. 引入要素 探究性質(zhì)

  問題1 我們研究平行四邊形邊、角這兩個(gè)要素的性質(zhì)時(shí),經(jīng)歷了怎樣的過程?

  師生活動(dòng):學(xué)生回顧我們研究平行四邊形邊、角這兩個(gè)要素的性質(zhì)時(shí)經(jīng)歷的過程,并請學(xué)生代表回答.

  設(shè)計(jì)意圖:回顧研究研究平行四邊形邊、角這兩個(gè)要素的性質(zhì)時(shí)經(jīng)歷的過程,總結(jié)研究平行四邊形的性質(zhì)的一般活動(dòng)過程(即觀察、度量、猜想、證明等),積累研究圖形的活動(dòng)經(jīng)驗(yàn),為本節(jié)課研究對角線要素作準(zhǔn)備.

  問題2如圖,在ABCD中,連接AC,BD,并設(shè)它們相交于點(diǎn)O,OA與OC,OB與OD有什么關(guān)系?你能證明發(fā)現(xiàn)的結(jié)論嗎?

  師生活動(dòng):啟發(fā)學(xué)生去發(fā)現(xiàn)并猜想:平行四邊形的對角線互相平分.

  你能證明上述猜想嗎?

  教師操作投影儀,提出下面問題:

  圖中有哪些三角形全等?哪些線段是相等的?請同學(xué)們用多種方法加以驗(yàn)證.

  學(xué)生合作學(xué)習(xí),交流自己的思路,并討論不同的驗(yàn)證思路.

  教師點(diǎn)撥:圖中有四對三角形全等,分別是:△AOB≌△COD,△AOD≌△COB,

  △ABD≌△BCD,△ADC≌△CBA.有如下線段相等:OA=OC,OB=OD,AD=BC,AB=DC證明中應(yīng)用到“AAS”,“ASA”證明.

  師生歸納整理:

  定理:平行四邊形的對角線互相平分.

  我們證明了平行四邊形具有以下性質(zhì):

  (1)平行四邊形的對邊相等;

  (2)平行四邊形的對角相等;

  (3)平行四邊形的對角線互相平分.

  設(shè)計(jì)意圖:應(yīng)用三角形全等的知識(shí),猜想并驗(yàn)證所要學(xué)習(xí)的內(nèi)容.

  2.例題解析 應(yīng)用所學(xué)

  問題3如圖,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的長以及ABCD的面積.

  師生活動(dòng):教師分析解題思路, 可以利用平行四邊形對邊相等求出BC=AD=8,CD=AB=10,在求AC長度時(shí),因?yàn)椤螦CB=90°,可以在Rt△ACB中應(yīng)用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面積是48,學(xué)生板演解題過程.

  變式追問:在上題中,直線EF過點(diǎn)O,且與AB,CD分別相交于點(diǎn)E,F(xiàn).求證:OE=OF.圖中還在哪些相等的`量?

  設(shè)計(jì)意圖:對于幾何計(jì)算或證明,分析思路和方法是根本,本題既鞏固平行四邊形對角線互相平分的性質(zhì),又復(fù)習(xí)勾股定理和平行四邊形面積計(jì)算的知識(shí),通過本例,讓學(xué)生學(xué)會(huì)如何分析,滲透“綜合分析法”. 讓學(xué)生理解平行四邊形對角線互相平分的性質(zhì)的應(yīng)用價(jià)值.

  3.課堂練習(xí),鞏固深化

  (1)ABCD的周長為60cm,對角線交于O,△AOB的周長比△BOC的周長大8cm,則AB、BC的長分別是_________.

  (2)如圖,在ABCD中,BC=10,AC=8,BD=14,△AOD的周長是多少?△ABC與△DBC的周長哪個(gè)長?長多少?

  設(shè)計(jì)意圖:通過練習(xí),深化理解平行四邊形的性質(zhì),提高選擇運(yùn)用平行四邊形定義、性質(zhì)解決問題的能力.

  4.反思與小結(jié)

  (1)我們學(xué)習(xí)了平行四邊形的哪些性質(zhì)?

  (2)結(jié)合本節(jié)的學(xué)習(xí),談?wù)勓芯科叫兴倪呅涡再|(zhì)的思想方法.

  (3)根據(jù)研究幾何圖形的基本套路,你認(rèn)為我們還將研究平行四邊形的什么問題?

  5.布置作業(yè)

  教科書P49頁習(xí)題18.1 第3題;

  教科書第51頁第14題.

