當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說(shuō)課稿> 高中數(shù)學(xué)說(shuō)課稿

高中數(shù)學(xué)說(shuō)課稿

時(shí)間:2022-01-15 17:17:18 說(shuō)課稿 我要投稿

高中數(shù)學(xué)說(shuō)課稿范文匯總9篇

  作為一名老師,就有可能用到說(shuō)課稿,編寫說(shuō)課稿助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。那要怎么寫好說(shuō)課稿呢?下面是小編幫大家整理的高中數(shù)學(xué)說(shuō)課稿9篇,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

高中數(shù)學(xué)說(shuō)課稿范文匯總9篇

高中數(shù)學(xué)說(shuō)課稿 篇1

  開(kāi)始:各位專家領(lǐng)導(dǎo), 好!

  今天我將要為大家講的課題是

  首先,我對(duì)本節(jié)教材進(jìn)行一些分析

  一、教材結(jié)構(gòu)與內(nèi)容簡(jiǎn)析

  本節(jié)內(nèi)容在全書及章節(jié)的地位:《 》是高中數(shù)學(xué)新教材第 冊(cè)( )第 章第 節(jié)。在此之前,學(xué)生已學(xué)習(xí)了

  ,這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是 部分,因此,在 中,占據(jù) 的地位。

  數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識(shí),因此本節(jié)課在教學(xué)中力圖向?qū)W生:

  二、 教學(xué)目標(biāo)

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):

  1 基礎(chǔ)知識(shí)目標(biāo):

  2 能力訓(xùn)練目標(biāo):

  3 創(chuàng)新素質(zhì)目標(biāo):

  4 個(gè)性品質(zhì)目標(biāo):

  三、 教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵

  本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn): 通過(guò) 突出重點(diǎn)

  難點(diǎn): 通過(guò) 突破難點(diǎn)

  關(guān)鍵:

  下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?/p>

  四、 教法

  數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生

  “知其然”而且要使學(xué)生“知其所以然”,

  我們?cè)谝詭熒葹橹黧w,又為客體的原則下,展現(xiàn)獲取知識(shí)和方法的思維過(guò)程。基于本節(jié)課的特點(diǎn):

  ,應(yīng)著重采用 的教學(xué)方法。即:

  五、 學(xué)法

  我們常說(shuō):“現(xiàn)代的文盲不是不識(shí)字的人,而是沒(méi)有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。

  1、理論:

  2、實(shí)踐:

  3、能力:

  最后我來(lái)具體談一談這一堂課的教學(xué)過(guò)程:

  六、 教學(xué)程序及設(shè)想

  1、由 引入:

  把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強(qiáng)烈的問(wèn)題意識(shí),使學(xué)生的整個(gè)學(xué)習(xí)過(guò)程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過(guò)程。

  在實(shí)際情況下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)前學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。

  對(duì)于本題:

  2、由實(shí)例得出本課新的知識(shí)點(diǎn)是:

  3、講解例題。

  我們?cè)谥v解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對(duì)解題方法和規(guī)律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:

  4、能力訓(xùn)練。

  課后練習(xí)

  使學(xué)生能鞏固羨慕自覺(jué)運(yùn)用所學(xué)知識(shí)與解題思想方法。

  5、總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。

  知識(shí)性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的.地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo)。

  6、變式延伸,進(jìn)行重構(gòu)。

  重視課本例題,適當(dāng)對(duì)題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對(duì)知識(shí)的串聯(lián)、累積、加工,從而達(dá)到舉一反三的效果。

  7、板書。

  8、布置作業(yè)。

  針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有佘力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的。

  結(jié)束:說(shuō)課是教師面對(duì)同行和其它聽(tīng)眾口頭講述具體課題的教學(xué)設(shè)想及其根據(jù)的新的教學(xué)研究形式。以上,我僅從說(shuō)教材,說(shuō)學(xué)情,說(shuō)教法,說(shuō)學(xué)法,說(shuō)教學(xué)程序上說(shuō)明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說(shuō)課對(duì)我們大家仍是新事物,今后我也將進(jìn)一步說(shuō)好課,并希望各位專家領(lǐng)導(dǎo)對(duì)本堂說(shuō)課提出寶貴意見(jiàn)。

  注意時(shí)間掌握

  六、注意靈活導(dǎo)入新知識(shí)點(diǎn)。

  電腦課件

  使用投影

  根據(jù)時(shí)間進(jìn)行增刪

高中數(shù)學(xué)說(shuō)課稿 篇2

  各位評(píng)委老師好:今天我說(shuō)課的題目是

  是必修章第節(jié)的內(nèi)容,我將以新課程標(biāo)準(zhǔn)的理念指導(dǎo)本節(jié)課的教學(xué),從教材分析,教法學(xué)法,教學(xué)過(guò)程,教學(xué)評(píng)價(jià)四個(gè)方面加以說(shuō)明。

  一、 教材分析

  是在學(xué)習(xí)了基礎(chǔ)上進(jìn)一步研究 并為后面學(xué)習(xí) 做準(zhǔn)備,在整個(gè)高中數(shù)學(xué)中起著承上啟下的作用,因此本節(jié)內(nèi)容十分重要。

  根據(jù)新課標(biāo)要求和學(xué)生實(shí)際水平我制定以下教學(xué)目標(biāo)

  1、 知識(shí)能力目標(biāo):使學(xué)生理解掌握

  2、 過(guò)程方法目標(biāo):通過(guò)觀察歸納抽象概括使學(xué)生構(gòu)建領(lǐng)悟 數(shù)學(xué)思想,培養(yǎng) 能力

  3、 情感態(tài)度價(jià)值觀目標(biāo):通過(guò)學(xué)習(xí)體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)善于

  觀察勇于思考的學(xué)習(xí)習(xí)慣和嚴(yán)謹(jǐn) 的科學(xué)態(tài)度

  根據(jù)教學(xué)目標(biāo)、本節(jié)特點(diǎn)和學(xué)生實(shí)際情況本節(jié)重點(diǎn)是 ,由于學(xué)生對(duì) 缺少感性認(rèn)識(shí),所以本節(jié)課的重點(diǎn)是

  二、教法學(xué)法

  根據(jù)教師主導(dǎo)地位和學(xué)生主體地位相統(tǒng)一的規(guī)律,我采用引導(dǎo)發(fā)現(xiàn)法為本節(jié)課的主要教學(xué)方法并借助多媒體為輔助手段。在教師點(diǎn)撥下,學(xué)生自主探索、合作交流來(lái)尋求解決問(wèn)題的方法。

  三、 教學(xué)過(guò)程

  1、由……引入:

  把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強(qiáng)烈的問(wèn)題意識(shí),使學(xué)生的整個(gè)學(xué)習(xí)過(guò)程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過(guò)程。 在實(shí)際情況下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)前學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。

  對(duì)于本題:……

  2、由實(shí)例得出本課新的知識(shí)點(diǎn)是:……

  3、講解例題。

  我們?cè)谥v解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對(duì)解題方法和規(guī)律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:

  4、能力訓(xùn)練。

  課后練習(xí)……

  使學(xué)生能鞏固羨慕自覺(jué)運(yùn)用所學(xué)知識(shí)與解題思想方法。

  5、總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。

  知識(shí)性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的.地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo)。

  6、變式延伸,進(jìn)行重構(gòu)。

  重視課本例題,適當(dāng)對(duì)題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對(duì)知識(shí)的串聯(lián)、累積、加工,從而達(dá)到舉一反三的效果。

  四、教學(xué)評(píng)價(jià)

  學(xué)生學(xué)習(xí)的學(xué)習(xí)結(jié)果評(píng)價(jià)當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過(guò)程評(píng)價(jià),教師應(yīng)當(dāng)高度重視學(xué)生學(xué)習(xí)過(guò)程中的參與度、自信心、團(tuán)隊(duì)精神合作意識(shí)數(shù)學(xué)能力的發(fā)現(xiàn),以及學(xué)習(xí)的興趣和成就感。

