- 余弦定理說課稿 推薦度:
- 余弦定理說課稿 推薦度:
- 余弦定理說課稿 推薦度:
- 相關(guān)推薦
關(guān)于余弦定理說課稿3篇
作為一位兢兢業(yè)業(yè)的人民教師,常常需要準(zhǔn)備說課稿,借助說課稿可以更好地組織教學(xué)活動(dòng)。那么優(yōu)秀的說課稿是什么樣的呢?下面是小編精心整理的余弦定理說課稿3篇,僅供參考,大家一起來看看吧。
余弦定理說課稿 篇1
尊敬的評(píng)委老師們:
你們好,我今天說課的題目是余弦定理,(說教材) "余弦定理"是人教A版數(shù)學(xué)第必修5主要內(nèi)容之一,是解決有關(guān)斜三角形問題的兩個(gè)重要定理之一,也是初中"勾股定理"內(nèi)容的直接延拓,它是三角函數(shù)一般知識(shí)和平面向量知識(shí)在三角形中的具體運(yùn)用,是解可轉(zhuǎn)化為三角形計(jì)算問題的其它數(shù)學(xué)問題及生產(chǎn)、生活實(shí)際問題的重要工具,因此具有廣泛的應(yīng)用價(jià)值。本節(jié)課是"正弦定理、余弦定理"教學(xué)的第二節(jié)課,其主要任務(wù)是引入并證明余弦定理,在課型上屬于"定理教學(xué)課".
這堂課并不是將余弦定理全盤呈現(xiàn)給學(xué)生,而是從實(shí)際問題的求解困難,造成學(xué)生認(rèn)知上的沖突,從而激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。另外,本節(jié)與教材其他課文的共
性是都要掌握定理內(nèi)容及證明方法,會(huì)解決相關(guān)的問題。
下面說一說我的教學(xué)思路。
。ń虒W(xué)目的)
通過對(duì)教材的分析鉆研制定了教學(xué)目的:
1.掌握余弦定理的內(nèi)容及證明余弦定理的向量方法,會(huì)運(yùn)用余弦定理解決兩類基本的解三角形問題。
2.培養(yǎng)學(xué)生在方程思想指導(dǎo)下解三角形問題的運(yùn)算能力。
3.培養(yǎng)學(xué)生合情推理探索數(shù)學(xué)規(guī)律的思維能力。
4.通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)的聯(lián)系,來理解事物普遍聯(lián)系與
辯證統(tǒng)一。
(教學(xué)重點(diǎn))
余弦定理揭示了任意三角形邊角之間的客觀規(guī)律,()是解三角形的重要工具。余弦定理是初中學(xué)習(xí)的勾股定理的拓廣,也是前階段學(xué)習(xí)的三角函數(shù)知識(shí)與平面向量知識(shí)在三角形中的交匯應(yīng)用。本節(jié)課的重點(diǎn)內(nèi)容是余弦定理的發(fā)現(xiàn)和證明過程及基本應(yīng)用,其
中發(fā)現(xiàn)余弦定理的過程是檢驗(yàn)和訓(xùn)練學(xué)生思維品質(zhì)的重要素材。
。ń虒W(xué)難點(diǎn))
余弦定理是勾股定理的推廣形式,勾股定理是余弦定理的特殊情形,勾股定理在余弦定理的`發(fā)現(xiàn)和證明過程中,起到奠基作用,因此分析勾股定理的結(jié)構(gòu)特征是突破發(fā)現(xiàn)余弦定理這個(gè)難點(diǎn)的關(guān)鍵。
。ń虒W(xué)方法)
在確定教學(xué)方法之前,首先分析一下學(xué)生:我所教的是課改一年級(jí)的學(xué)生。他們的基礎(chǔ)比正常高中的學(xué)生要差許多,拿其中一班學(xué)生來說:數(shù)學(xué)入學(xué)成績及格的占50%
左右,相對(duì)來說教材難度較大,要求教師吃透教材,選擇恰當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段把
知識(shí)傳授給學(xué)生。
根據(jù)教材和學(xué)生實(shí)際,本節(jié)主要采用"啟發(fā)式教學(xué)"、"講授法"、"演示法",并采用電教手段使用多媒體輔助教學(xué)。