平行四邊形教案 篇7

  教學(xué)目標(biāo)

  1.通過生活情景與實(shí)踐操作,直觀認(rèn)識(shí)平行四邊形。

  2.在觀察與比較中,使學(xué)生在頭腦里建成長方形與四邊形間的區(qū)別與聯(lián)系。

  3.體會(huì)平行四邊形與生活的密切聯(lián)系。

  教學(xué)重難點(diǎn)

  通過生活情景與實(shí)踐操作,直觀認(rèn)識(shí)平行四邊形。

  教學(xué)準(zhǔn)備

  教具:活動(dòng)長方形框架點(diǎn)子圖。

  學(xué)具:七巧板。課時(shí)

  安排1

  教學(xué)過程

  一、利用學(xué)具逐步探究

  1.拉一拉

  發(fā)給每位學(xué)生一個(gè)長方形的學(xué)具。輕輕地動(dòng)手拉一拉,看看它發(fā)生了什么變化?

  生動(dòng)手操作,交流自己的發(fā)現(xiàn)。學(xué)生會(huì)發(fā)現(xiàn)長方形向一邊傾斜了,角的大小發(fā)生了變化等等。程度較好的學(xué)生會(huì)說出長方形變成了平行四邊形。

  教師將拉成的平行四邊形貼在黑板上。引出課題并板書:平形四邊形

  長方形和平行四邊形哪些地方相同,哪些地方不同呢?利用你們的學(xué)具,在四人小組里討論。

 。1)小組觀察、討論。教師到各個(gè)小組中指導(dǎo),引導(dǎo)他們從邊和角兩個(gè)方面探究。

 。2)分組匯報(bào),小組之間互相補(bǔ)充。得出:平行四邊形和長方形一樣,都有四條邊,四個(gè)角,對邊相等。不同的是,長方形四個(gè)角都是直角,而平行四邊形一組對角是鈍角,一組對角是銳角。

 。ㄔO(shè)計(jì)意圖:讓學(xué)生親自動(dòng)手操作,經(jīng)歷將長方形拉成平行四邊形的過程。在學(xué)生初步感知平行四邊的基礎(chǔ)上,探索平行四邊形與長方形的聯(lián)系和區(qū)別,幫助學(xué)生建立平行四邊形的模型。)

  2.猜一猜:[課件出示如果這些圖形都是可活動(dòng)的,估計(jì)哪些能拉成平行四邊形,哪些不能拉成平行四邊形,為什么?

  讓學(xué)生安安靜靜的思考后,交流看法。平行四邊形有四條邊,所以三角形和五邊形不能拉成。普通四邊形的對邊不相等,也不能拉成。正方形能拉成特殊的平行四邊形:菱形。長方形可以拉成平行四邊形。

  請?jiān)趯?dǎo)入時(shí)得到學(xué)具獎(jiǎng)勵(lì)的學(xué)生上臺(tái)利用學(xué)具拉一拉,驗(yàn)證大家的.猜測)

  3.認(rèn)一認(rèn):

  讓學(xué)生判斷大屏幕上的圖形是平形四邊形嗎?[課件出示]

  學(xué)生逐一回答。教師隨即追問為什么第三、第五個(gè)圖形不是平形四邊形?)

  4.找一找:

  給出一幅畫,讓學(xué)生從這幅畫中找到平行四邊形

  課件出示畫面:在小花園里,有菱形的瓷磚、伸縮們、回廊……圖中蘊(yùn)含著各種各樣的平行四邊形。學(xué)生匯報(bào)后,讓他們數(shù)一數(shù)中有幾個(gè)平行四邊形。

  師:除此之外,你還能從生活中找到它嗎?

  二、動(dòng)手操作拓展延伸:

  1.畫一畫:

  (1)生利用尺子、鉛筆在點(diǎn)子圖上畫平形四邊形。畫好后,在小組里互相交流。

 。2)利用展臺(tái)展示學(xué)生作品。如果出現(xiàn)錯(cuò)誤,讓學(xué)生當(dāng)“小老師”互相糾正。

  2.拼一拼:

  用七巧板拼成一個(gè)平行四邊形,同桌兩人一組,比一比,哪個(gè)組拼的方法最巧妙。

 。1)請三組同桌在黑板上拼,其余學(xué)生分組在下面拼。教師巡視,發(fā)現(xiàn)巧妙的拼法,讓其展示在黑板上。

  (2)選擇一個(gè)你最喜歡的平行四邊形,說一說它是用什么形狀的七巧板拼成的。

  三、課堂

  1.這節(jié)課你有什么收獲?

  2.師:只要注意積累,你們的知識(shí)會(huì)越來越多!

【平行四邊形教案】相關(guān)文章:

平行四邊形教案08-10

平行四邊形的面積教案07-17

《平行四邊形的認(rèn)識(shí)》教案09-30

平行四邊形教案優(yōu)秀08-29

平行四邊形面積教案02-29

平行四邊形的認(rèn)識(shí)教案07-30

《平行四邊形的認(rèn)識(shí)》教案07-09

平行四邊形的判定教案07-08

平行四邊形的面積教案06-18

《認(rèn)識(shí)平行四邊形》教案05-28