高中數(shù)學(xué)說(shuō)課稿 篇3

  說(shuō)課內(nèi)容:普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教A版)《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”的第一課時(shí)---平面向量數(shù)量積的物理背景及其含義。

  下面,我從背景分析、教學(xué)目標(biāo)設(shè)計(jì)、課堂結(jié)構(gòu)設(shè)計(jì)、教學(xué)過(guò)程設(shè)計(jì)、教學(xué)媒體設(shè)計(jì)及教學(xué)評(píng)價(jià)設(shè)計(jì)六個(gè)方面對(duì)本節(jié)課的思考進(jìn)行說(shuō)明。

  一、 背景分析

  1、學(xué)習(xí)任務(wù)分析

  平面向量的數(shù)量積是繼向量的線性運(yùn)算之后的又一重要運(yùn)算,也是高中數(shù)學(xué)的一個(gè)重要概念,在數(shù)學(xué)、物理等學(xué)科中應(yīng)用十分廣泛。本節(jié)內(nèi)容教材共安排兩課時(shí),其中第一課時(shí)主要研究數(shù)量積的概念,第二課時(shí)主要研究數(shù)量積的坐標(biāo)運(yùn)算,本節(jié)課是第一課時(shí)。

  本節(jié)課的主要學(xué)習(xí)任務(wù)是通過(guò)物理中“功”的事例抽象出平面向量數(shù)量積的概念,在此基礎(chǔ)上探究數(shù)量積的性質(zhì)與運(yùn)算律,使學(xué)生體會(huì)類比的思想方法,進(jìn)一步培養(yǎng)學(xué)生的抽象概括和推理論證的能力。其中數(shù)量積的概念既是對(duì)物理背景的抽象,又是研究性質(zhì)和運(yùn)算律的基礎(chǔ)。同時(shí)也因?yàn)樵谶@個(gè)概念中,既有長(zhǎng)度又有角度,既有形又有數(shù),是代數(shù)、幾何與三角的最佳結(jié)合點(diǎn),不僅應(yīng)用廣泛,而且很好的體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,使得數(shù)量積的概念成為本節(jié)課的核心概念,自然也是本節(jié)課教學(xué)的重點(diǎn)。

  2、學(xué)生情況分析

  學(xué)生在學(xué)習(xí)本節(jié)內(nèi)容之前,已熟知了實(shí)數(shù)的運(yùn)算體系,掌握了向量的概念及其線性運(yùn)算,具備了功等物理知識(shí),并且初步體會(huì)了研究向量運(yùn)算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再?gòu)母拍畛霭l(fā),在與實(shí)數(shù)運(yùn)算類比的基礎(chǔ)上研究性質(zhì)和運(yùn)算律。這為學(xué)生學(xué)習(xí)數(shù)量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對(duì)數(shù)量積概念的理解,一方面,相對(duì)于線性運(yùn)算而言,數(shù)量積的結(jié)果發(fā)生了本質(zhì)的變化,兩個(gè)有形有數(shù)的向量經(jīng)過(guò)數(shù)量積運(yùn)算后,形卻消失了,學(xué)生對(duì)這一點(diǎn)是很難接受的;另一方面,由于受實(shí)數(shù)乘法運(yùn)算的影響,也會(huì)造成學(xué)生對(duì)數(shù)量積理解上的偏差,特別是對(duì)性質(zhì)和運(yùn)算律的理解。因而本節(jié)課教學(xué)的難點(diǎn)數(shù)量積的概念。

  二、 教學(xué)目標(biāo)設(shè)計(jì)

  《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》 對(duì)本節(jié)課的要求有以下三條:

  (1)通過(guò)物理中“功”等事例,理解平面向量數(shù)量積的含義及其物理意義。

  (2)體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系。

  (3)能用運(yùn)數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系。

  從以上的背景分析可以看出,數(shù)量積的概念既是本節(jié)課的重點(diǎn),也是難點(diǎn)。為了突破這一難點(diǎn),首先無(wú)論是在概念的引入還是應(yīng)用過(guò)程中,物理中“功”的實(shí)例都發(fā)揮了重要作用。其次,作為數(shù)量積概念延伸的性質(zhì)和運(yùn)算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時(shí)也是進(jìn)行相關(guān)計(jì)算和判斷的理論依據(jù)。最后,無(wú)論是數(shù)量積的性質(zhì)還是運(yùn)算律,都希望學(xué)生在類比的基礎(chǔ)上,通過(guò)主動(dòng)探究來(lái)發(fā)現(xiàn),因而對(duì)培養(yǎng)學(xué)生的抽象概括能力、推理論證能力和類比思想都無(wú)疑是很好的載體。

  綜上所述,結(jié)合“課標(biāo)”要求和學(xué)生實(shí)際,我將本節(jié)課的教學(xué)目標(biāo)定為:

  1、了解平面向量數(shù)量積的物理背景,理解數(shù)量積的含義及其物理意義;

  2、體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的性質(zhì)和運(yùn)算律,

  并能運(yùn)用性質(zhì)和運(yùn)算律進(jìn)行相關(guān)的運(yùn)算和判斷;

  3、體會(huì)類比的數(shù)學(xué)思想和方法,進(jìn)一步培養(yǎng)學(xué)生抽象概括、推理論證的能力。

  三、課堂結(jié)構(gòu)設(shè)計(jì)

  本節(jié)課從總體上講是一節(jié)概念教學(xué),依據(jù)數(shù)學(xué)課程改革應(yīng)關(guān)注知識(shí)的發(fā)生和發(fā)展過(guò)程的理念,結(jié)合本節(jié)課的知識(shí)的邏輯關(guān)系,我按照以下順序安排本節(jié)課的教學(xué):

  即先從數(shù)學(xué)和物理兩個(gè)角度創(chuàng)設(shè)問(wèn)題情景,通過(guò)歸納和抽象得到數(shù)量積的概念,在此基礎(chǔ)上研究數(shù)量積的性質(zhì)和運(yùn)算律,使學(xué)生進(jìn)一步加深對(duì)概念的理解,然后通過(guò)例題和練習(xí)使學(xué)生鞏固概念,加深印象,最后通過(guò)課堂小結(jié)提高學(xué)生認(rèn)識(shí),形成知識(shí)體系。

  四、 教學(xué)媒體設(shè)計(jì)

  和“大綱”教材相比,“課標(biāo)”教材在本節(jié)課的內(nèi)容安排上,雖然將向量的夾角在“平面向量基本定理”一節(jié)提前做了介紹,但卻將原來(lái)分兩節(jié)課完成的內(nèi)容合并成一節(jié),相比較而言本節(jié)課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),考慮到本節(jié)課的實(shí)際特點(diǎn),在教學(xué)媒體的使用上,我的設(shè)想主要有以下兩點(diǎn):

  1、制作高效實(shí)用的電腦多媒體課件,主要作用是改變相關(guān)內(nèi)容的呈現(xiàn)方式,以此來(lái)節(jié)約課時(shí),增加課堂容量。

  2、設(shè)計(jì)科學(xué)合理的板書(見(jiàn)下),一方面使學(xué)生加深對(duì)主要知識(shí)的印象,另一方面使學(xué)生清楚本節(jié)內(nèi)容知識(shí)間的邏輯關(guān)系,形成知識(shí)網(wǎng)絡(luò)。

  平面向量數(shù)量積的物理背景及其含義

  一、 數(shù)量積的概念 二、數(shù)量積的性質(zhì) 四、應(yīng)用與提高

  1、 概念: 例1:

  2、 概念強(qiáng)調(diào) (1)記法 例2:

  (2)“規(guī)定” 三、數(shù)量積的運(yùn)算律 例3:

  3、幾何意義:

  4、物理意義:

  五、 教學(xué)過(guò)程設(shè)計(jì)

  課標(biāo)指出:數(shù)學(xué)教學(xué)過(guò)程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動(dòng)的過(guò)程,是教師和學(xué)生間互動(dòng)的過(guò)程,是師生共同發(fā)展的過(guò)程。為有序、有效地進(jìn)行教學(xué),本節(jié)課我主要安排以下六個(gè)活動(dòng):

  活動(dòng)一:創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)習(xí)興趣

  正如教材主編寄語(yǔ)所言,數(shù)學(xué)是自然的,而不是強(qiáng)加于人的。平面向量的數(shù)量積這一重要概念,和向量的線性運(yùn)算一樣,也有其數(shù)學(xué)背景和物理背景,為了體現(xiàn)這一點(diǎn),我設(shè)計(jì)以下幾個(gè)問(wèn)題:

  問(wèn)題1:我們已經(jīng)研究了向量的哪些運(yùn)算?這些運(yùn)算的結(jié)果是什么?