1.啟發(fā)式教學(xué):
利用一個(gè)工程問題創(chuàng)設(shè)情景,啟發(fā)學(xué)生對(duì)問題進(jìn)行思考。在研究過程中,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。
2. 練習(xí)法:通過練習(xí)題的訓(xùn)練,讓學(xué)生從多角度對(duì)所學(xué)定理進(jìn)行認(rèn)識(shí),反復(fù)的練習(xí),體現(xiàn)學(xué)生的主體作用。
3. 講授法:充分發(fā)揮主導(dǎo)作用,引導(dǎo)學(xué)生學(xué)習(xí)。
4. 演示法:利用動(dòng)畫、圖片,激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生積極性。
這節(jié)課準(zhǔn)備的器材有:計(jì)算機(jī)、大屏幕。
。ń虒W(xué)程序)
1. 復(fù)習(xí)正弦定理(2分鐘):安排一名同學(xué)上黑板寫正弦定理。
2. 設(shè)計(jì)精彩的新課導(dǎo)入(5分鐘):利用大屏幕演示一座山,先展示,后出現(xiàn)B、C,
再連成虛線,并閃動(dòng)幾下,閃動(dòng)邊AB、AC幾下,再閃動(dòng)角A的陰影幾下,可測(cè)得
AC、AB的長及∠A大小。
問你知道工程技術(shù)人員是怎樣計(jì)算出來的嗎?
一下子,學(xué)生的注意力全被調(diào)動(dòng)起來,學(xué)生一定會(huì)采用正弦定理,但很快發(fā)現(xiàn)
∠B、∠C不能確定,陷入困境當(dāng)中。
3. 探索研究,合理猜想。
當(dāng)AB=c,AC=b一定,∠A變化時(shí),a可以認(rèn)為是A的函數(shù),a=f(A),A∈(0,∏)
比較三種情況,學(xué)生會(huì)很快找到其中規(guī)律。 -2ab的系數(shù)-1、0、1與A=0、∏/2、∏之間存在對(duì)應(yīng)關(guān)系。
教師指導(dǎo)學(xué)生由特殊到一般,經(jīng)比較分析特例,概括出余弦定理,這種促使學(xué)生主動(dòng)參與知識(shí)形成過程的教學(xué)方法,既符合學(xué)生學(xué)習(xí)的認(rèn)知規(guī)律,又突出了學(xué)生的主體地位。"授人以魚",不如"授人以漁",引導(dǎo)學(xué)生發(fā)現(xiàn)問題,探究知識(shí),建構(gòu)知識(shí),對(duì)學(xué)生
來說,既是對(duì)數(shù)學(xué)研究活動(dòng)的一種體驗(yàn),又是掌握一種終身受用的治學(xué)方法。
4. 證明猜想,建構(gòu)新知
接下來就是水到渠成,現(xiàn)在余弦定理還需要進(jìn)一步證明,要符合數(shù)學(xué)的嚴(yán)密邏輯推理,鍛煉學(xué)生自己寫出定理證明的已知條件和結(jié)論,請(qǐng)一位學(xué)生到黑板寫出來,并請(qǐng)同學(xué)們自己進(jìn)行證明。教師在課中進(jìn)行指導(dǎo),針對(duì)出現(xiàn)的問題,結(jié)合大屏幕打出的正
確過程進(jìn)行講解。
在大屏幕打出余弦定理,為了促進(jìn)學(xué)生記憶,在黑板上讓學(xué)生背著寫出定理,也是當(dāng)
堂鞏固定理的方法。
5. 操作演練,鞏固提高
定理的應(yīng)用是本節(jié)的重點(diǎn)之一。我分析題目,請(qǐng)同學(xué)們進(jìn)行解答,在難點(diǎn)處進(jìn)行點(diǎn)撥。以第二題為例,在求A的過程中學(xué)生會(huì)產(chǎn)生分歧,一部分采用正弦定理,一部分采用余弦定理,其實(shí)兩種做法都可得到正確答案,形成解法一和解法二。在這道例題中進(jìn)行發(fā)散思維的訓(xùn)練,(在上例中,能否既不使用余弦定理,也不使用正弦定理,
求出∠A?)