  問(wèn)題2:我們是怎么引入向量的加法運(yùn)算的?我們又是按照怎樣的順序研究了這種運(yùn)算的?

  期望學(xué)生回答:物理模型→概念→性質(zhì)→運(yùn)算律→應(yīng)用

  問(wèn)題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S,

  (1)力F所做的功W= 。

  (2)請(qǐng)同學(xué)們分析這個(gè)公式的特點(diǎn):

  W(功)是 量,

  F(力)是 量,

  S(位移)是 量,

  α是 。

  問(wèn)題1的設(shè)計(jì)意圖在于使學(xué)生了解數(shù)量積的數(shù)學(xué)背景,讓學(xué)生明白本節(jié)課所要研究的數(shù)量積與向量的加法、減法及數(shù)乘一樣,都是向量的運(yùn)算,但與向量的線性運(yùn)算相比,數(shù)量積運(yùn)算又有其特殊性,那就是其結(jié)果發(fā)生了本質(zhì)的變化。

  問(wèn)題2的設(shè)計(jì)意圖在于使學(xué)生在與向量加法類比的基礎(chǔ)上明了本節(jié)課的研究方法和順序,為教學(xué)活動(dòng)指明方向。

  問(wèn)題3的設(shè)計(jì)意圖在于使學(xué)生了解數(shù)量積的物理背景,讓學(xué)生知道,我們研究數(shù)量積絕不僅僅是為了數(shù)學(xué)自身的完善,而是有其客觀背景和現(xiàn)實(shí)意義的,從而產(chǎn)生了進(jìn)一步研究這種新運(yùn)算的愿望。同時(shí),也為抽象數(shù)量積的概念做好鋪墊。

  活動(dòng)二:探究數(shù)量積的概念

  1、概念的抽象

  在分析“功”的計(jì)算公式的基礎(chǔ)上提出問(wèn)題4

  問(wèn)題4:你能用文字語(yǔ)言來(lái)表述功的計(jì)算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結(jié)果又該如何表述?

  學(xué)生通過(guò)思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個(gè)向量的大小及其夾角余弦的乘積。這樣,學(xué)生事實(shí)上已經(jīng)得到數(shù)量積概念的文字表述了,在此基礎(chǔ)上,我進(jìn)一步明晰數(shù)量積的概念。

  2、概念的明晰

  已知兩個(gè)非零向量

  與

  ,它們的夾角為

  ,我們把數(shù)量 ︱

  ︱·︱

  ︱cos

  叫做

  與

  的數(shù)量積(或內(nèi)積),記作:

  ·

  ,即:

  ·

  = ︱

  ︱·︱

  ︱cos

  在強(qiáng)調(diào)記法和“規(guī)定”后 ,為了讓學(xué)生進(jìn)一步認(rèn)識(shí)這一概念,提出問(wèn)題5

  問(wèn)題5:向量的數(shù)量積運(yùn)算與線性運(yùn)算的結(jié)果有什么不同?影響數(shù)量積大小的因素有哪些?并完成下表:

  角

  的范圍0°≤

  <90°

  =90°0°<

  ≤180°

  ·

  的符號(hào)

  通過(guò)此環(huán)節(jié)不僅使學(xué)生認(rèn)識(shí)到數(shù)量積的結(jié)果與線性運(yùn)算的結(jié)果有著本質(zhì)的不同,而且認(rèn)識(shí)到向量的夾角是決定數(shù)量積結(jié)果的重要因素,為下面更好地理解數(shù)量積的性質(zhì)和運(yùn)算律做好鋪墊。

  3、探究數(shù)量積的幾何意義

  這個(gè)問(wèn)題教材是這樣安排的:在給出向量數(shù)量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運(yùn)算律的第三條才直接以結(jié)論的形式呈現(xiàn)給學(xué)生,我覺(jué)得這樣安排似乎不太自然,還不如在給出向量投影的'概念后,直接由學(xué)生自己歸納得出,所以做了調(diào)整。為此,我首先給出給出向量投影的概念,然后提出問(wèn)題5。

  如圖,我們把│

  │cos

  (│

  │cos

  )叫做向量

  在

  方向上(

  在

  方向上)的投影,記做:OB1=│

  │cos

  問(wèn)題6:數(shù)量積的幾何意義是什么?

  這樣做不僅讓學(xué)生從“形”的角度重新認(rèn)識(shí)數(shù)量積的概念,從中體會(huì)數(shù)量積與向量投影的關(guān)系,同時(shí)也更符合知識(shí)的連貫性,而且也節(jié)約了課時(shí)。

  4、研究數(shù)量積的物理意義

  數(shù)量積的概念是由物理中功的概念引出的,學(xué)習(xí)了數(shù)量積的概念后,學(xué)生就會(huì)明白功的數(shù)學(xué)本質(zhì)就是力與位移的數(shù)量積。為此,我設(shè)計(jì)以下問(wèn)題 一方面使學(xué)生嘗試計(jì)算數(shù)量積,另一方面使學(xué)生理解數(shù)量積的物理意義,同時(shí)也為數(shù)量積的性質(zhì)埋下伏筆。

  問(wèn)題7:

  (1) 請(qǐng)同學(xué)們用一句話來(lái)概括功的數(shù)學(xué)本質(zhì):功是力與位移的數(shù)量積 。

  (2)嘗試練習(xí):一物體質(zhì)量是10千克,分別做以下運(yùn)動(dòng):

 、、在水平面上位移為10米;

  ②、豎直下降10米;

 、、豎直向上提升10米;

 、、沿傾角為30度的斜面向上運(yùn)動(dòng)10米;

  分別求重力做的功。

  活動(dòng)三:探究數(shù)量積的運(yùn)算性質(zhì)

  1、性質(zhì)的發(fā)現(xiàn)

  教材中關(guān)于數(shù)量積的三條性質(zhì)是以探究的形式出現(xiàn)的,為了很好地完成這一探究活動(dòng),在完成上述練習(xí)后,我不失時(shí)機(jī)地提出問(wèn)題8:

  (1)將嘗試練習(xí)中的① ② ③的結(jié)論推廣到一般向量,你能得到哪些結(jié)論?

  (2)比較︱

  ·

  ︱與︱

  ︱×︱

  ︱的大小,你有什么結(jié)論?