啟發(fā)一:a視為B 與C兩點(diǎn)間的距離,利用B、C的坐標(biāo)構(gòu)造含A的等式
啟發(fā)二:利用平移,用兩種方法求出C’點(diǎn)的坐標(biāo),構(gòu)造等式。使學(xué)生的思維活躍,漸入新的境界。每次啟發(fā),或是針對(duì)一般原則的提示,或是在學(xué)生出現(xiàn)思維盲點(diǎn)
處點(diǎn)撥,或是學(xué)生"簡單一跳未摘到果子"時(shí)的及時(shí)提醒。
6. 課堂小結(jié):
告訴學(xué)生余弦定理是任何三角形邊角之間存在的共同規(guī)律,勾股定理是余弦定理
的特例。
7. 布置作業(yè):書面作業(yè) 3道題
作業(yè)中注重余弦定理的應(yīng)用,重點(diǎn)培養(yǎng)解決問題的能力。
以上是我的一點(diǎn)粗淺的認(rèn)識(shí),如有不對(duì)之處,請(qǐng)老師評(píng)委們給與指教,我的課說完了,謝謝各位。
余弦定理說課稿 篇2
大家好,今天我向大家說課的題目是《余弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設(shè)計(jì)。
一、教材分析
本節(jié)知識(shí)是職業(yè)高中數(shù)學(xué)教材第五章第九節(jié)《解三角形》的內(nèi)容,與初中學(xué)習(xí)的勾股定理有密切的聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,在實(shí)際測(cè)量問題及航海問題中都有著廣泛的用,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)?家恍┙獯痤}。并且在探索建立余弦定理時(shí)還用到向量法,坐標(biāo)法等數(shù)學(xué)方法,同時(shí)還用到了數(shù)形結(jié)合,方程等數(shù)學(xué)思想。因此,余弦定理的知識(shí)非常重要。特別是在三角形中的求角問題中作用更大。做為職業(yè)高中的學(xué)生必須學(xué)好學(xué)透這節(jié)知識(shí)
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):
、倮斫庹莆沼嘞叶ɡ恚苷_使用定理
、谂囵B(yǎng)學(xué)生教形結(jié)合分析問題的能力
、叟囵B(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)耐评硭季S和良好的.審美能力。
教學(xué)重點(diǎn):定理的探究及應(yīng)用
教學(xué)難點(diǎn):定理的探究及理解
二、學(xué)情分析
對(duì)于職業(yè)高中的高一學(xué)生,雖然知識(shí)經(jīng)驗(yàn)并不豐富,但他們的智利發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導(dǎo)、啟發(fā)和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。
三、教法分析
根據(jù)教材的內(nèi)容和編排的特點(diǎn),為更有效地突出重點(diǎn),突破難點(diǎn),以學(xué)生的發(fā)展為本,遵照學(xué)生的認(rèn)識(shí)規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“余弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,讓學(xué)生的思維由問題開始,到發(fā)想、探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵(lì)學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵(lì),使他們知難而進(jìn)。另外,抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的能力線,聯(lián)系方法與技能使學(xué)生較易證明余弦定理,另外通過例題和練習(xí)來突破難點(diǎn),注重知識(shí)的形成過程,突出教學(xué)理念的創(chuàng)新。
四、學(xué)法指導(dǎo):
指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動(dòng)手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。
五、教學(xué)過程
第一:創(chuàng)設(shè)情景,大概用2分鐘
第二:實(shí)踐探究,形成定理,大約用25分鐘
第三:應(yīng)用定理,拓展反思,大約用13分鐘
。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,從用正弦定理可解的兩類三角形出發(fā),揭示勾股定理特點(diǎn),說明正弦定理解三角形不完備,還有用正弦定理不能直接求解的三角形,應(yīng)怎樣解決呢?需要我們繼續(xù)探究,引出課題。
。ǘ┻壿嬐评恚C明猜想
提出問題,探究問題,形成定理,回顧分析,形成結(jié)論,再認(rèn)識(shí)結(jié)論,總結(jié)用途。變形延伸,培養(yǎng)發(fā)散,對(duì)比特殊,認(rèn)知推廣。落實(shí)定理,構(gòu)建定理應(yīng)用體系。
。ㄈw納總結(jié),簡單應(yīng)用
1.讓學(xué)生用文字?jǐn)⑹鲇嘞叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱和諧美,提升對(duì)數(shù)學(xué)美的享受。
2.回顧余弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
。ㄋ模┲v解例題,鞏固定理
1、審題確定條件。
2、明確求解任務(wù)。
3、確定使用公式。
4、科學(xué)求解過程。
。ㄎ澹┱n堂練習(xí),提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。
。┬〗Y(jié)反思,提高認(rèn)識(shí)
通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對(duì)此有何體會(huì)?