  在學(xué)生討論交流的基礎(chǔ)上,教師進(jìn)一步明晰數(shù)量積的性質(zhì),然后再由學(xué)生利用數(shù)量積的定義給予證明,完成探究活動(dòng)。

  2、明晰數(shù)量積的性質(zhì)

  3、性質(zhì)的證明

  這樣設(shè)計(jì)體現(xiàn)了教師只是教學(xué)活動(dòng)的引領(lǐng)者,而學(xué)生才是學(xué)習(xí)活動(dòng)的主體,讓學(xué)生成為學(xué)習(xí)的研究者,不斷地體驗(yàn)到成功的喜悅,激發(fā)學(xué)生參與學(xué)習(xí)活動(dòng)的熱情,不僅使學(xué)生獲得了知識(shí),更培養(yǎng)了學(xué)生由特殊到一般的思維品質(zhì)。

  活動(dòng)四:探究數(shù)量積的運(yùn)算律

  1、運(yùn)算律的發(fā)現(xiàn)

  關(guān)于運(yùn)算律,教材仍然是以探究的形式出現(xiàn),為此,首先提出問(wèn)題9

  問(wèn)題9:我們學(xué)過(guò)了實(shí)數(shù)乘法的哪些運(yùn)算律?這些運(yùn)算律對(duì)向量是否也適用?

  通過(guò)此問(wèn)題主要是想使學(xué)生在類比的基礎(chǔ)上,猜測(cè)提出數(shù)量積的運(yùn)算律。

  學(xué)生可能會(huì)提出以下猜測(cè): ①

  ·

  =

  ·

 、(

  ·

  )

  =

  (

  ·

  ) ③(

  +

  )·

  =

  ·

  +

  ·

  猜測(cè)①的正確性是顯而易見(jiàn)的。

  關(guān)于猜測(cè)②的正確性,我提示學(xué)生思考下面的問(wèn)題:

  猜測(cè)②的左右兩邊的結(jié)果各是什么?它們一定相等嗎?

  學(xué)生通過(guò)討論不難發(fā)現(xiàn),猜測(cè)②是不正確的。

  這時(shí)教師在肯定猜測(cè)③的基礎(chǔ)上明晰數(shù)量積的運(yùn)算律:

  2、明晰數(shù)量積的運(yùn)算律

  3、證明運(yùn)算律

  學(xué)生獨(dú)立證明運(yùn)算律(2)

  我把運(yùn)算運(yùn)算律(2)的證明交給學(xué)生完成,在證明時(shí),學(xué)生可能只考慮到λ>0的情況,為了幫助學(xué)生完善證明,提出以下問(wèn)題:

  當(dāng)λ<0時(shí),向量

  與λ

  ,

  與λ

  的方向 的關(guān)系如何?此時(shí),向量λ

  與

  及

  與λ

  的夾角與向量

  與

  的夾角相等嗎?

  師生共同證明運(yùn)算律(3)

  運(yùn)算律(3)的證明對(duì)學(xué)生來(lái)說(shuō)是比較困難的,為了節(jié)約課時(shí),這個(gè)證明由師生共同完成,我想這也是教材的本意。

  在這個(gè)環(huán)節(jié)中,我仍然是首先為學(xué)生創(chuàng)設(shè)情景,讓學(xué)生在類比的基礎(chǔ)上進(jìn)行猜想歸納,然后教師明晰結(jié)論,最后再完成證明,這樣做不僅培養(yǎng)了學(xué)生推理論證的能力,同時(shí)也增強(qiáng)了學(xué)生類比創(chuàng)新的意識(shí),將知識(shí)的獲得和能力的培養(yǎng)有機(jī)的結(jié)合在一起。

  活動(dòng)五:應(yīng)用與提高

  例1、(師生共同完成)已知︱

  ︱=6,︱

  ︱=4,

  與

  的夾角為60°,求

  (

  +2

  )·(

  -3

  ),并思考此運(yùn)算過(guò)程類似于哪種運(yùn)算?

  例2、(學(xué)生獨(dú)立完成)對(duì)任意向量

  ,b是否有以下結(jié)論:

  (1)(

  +

  )2=

  2+2

  ·

  +

  2

  (2)(

  +

  )·(

  -

  )=

  2—

  2

  例3、(師生共同完成)已知︱

  ︱=3,︱

  ︱=4, 且

  與

  不共線,k為何值時(shí),向量

  +k

  與

  -k

  互相垂直?并思考:通過(guò)本題你有什么收獲?

  本節(jié)教材共安排了四道例題,我根據(jù)學(xué)生實(shí)際選擇了其中的三道,并對(duì)例1和例3增加了題后反思。例1是數(shù)量積的性質(zhì)和運(yùn)算律的綜合應(yīng)用,教學(xué)時(shí),我重點(diǎn)從對(duì)運(yùn)算原理的分析和運(yùn)算過(guò)程的規(guī)范書寫兩個(gè)方面加強(qiáng)示范。完成計(jì)算后,進(jìn)一步提出問(wèn)題:此運(yùn)算過(guò)程類似于哪種運(yùn)算?目的是想讓學(xué)生在類比多項(xiàng)式乘法的基礎(chǔ)上自己猜測(cè)提出例2給出的兩個(gè)公式,再由學(xué)生獨(dú)立完成證明,一方面這并不困難,另一方面培養(yǎng)了學(xué)生通過(guò)類比這一思維模式達(dá)到創(chuàng)新的目的。例3的主要作用是,在繼續(xù)鞏固性質(zhì)和運(yùn)算律的同時(shí),教給學(xué)生如何利用數(shù)量積來(lái)判斷兩個(gè)向量的垂直,是平面向量數(shù)量積的基本應(yīng)用之一,教學(xué)時(shí)重點(diǎn)給學(xué)生分析數(shù)與形的轉(zhuǎn)化原理。

  為了使學(xué)生更好的理解數(shù)量積的含義,熟練掌握性質(zhì)及運(yùn)算律,并能夠應(yīng)用數(shù)量積解決有關(guān)問(wèn)題,再安排如下練習(xí):

  1、 下列兩個(gè)命題正確嗎?為什么?

 、佟⑷

  ≠0,則對(duì)任一非零向量

  ,有

  ·

  ≠0.

 、凇⑷

  ≠0,

  ·

  =

  ·

  ,則

  =

  .

  2、已知△ABC中,

  =

  ,

  =

  ,當(dāng)

  ·

  <0或

  ·

  =0時(shí),試判斷△ABC的形狀。

  安排練習(xí)1的主要目的是,使學(xué)生在與實(shí)數(shù)乘法比較的基礎(chǔ)上全面認(rèn)識(shí)數(shù)量積這一重要運(yùn)算,

  通過(guò)練習(xí)2使學(xué)生學(xué)會(huì)用數(shù)量積表示兩個(gè)向量的夾角,進(jìn)一步感受數(shù)量積的應(yīng)用價(jià)值。

  活動(dòng)六:小結(jié)提升與作業(yè)布置

  1、本節(jié)課我們學(xué)習(xí)的主要內(nèi)容是什么?

  2、平面向量數(shù)量積的兩個(gè)基本應(yīng)用是什么?

  3、我們是按照怎樣的思維模式進(jìn)行概念的歸納和性質(zhì)的探究?在運(yùn)算律的探究過(guò)程中,滲透了哪些數(shù)學(xué)思想?

  4、類比向量的線性運(yùn)算,我們還應(yīng)該怎樣研究數(shù)量積?

  通過(guò)上述問(wèn)題,使學(xué)生不僅對(duì)本節(jié)課的知識(shí)、技能及方法有了更加全面深刻的認(rèn)識(shí),同時(shí)也為下

  一節(jié)做好鋪墊,繼續(xù)激發(fā)學(xué)生的求知欲。

  布置作業(yè):

  1、課本P121習(xí)題2.4A組1、2、3。

  2、拓展與提高:

  已知

  與

  都是非零向量,且

  +3

  與7

  -5

  垂直,

  -4

  與 7

  -2

  垂直求

  與

  的夾角。

  在這個(gè)環(huán)節(jié)中,我首先考慮檢測(cè)全體學(xué)生是否都達(dá)到了“課標(biāo)”的基本要求,因此安排了一組教材中的習(xí)題,目的是讓所有的學(xué)生繼續(xù)加深對(duì)數(shù)量積概念的理解和應(yīng)用,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。其次,為了能讓不同的學(xué)生在數(shù)學(xué)領(lǐng)域得到不同的發(fā)展,我又安排了一道有一定難度的問(wèn)題供學(xué)有余力的同學(xué)選做。

  六、教學(xué)評(píng)價(jià)設(shè)計(jì)

  評(píng)價(jià)方式的轉(zhuǎn)變是新課程改革的一大亮點(diǎn),課標(biāo)指出:相對(duì)于結(jié)果,過(guò)程更能反映每個(gè)學(xué)生的發(fā)展變化,體現(xiàn)出學(xué)生成長(zhǎng)的歷程。因此,數(shù)學(xué)學(xué)習(xí)的評(píng)價(jià)既要重視結(jié)果,也要重視過(guò)程。結(jié)合“課標(biāo)”對(duì)數(shù)學(xué)學(xué)習(xí)的評(píng)價(jià)建議,對(duì)本節(jié)課的教學(xué)我主要通過(guò)以下幾種方式進(jìn)行:

  1、 通過(guò)與學(xué)生的問(wèn)答交流,發(fā)現(xiàn)其思維過(guò)程,在鼓勵(lì)的基礎(chǔ)上,糾正偏差,并對(duì)其進(jìn)行定

  性的評(píng)價(jià)。

  2、在學(xué)生討論、交流、協(xié)作時(shí),教師通過(guò)觀察,就個(gè)別或整體參與活動(dòng)的態(tài)度和表現(xiàn)做出評(píng)價(jià),以此來(lái)調(diào)動(dòng)學(xué)生參與活動(dòng)的積極性。

  3、 通過(guò)練習(xí)來(lái)檢驗(yàn)學(xué)生學(xué)習(xí)的效果,并在講評(píng)中,肯定優(yōu)點(diǎn),指出不足。

  4、 通過(guò)作業(yè),反饋信息,再次對(duì)本節(jié)課做出評(píng)價(jià),以便查漏補(bǔ)缺。

高中數(shù)學(xué)說(shuō)課稿 篇4

  各位老師:

  大家好!

  我叫***,來(lái)自**。我說(shuō)課的題目是《古典概型》,內(nèi)容選自于高中教材新課程人教A版必修3第三章第二節(jié),課時(shí)安排為兩個(gè)課時(shí),本節(jié)課內(nèi)容為第一課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教法與學(xué)法分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對(duì)這節(jié)課的分析和設(shè)計(jì):

  一、教材分析

  1.教材所處的地位和作用

  古典概型是一種特殊的數(shù)學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當(dāng)重要的地位。它承接著前面學(xué)過(guò)的隨機(jī)事件的概率及其性質(zhì),又是以后學(xué)習(xí)條件概率的基礎(chǔ),起到承前啟后的作用。

  2.教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):理解古典概型及其概率計(jì)算公式。

  難點(diǎn):古典概型的判斷及把一些實(shí)際問(wèn)題轉(zhuǎn)化成古典概型。

  二、教學(xué)目標(biāo)分析

  1.知識(shí)與技能目標(biāo)

  (1)通過(guò)試驗(yàn)理解基本事件的概念和特點(diǎn)

 。2)在數(shù)學(xué)建模的過(guò)程中,抽離出古典概型的兩個(gè)基本特征,推導(dǎo)出古典概型下的概率的計(jì)算公式。

  2、過(guò)程與方法:

  經(jīng)歷公式的推導(dǎo)過(guò)程,體驗(yàn)由特殊到一般的數(shù)學(xué)思想方法。

  3、情感態(tài)度與價(jià)值觀:

 。1)用具有現(xiàn)實(shí)意義的實(shí)例,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生勇于探索,善于發(fā)現(xiàn)的創(chuàng)新思想。

 。2)讓學(xué)生掌握"理論來(lái)源于實(shí)踐,并把理論應(yīng)用于實(shí)踐"的辨證思想。

  三、教法與學(xué)法分析

  1、教法分析:根據(jù)本節(jié)課的特點(diǎn),采用引導(dǎo)發(fā)現(xiàn)和歸納概括相結(jié)合的教學(xué)方法,通過(guò)提出問(wèn)題、思考問(wèn)題、解決問(wèn)題等教學(xué)過(guò)程,觀察對(duì)比、概括歸納古典概型的概念及其概率公式,再通過(guò)具體問(wèn)題的提出和解決,來(lái)激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的主體能動(dòng)性,讓每一個(gè)學(xué)生充分地參與到學(xué)習(xí)活動(dòng)中來(lái)。

  2、學(xué)法分析:學(xué)生在教師創(chuàng)設(shè)的問(wèn)題情景中,通過(guò)觀察、類比、思考、探究、概括、歸納和動(dòng)手嘗試相結(jié)合,體現(xiàn)了學(xué)生的主體地位,培養(yǎng)了學(xué)生由具體到抽象,由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度。

 、鍎(chuàng)設(shè)情景、引入新課

  在課前,教師布置任務(wù),以小組為單位,完成下面兩個(gè)模擬試驗(yàn):

  試驗(yàn)一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數(shù),要求每個(gè)數(shù)學(xué)小組至少完成20次(最好是整十?dāng)?shù)),最后由代表匯總;

  試驗(yàn)二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)"的次數(shù),要求每個(gè)數(shù)學(xué)小組至少完成60次(最好是整十?dāng)?shù)),最后由代表匯總。

  在課上,學(xué)生展示模擬試驗(yàn)的操作方法和試驗(yàn)結(jié)果,并與同學(xué)交流活動(dòng)感受,教師最后匯總方法、結(jié)果和感受,并提出兩個(gè)問(wèn)題。

  1.用模擬試驗(yàn)的方法來(lái)求某一隨機(jī)事件的概率好不好?為什么?

  不好,要求出某一隨機(jī)事件的概率,需要進(jìn)行大量的試驗(yàn),并且求出來(lái)的結(jié)果是頻率,而不是概率。

  2.根據(jù)以前的學(xué)習(xí),上述兩個(gè)模擬試驗(yàn)的每個(gè)結(jié)果之間都有什么特點(diǎn)?]

  「設(shè)計(jì)意圖」通過(guò)課前的模擬實(shí)驗(yàn),讓學(xué)生感受與他人合作的重要性,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語(yǔ)言的能力。隨著新問(wèn)題的提出,激發(fā)了學(xué)生的求知欲望,通過(guò)觀察對(duì)比,培養(yǎng)了學(xué)生發(fā)現(xiàn)問(wèn)題的能力。

 、嫠伎冀涣、形成概念

  學(xué)生觀察對(duì)比得出兩個(gè)模擬試驗(yàn)的相同點(diǎn)和不同點(diǎn),教師給出基本事件的概念,并對(duì)相關(guān)特點(diǎn)加以說(shuō)明,加深對(duì)新概念的理解。

  [基本事件有如下的兩個(gè)特點(diǎn):

 。1)任何兩個(gè)基本事件是互斥的;

 。2)任何事件(除不可能事件)都可以表示成基本事件的和.]

  「設(shè)計(jì)意圖」讓學(xué)生從問(wèn)題的相同點(diǎn)和不同點(diǎn)中找出研究對(duì)象的對(duì)立統(tǒng)一面,這能培養(yǎng)學(xué)生分析問(wèn)題的能力,同時(shí)也教會(huì)學(xué)生運(yùn)用對(duì)立統(tǒng)一的辯證唯物主義觀點(diǎn)來(lái)分析問(wèn)題的一種方法。教師的注解可以使學(xué)生更好的把握問(wèn)題的關(guān)鍵。

  例1從字母a、b、c、d中任意取出兩個(gè)不同字母的試驗(yàn)中,有哪些基本事件?