1.用向量證明了余弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
2.兩種表達(dá)。
3.兩類問題。
。ㄆ撸┧季S拓展,自主探究
利用余弦定理判斷三角形形狀,即余弦定理的推論。
余弦定理說課稿 篇3
各位評(píng)委老師,下午好!今天我說課的題目是余弦定理,說課的內(nèi)容為余弦定理第二課時(shí),下面我將從說教材、說學(xué)情、說教法和學(xué)法、說教學(xué)過程、說板書設(shè)計(jì)這四個(gè)方面來對(duì)本課進(jìn)行詳細(xì)說明:
一、說教材
。ㄒ唬┙滩牡匚慌c作用
《余弦定理》是必修5第一章《解三角形》的第一節(jié)內(nèi)容,前面已經(jīng)學(xué)習(xí)了正弦定理以及必修4中的任意角、誘導(dǎo)公式以及恒等變換,為后面學(xué)習(xí)三角函數(shù)奠定了基礎(chǔ),因此本節(jié)課有承上啟下的作用。本節(jié)課是解決有關(guān)斜三角形問題以及應(yīng)用問題的一個(gè)重要定理,它將三角形的邊和角有機(jī)地聯(lián)系起來,實(shí)現(xiàn)了"邊"與"角"的互化,從而使"三角"與"幾何"產(chǎn)生聯(lián)系,為求與三角形有關(guān)的量提供了理論依據(jù),同時(shí)也為判斷三角形形狀,證明三角形中的有關(guān)等式提供了重要依據(jù)。
。ǘ┙虒W(xué)目標(biāo)
根據(jù)上述教材內(nèi)容分析以及新課程標(biāo)準(zhǔn),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu),心理特征及原有知識(shí)水平,我將本課的教學(xué)目標(biāo)定為:
、敝R(shí)與技能:
掌握余弦定理的內(nèi)容及公式;能初步運(yùn)用余弦定理解決一些斜三角形
⒉過程與方法:
在探究學(xué)習(xí)的過程中,認(rèn)識(shí)到余弦定理可以解決某些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問題,幫助學(xué)生提高運(yùn)用有關(guān)知識(shí)解決實(shí)際問題的能力。
、城楦小B(tài)度與價(jià)值觀:
培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識(shí);在運(yùn)用余弦定理的過程中,讓學(xué)生逐步養(yǎng)成實(shí)事求是,扎實(shí)嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度,學(xué)習(xí)用數(shù)學(xué)的思維方式解決問題,認(rèn)識(shí)世界;通過本節(jié)的運(yùn)用實(shí)踐,體會(huì)數(shù)學(xué)的科學(xué)價(jià)值,應(yīng)用價(jià)值;
。ㄈ┍竟(jié)課的重難點(diǎn)
教學(xué)重點(diǎn)是:運(yùn)用余弦定理探求任意三角形的邊角關(guān)系,解決與之有關(guān)的計(jì)算問題,運(yùn)用余弦定理解決一些與測(cè)量以及幾何計(jì)算有關(guān)的實(shí)際問題。
教學(xué)難點(diǎn)是:靈活運(yùn)用余弦定理解決相關(guān)的實(shí)際問題。
教學(xué)關(guān)鍵是:熟練掌握并靈活應(yīng)用余弦定理解決相關(guān)的實(shí)際問題。
下面為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劊?/p>
二、說學(xué)情
從知識(shí)層面上看,高中學(xué)生通過前一節(jié)課的學(xué)習(xí)已經(jīng)掌握了余弦定理及其推導(dǎo)過程;從能力層面上看,學(xué)生初步掌握運(yùn)用余弦定理解決一些簡單的斜三角形問題的技能;從情感層面上看,學(xué)生對(duì)教學(xué)新內(nèi)容的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性,但在探究問題的能力以及合作交流等方面的發(fā)展不夠均衡。