  先讓學(xué)生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問(wèn)題的優(yōu)點(diǎn)。

  「設(shè)計(jì)意圖」將數(shù)形結(jié)合和分類討論的思想滲透到具體問(wèn)題中來(lái)。由于沒(méi)有學(xué)習(xí)排列組合,因此用列舉法列舉基本事件的個(gè)數(shù),不僅能讓學(xué)生直觀的感受到對(duì)象的總數(shù),而且還能使學(xué)生在列舉的時(shí)候作到不重不漏。解決了求古典概型中基本事件總數(shù)這一難點(diǎn)

  觀察對(duì)比,發(fā)現(xiàn)兩個(gè)模擬試驗(yàn)和例1的共同特點(diǎn):

  讓學(xué)生先觀察對(duì)比,找出兩個(gè)模擬試驗(yàn)和例1的共同特點(diǎn),再概括總結(jié)得到的結(jié)論,教師最后補(bǔ)充說(shuō)明。

  [經(jīng)概括總結(jié)后得到:

 。1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);(有限性)

 。2)每個(gè)基本事件出現(xiàn)的可能性相等。(等可能性)

  我們將具有這兩個(gè)特點(diǎn)的概率模型稱為古典概率概型,簡(jiǎn)稱古典概型。

  「設(shè)計(jì)意圖」培養(yǎng)運(yùn)用從具體到抽象、從特殊到一般的辯證唯物主義觀點(diǎn)分析問(wèn)題的能力,充分體現(xiàn)了數(shù)學(xué)的化歸思想。啟發(fā)誘導(dǎo)的同時(shí),訓(xùn)練了學(xué)生觀察和概括歸納的能力。通過(guò)列出相同和不同點(diǎn),能讓學(xué)生很好的理解古典概型。

 、缬^察分析、推導(dǎo)方程

  問(wèn)題思考:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機(jī)事件出現(xiàn)的概率如何計(jì)算?

  教師提出問(wèn)題,引導(dǎo)學(xué)生類比分析兩個(gè)模擬試驗(yàn)和例1的概率,先通過(guò)用概率加法公式求出隨機(jī)事件的概率,再對(duì)比概率結(jié)果,發(fā)現(xiàn)其中的聯(lián)系,最后概括總結(jié)得出古典概型計(jì)算任何事件的概率計(jì)算公式:

  「設(shè)計(jì)意圖」鼓勵(lì)學(xué)生運(yùn)用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來(lái)分析問(wèn)題,同時(shí)讓學(xué)生感受數(shù)學(xué)化歸思想的優(yōu)越性和這一做法的'合理性,突出了古典概型的概率計(jì)算公式這一重點(diǎn)。

  提問(wèn):

 。1)在例1的實(shí)驗(yàn)中,出現(xiàn)字母"d"的概率是多少?

 。2)在使用古典概型的概率公式時(shí),應(yīng)該注意什么?

  「設(shè)計(jì)意圖」教師提問(wèn),學(xué)生回答,深化對(duì)古典概型的概率計(jì)算公式的理解,也抓住了解決古典概型的概率計(jì)算的關(guān)鍵。

  ㈣例題分析、推廣應(yīng)用

  例2單選題是標(biāo)準(zhǔn)化考試中常用的題型,一般是從A,B,c,D四個(gè)選項(xiàng)中選擇一個(gè)正確答案。如果考生掌握了考差的內(nèi)容,他可以選擇唯一正確的答案。假設(shè)考生不會(huì)做,他隨機(jī)的選擇一個(gè)答案,問(wèn)他答對(duì)的概率是多少?

  學(xué)生先思考再回答,教師對(duì)學(xué)生沒(méi)有注意到的關(guān)鍵點(diǎn)加以說(shuō)明。

  「設(shè)計(jì)意圖」讓學(xué)生明確決概率的計(jì)算問(wèn)題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機(jī)事件A包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。鞏固學(xué)生對(duì)已學(xué)知識(shí)的掌握。

  例3同時(shí)擲兩個(gè)骰子,計(jì)算:

  (1)一共有多少種不同的結(jié)果?

 。2)其中向上的點(diǎn)數(shù)之和是5的結(jié)果有多少種?

 。3)向上的點(diǎn)數(shù)之和是5的概率是多少?

  先給出問(wèn)題,再讓學(xué)生完成,然后引導(dǎo)學(xué)生分析問(wèn)題,發(fā)現(xiàn)解答中存在的問(wèn)題。引導(dǎo)學(xué)生用列表來(lái)列舉試驗(yàn)中的基本事件的總數(shù)。

  「設(shè)計(jì)意圖」利用列表數(shù)形結(jié)合和分類討論,既能形象直觀地列出基本事件的總數(shù),又能做到列舉的不重不漏。深化鞏固對(duì)古典概型及其概率計(jì)算公式的理解。培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合的思想,提高發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力,增強(qiáng)學(xué)生數(shù)學(xué)思維情趣,形成學(xué)習(xí)數(shù)學(xué)知識(shí)的積極態(tài)度。

 、樘骄克枷搿㈧柟躺罨

  問(wèn)題思考:為什么要把兩個(gè)骰子標(biāo)上記號(hào)?如果不標(biāo)記號(hào)會(huì)出現(xiàn)什么情況?你能解釋其中的原因嗎?

  要求學(xué)生觀察對(duì)比兩種結(jié)果,找出問(wèn)題產(chǎn)生的原因。

  「設(shè)計(jì)意圖」通過(guò)觀察對(duì)比,發(fā)現(xiàn)兩種結(jié)果不同的根本原因是--研究的問(wèn)題是否滿足古典概型,從而再次突出了古典概型這一教學(xué)重點(diǎn),體現(xiàn)了學(xué)生的主體地位,逐漸養(yǎng)成自主探究能力。

  ㈥總結(jié)概括、加深理解

  1.基本事件的特點(diǎn)

  2.古典概型的特點(diǎn)

  3.古典概型的概率計(jì)算公式

  學(xué)生小結(jié)歸納,不足的地方老師補(bǔ)充說(shuō)明。

  「設(shè)計(jì)意圖」使學(xué)生對(duì)本節(jié)課的知識(shí)有一個(gè)系統(tǒng)全面的認(rèn)識(shí),并把學(xué)過(guò)的相關(guān)知識(shí)有機(jī)地串聯(lián)起來(lái),便于記憶和應(yīng)用,也進(jìn)一步升華了這節(jié)課所要表達(dá)的本質(zhì)思想,讓學(xué)生的認(rèn)知更上一層。

 、氩贾米鳂I(yè)

  課本練習(xí)1、2、3

  「設(shè)計(jì)意圖」進(jìn)一步讓學(xué)生掌握古典概型及其概率公式,并能夠?qū)W以致用,加深對(duì)本節(jié)課的理解。

高中數(shù)學(xué)說(shuō)課稿 篇5

  一、教材地位與作用

  本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)?家恍┙獯痤}。因此,正弦定理的知識(shí)非常重要。

  二、學(xué)情分析

  作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們?cè)诮鉀Q任意三角形的邊與角問(wèn)題,就比較困難。

  教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

  教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。

  根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標(biāo)

  教學(xué)目標(biāo)分析:

  知識(shí)目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。

  能力目標(biāo):探索正弦定理的證明過(guò)程,用歸納法得出結(jié)論。

  情感目標(biāo):通過(guò)推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對(duì)稱美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。

  三、教法學(xué)法分析

  教法:采用探究式課堂教學(xué)模式,在教師的`啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

  學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習(xí),觀察,類比,思考,探究,動(dòng)手嘗試相結(jié)合,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。

  四、教學(xué)過(guò)程

  (一)創(chuàng)設(shè)情境,布疑激趣

  “興趣是最好的老師”,如果一節(jié)課有個(gè)好的開(kāi)頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(zhǎng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(zhǎng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

  (二)探尋特例,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

  2.那結(jié)論對(duì)任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對(duì)一般三角形進(jìn)行驗(yàn)證。

  3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

  在三角形中,角與所對(duì)的邊滿足關(guān)系

  這為下一步證明樹立信心,不斷的使學(xué)生對(duì)結(jié)論的認(rèn)識(shí)從感性逐步上升到理性。

  (三)邏輯推理,證明猜想

  1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

  2.鼓勵(lì)學(xué)生通過(guò)作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識(shí)能把長(zhǎng)度和三角函數(shù)聯(lián)系起來(lái),繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來(lái)證明。

  (四)歸納總結(jié),簡(jiǎn)單應(yīng)用

  1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱和諧美,提升對(duì)數(shù)學(xué)美的享受。

  2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問(wèn)題。

  3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長(zhǎng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。

  (五)講解例題,鞏固定理

  1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

  例1簡(jiǎn)單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對(duì)邊,都可利用正弦定理來(lái)解三角形。

  2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對(duì)角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

  (六)課堂練習(xí),提高鞏固

  1.在△ABC中,已知下列條件,解三角形。

  (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列條件,解三角形。

  (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

  學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問(wèn)題,并解答。

  (七)小結(jié)反思,提高認(rèn)識(shí)

  通過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對(duì)此有何體會(huì)?

  1.用向量證明了正弦定

  理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  2.它表述了三角形的邊與對(duì)角的正弦值的關(guān)系。

  3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

  (從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動(dòng)學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動(dòng)的教學(xué)。)

  (八)任務(wù)后延,自主探究

  如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過(guò)渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。

高中數(shù)學(xué)說(shuō)課稿 篇6

  【教材分析】

  1、本節(jié)教材的地位與作用

  本節(jié)主要研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實(shí)際應(yīng)用,分兩課時(shí),這里是第一課時(shí),它是在學(xué)生已經(jīng)會(huì)求某些函數(shù)的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在閉區(qū)間[a,b]上有最大值和最小值”,以及會(huì)求可導(dǎo)函數(shù)的極值之后進(jìn)行學(xué)習(xí)的,學(xué)好這一節(jié),學(xué)生將會(huì)求更多的函數(shù)的最值,運(yùn)用本節(jié)知識(shí)可以解決科技、經(jīng)濟(jì)、社會(huì)中的一些如何使成本最低、產(chǎn)量最高、效益最大等實(shí)際問(wèn)題。這節(jié)課集中體現(xiàn)了數(shù)形結(jié)合、理論聯(lián)系實(shí)際等重要的數(shù)學(xué)思想方法,學(xué)好本節(jié),對(duì)于進(jìn)一步完善學(xué)生的知識(shí)結(jié)構(gòu),培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)都具有極為重要的意義。

  2、教學(xué)重點(diǎn)

  會(huì)求閉區(qū)間上連續(xù)開(kāi)區(qū)間上可導(dǎo)的函數(shù)的最值。

  3、教學(xué)難點(diǎn)

  高三年級(jí)學(xué)生雖然已經(jīng)具有一定的知識(shí)基礎(chǔ),但由于對(duì)求函數(shù)極值還不熟練,特別是對(duì)優(yōu)化解題過(guò)程依據(jù)的理解會(huì)有較大的困難,所以這節(jié)課的難點(diǎn)是理解確定函數(shù)最值的方法。

  4、教學(xué)關(guān)鍵

  本節(jié)課突破難點(diǎn)的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區(qū)間內(nèi)全部可能的極值點(diǎn)。

  【教學(xué)目標(biāo)】

  根據(jù)本節(jié)教材在高中數(shù)學(xué)知識(shí)體系中的地位和作用,結(jié)合學(xué)生已有的認(rèn)知水平,制定本節(jié)如下的教學(xué)目標(biāo):

  1、知識(shí)和技能目標(biāo)

  (1)理解函數(shù)的最值與極值的區(qū)別和聯(lián)系。

 。2)進(jìn)一步明確閉區(qū)間[a,b]上的連續(xù)函數(shù)f(x),在[a,b]上必有最大、最小值。

 。3)掌握用導(dǎo)數(shù)法求上述函數(shù)的.最大值與最小值的方法和步驟。

  2、過(guò)程和方法目標(biāo)

  (1)了解開(kāi)區(qū)間內(nèi)的連續(xù)函數(shù)或閉區(qū)間上的不連續(xù)函數(shù)不一定有最大、最小值。

 。2)理解閉區(qū)間上的連續(xù)函數(shù)最值存在的可能位置:極值點(diǎn)處或區(qū)間端點(diǎn)處。

 。3)會(huì)求閉區(qū)間上連續(xù),開(kāi)區(qū)間內(nèi)可導(dǎo)的函數(shù)的最大、最小值。

  3、情感和價(jià)值目標(biāo)

 。1)認(rèn)識(shí)事物之間的的區(qū)別和聯(lián)系。

 。2)培養(yǎng)學(xué)生觀察事物的能力,能夠自己發(fā)現(xiàn)問(wèn)題,分析問(wèn)題并最終解決問(wèn)題。

 。3)提高學(xué)生的數(shù)學(xué)能力,培養(yǎng)學(xué)生的創(chuàng)新精神、實(shí)踐能力和理性精神。

  【教法選擇】

  根據(jù)皮亞杰的建構(gòu)主義認(rèn)識(shí)論,知識(shí)是個(gè)體在與環(huán)境相互作用的過(guò)程中逐漸建構(gòu)的結(jié)果,而認(rèn)識(shí)則是起源于主客體之間的相互作用。

  本節(jié)課在幫助學(xué)生回顧肯定了閉區(qū)間上的連續(xù)函數(shù)一定存在最大值和最小值之后,引導(dǎo)學(xué)生通過(guò)觀察閉區(qū)間內(nèi)的連續(xù)函數(shù)的幾個(gè)圖象,自己歸納、總結(jié)出函數(shù)最大值、最小值存在的可能位置,進(jìn)而探索出函數(shù)最大值、最小值求解的方法與步驟,并優(yōu)化解題過(guò)程,讓學(xué)生主動(dòng)地獲得知識(shí),老師只是進(jìn)行適當(dāng)?shù)囊龑?dǎo),而不進(jìn)行全部的灌輸。為突出重點(diǎn),突破難點(diǎn),這節(jié)課主要選擇以合作探究式教學(xué)法組織教學(xué)。

  【學(xué)法指導(dǎo)】

  對(duì)于求函數(shù)的最值,高三學(xué)生已經(jīng)具備了良好的知識(shí)基礎(chǔ),剩下的問(wèn)題就是有沒(méi)有一種更一般的方法,能運(yùn)用于更多更復(fù)雜函數(shù)的求最值問(wèn)題?教學(xué)設(shè)計(jì)中注意激發(fā)起學(xué)生強(qiáng)烈的求知欲望,使得他們能積極主動(dòng)地觀察、分析、歸納,以形成認(rèn)識(shí),參與到課堂活動(dòng)中,充分發(fā)揮他們作為認(rèn)知主體的作用。

  【教學(xué)過(guò)程】

  本節(jié)課的教學(xué),大致按照“創(chuàng)設(shè)情境,鋪墊導(dǎo)入——合作學(xué)習(xí),探索新知——指導(dǎo)應(yīng)用,鼓勵(lì)創(chuàng)新——?dú)w納小結(jié),反饋回授”四個(gè)環(huán)節(jié)進(jìn)行組織。

高中數(shù)學(xué)說(shuō)課稿 篇7

  一、教材分析

  1.教材所處的地位和作用

  本節(jié)課所學(xué)內(nèi)容為算法案例3,主要學(xué)習(xí)如何給一組數(shù)據(jù)排序,學(xué)習(xí)作程序框圖和設(shè)計(jì)程序,通過(guò)本節(jié)課的學(xué)習(xí)之后將能使許多復(fù)雜的問(wèn)題在計(jì)算機(jī)上得到解決,減少工作量。

  2 教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):兩種排序法的排序步驟及計(jì)算機(jī)程序設(shè)計(jì)