三、說教法和學(xué)法
貫徹的指導(dǎo)思想是把"學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生",倡導(dǎo)"自主、合作、探究"的學(xué)習(xí)方式。讓學(xué)生自主探索學(xué)會(huì)分析問題,解決問題。
四、說教學(xué)過程
下面為了完成教學(xué)目標(biāo),解決教學(xué)重點(diǎn),突破教學(xué)難點(diǎn),課堂教學(xué)我準(zhǔn)備按以下五個(gè)環(huán)節(jié)展開:
環(huán)節(jié)⒈復(fù)習(xí)引入
由于本節(jié)課是余弦定理的第一課時(shí),因此先領(lǐng)著學(xué)生回顧復(fù)習(xí)上節(jié)課所學(xué)的內(nèi)容,采用提問的方式,找同學(xué)回答余弦定理的內(nèi)容及公式,并且讓學(xué)生回想公式推導(dǎo)的思路和方法,這樣一來可以檢驗(yàn)學(xué)生對(duì)所學(xué)知識(shí)的掌握情況,二來也為新課作準(zhǔn)備。
環(huán)節(jié)⒉應(yīng)用舉例
在本環(huán)節(jié)中,我將給出兩道典型例題
△ABC的頂點(diǎn)為A(6,5),B(-2,8)和C(4,1),求(精確到)。
已知三點(diǎn)A(1,3),B(-2,2),C(0,-3),求△ABC各內(nèi)角的大小。
通過利用余弦定理解斜三角形的思想,來對(duì)這兩道例題進(jìn)行分析和講解;本環(huán)節(jié)的目的在于通過典型例題的解答,鞏固學(xué)生所學(xué)的知識(shí),進(jìn)一步深化對(duì)于余弦定理的認(rèn)識(shí)和理解,提高學(xué)生的理解能力和解題計(jì)算能力。
環(huán)節(jié)⒊練習(xí)反饋
練習(xí)B組題,1、2、3;習(xí)題1-1A組,1、2、3
在本環(huán)節(jié)中,我將找學(xué)生到黑板做題,期間巡視下面同學(xué)的做題情況,加以糾正和講解;通過解決書后練習(xí)題,鞏固學(xué)生當(dāng)堂所學(xué)知識(shí),同時(shí)教師也可以及時(shí)了解學(xué)生的掌握情況,以便及時(shí)調(diào)整自己的教學(xué)步調(diào)。
環(huán)節(jié)⒋歸納小結(jié)
在本環(huán)節(jié)中,我將采用師生共同總結(jié)-交流-完善的方式,首先讓學(xué)生自己總結(jié)出余弦定理可以解決哪些類型的問題,再由師生共同完善,總結(jié)出余弦定理可以解決的'兩類問題:⑴已知三邊,求各角;⑵已知兩邊和它們的夾角,求第三邊和其他兩個(gè)角。本環(huán)節(jié)的目的在于引導(dǎo)學(xué)生學(xué)會(huì)自己總結(jié);讓學(xué)生進(jìn)一步體會(huì)知識(shí)的形成、發(fā)展、完善的過程。
環(huán)節(jié)⒌課后作業(yè)
必做題:習(xí)題1-1A組,6、7;習(xí)題1-1B組,2、3、4、5
選做題:習(xí)題1-1B組7,8,9.
基于因材施教的原則,在根據(jù)不同層次的學(xué)生情況,把作業(yè)分為必做題和選做題,必做題要求所有學(xué)生全部完成,選做題要求學(xué)有余力的學(xué)生完成,使不同程度的學(xué)生都有所提高。本環(huán)節(jié)的目的是讓學(xué)生進(jìn)一步鞏固和深化所學(xué)的知識(shí),培養(yǎng)學(xué)生的自主探究能力。
五、說板書
在本節(jié)課中我將采用提綱式的板書設(shè)計(jì),因?yàn)樘峋V式-條理清楚、從屬關(guān)系分明,給人以清晰完整的印象,便于學(xué)生對(duì)教材內(nèi)容和知識(shí)體系的理解和記憶。
【余弦定理說課稿】相關(guān)文章:
余弦定理說課稿07-06
余弦定理說課稿04-07
精選余弦定理說課稿四篇01-27
精選余弦定理說課稿3篇01-27
余弦定理說課稿四篇01-18
余弦定理說課稿3篇01-06
精選余弦定理說課稿三篇02-11
余弦定理說課稿(6篇)05-26
余弦定理說課稿6篇01-19
余弦定理說課稿4篇01-10