  難點(diǎn):排序法的計(jì)算機(jī)程序設(shè)計(jì)

  二、教學(xué)目標(biāo)分析

  1.知識(shí)與技能目標(biāo):

  掌握數(shù)據(jù)排序的原理能使用直接排序法與冒泡排序法給一組數(shù)據(jù)排序,進(jìn)而能設(shè)計(jì)冒泡排序法的程序框圖及程序,理解數(shù)學(xué)算法與計(jì)算機(jī)算法的區(qū)別,理解計(jì)算機(jī)對(duì)數(shù)學(xué)的輔助作用。

  2.過(guò)程與方法目標(biāo):

  能根據(jù)排序法中的直接插入排序法與冒泡排序法的步驟,了解數(shù)學(xué)計(jì)算轉(zhuǎn)換為計(jì)算機(jī)計(jì)算的`途徑,從而探究計(jì)算機(jī)算法與數(shù)學(xué)算法的區(qū)別,體會(huì)計(jì)算機(jī)對(duì)數(shù)學(xué)學(xué)習(xí)的輔助作用。

  3.情感,態(tài)度和價(jià)值觀目標(biāo)

  通過(guò)對(duì)排序法的學(xué)習(xí),領(lǐng)會(huì)數(shù)學(xué)計(jì)算與計(jì)算機(jī)計(jì)算的區(qū)別,充分認(rèn)識(shí)信息技術(shù)對(duì)數(shù)學(xué)的促進(jìn)。

  三、教學(xué)方法與手段分析

  1.教學(xué)方法:充分發(fā)揮學(xué)生的主體作用和教師的主導(dǎo)作用,采用啟發(fā)式,并遵循循序漸進(jìn)的教學(xué)原則。這有利于學(xué)生掌握從現(xiàn)象到本質(zhì),從已知到未知逐步形成概念的學(xué)習(xí)方法,有利于發(fā)展學(xué)生抽象思維能力和邏輯推理能力。

  2.教學(xué)手段:通過(guò)各種教學(xué)媒體(計(jì)算機(jī))調(diào)動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。

  四、學(xué)法分析

  模仿排序法中數(shù)字排序的步驟,理解計(jì)算機(jī)計(jì)算的一般步驟,領(lǐng)會(huì)數(shù)學(xué)計(jì)算在計(jì)算機(jī)上實(shí)施的要求。

  五、教學(xué)過(guò)程分析

  一、創(chuàng)設(shè)情境

  提出問(wèn)題:大家考完試后如果要排一下成績(jī)的話,單靠人手該怎樣操作呢?如果我們用計(jì)算機(jī)里的軟件電子表格對(duì)分?jǐn)?shù)排序就非常簡(jiǎn)單,那么電子計(jì)算機(jī)是怎么對(duì)數(shù)據(jù)進(jìn)行排序的呢?

  通過(guò)這個(gè)問(wèn)題,引出我們這節(jié)課所要學(xué)習(xí)的兩種排序方法--直接插入排序法與冒泡排序法

  二、探索新知

  這里我先讓學(xué)生們閱讀課本P30-P31的內(nèi)容,然后回答下面的問(wèn)題:

  (1)排序法中的直接插入排序法與冒泡排序法的步驟有什么區(qū)別?

  (2)冒泡法排序中對(duì)5個(gè)數(shù)字進(jìn)行排序最多需要多少趟?

  (3)在冒泡法排序?qū)?個(gè)數(shù)字進(jìn)行排序的每一趟中需要比較大小幾次?

  提出問(wèn)題,然后讓學(xué)生們作出回答,這樣可以促使學(xué)生們能夠積極思考,自主地去學(xué)習(xí)新的知識(shí),而不只是單向的由老師向?qū)W生灌輸。

  三、知識(shí)應(yīng)用

  例1 用冒泡排序法對(duì)數(shù)據(jù)7,5,3,9,1從小到大進(jìn)行排序

 。ǜ鶕(jù)剛剛提問(wèn)所總結(jié)的方法完成解題步驟)

  練習(xí):寫出用冒泡排序法對(duì)5個(gè)數(shù)據(jù)4,11,7,9,6排序的過(guò)程中每一趟排序的結(jié)果.

  (及時(shí)將學(xué)到的知識(shí)應(yīng)用,有利于知識(shí)的掌握)

  例2 設(shè)計(jì)冒泡排序法對(duì)5個(gè)數(shù)據(jù)進(jìn)行排序的程序框圖.

  (在之前所學(xué)習(xí)知識(shí)的基礎(chǔ)上畫出程序框圖,然后給出一個(gè)思考題)

  思考:直接插入排序法的程序框圖如何設(shè)計(jì)?可否把上述程序框圖轉(zhuǎn)化為程序?

 。ㄖ蟪鲆粋(gè)練習(xí)題,找出思考題的答案)

  練習(xí):用直接插入排序法對(duì)例1中的數(shù)據(jù)從小到大排序,畫出程序框圖,并轉(zhuǎn)化為程序運(yùn)行求出最終答案。

 。ㄟ@里可以使學(xué)生們領(lǐng)會(huì)數(shù)學(xué)計(jì)算與計(jì)算機(jī)計(jì)算的區(qū)別,充分認(rèn)識(shí)信息技術(shù)對(duì)數(shù)學(xué)的促進(jìn)。)

  四、課堂小結(jié):

  (1)數(shù)字排序法中的常見(jiàn)的兩種排序法直接插入排序法與冒泡排序法它們的排序步驟

  (2兩種排序法的計(jì)算機(jī)程序設(shè)計(jì)

  (3)注意循環(huán)語(yǔ)句的使用與算法的循環(huán)次數(shù),對(duì)算法進(jìn)行改進(jìn)。

  通過(guò)小結(jié)使學(xué)生們對(duì)知識(shí)有一個(gè)系統(tǒng)的認(rèn)識(shí),突出重點(diǎn),抓住關(guān)鍵,培養(yǎng)概括能力。

高中數(shù)學(xué)說(shuō)課稿 篇8

  高三第一階段復(fù)習(xí),也稱“知識(shí)篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復(fù)習(xí)鞏固各個(gè)知識(shí)點(diǎn),熟練掌握基本方法和技能;然后站在全局的高度,對(duì)學(xué)過(guò)的知識(shí)產(chǎn)生全新認(rèn)識(shí)。在高一、高二時(shí),是以知識(shí)點(diǎn)為主線索,依次傳授講解的,由于后面的相關(guān)知識(shí)還沒(méi)有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,學(xué)的知識(shí)往往是零碎和散亂,而在第一輪復(fù)習(xí)時(shí),以章節(jié)為單位,將那些零碎的、散亂的知識(shí)點(diǎn)串聯(lián)起來(lái),并將他們系統(tǒng)化、綜合化,把各個(gè)知識(shí)點(diǎn)融會(huì)貫通。對(duì)于普通高中的學(xué)生,第一輪復(fù)習(xí)更為重要,我們希望能做高考試題中一些基礎(chǔ)題目,必須側(cè)重基礎(chǔ),加強(qiáng)復(fù)習(xí)的針對(duì)性,講求實(shí)效。

  一、內(nèi)容分析說(shuō)明

  1、本小節(jié)內(nèi)容是初中學(xué)習(xí)的多項(xiàng)式乘法的繼續(xù),它所研究的二項(xiàng)式的乘方的展開(kāi)式,與數(shù)學(xué)的其他部分有密切的聯(lián)系:

 。1)二項(xiàng)展開(kāi)式與多項(xiàng)式乘法有聯(lián)系,本小節(jié)復(fù)習(xí)可對(duì)多項(xiàng)式的變形起到復(fù)習(xí)深化作用。

 。2)二項(xiàng)式定理與概率理論中的二項(xiàng)分布有內(nèi)在聯(lián)系,利用二項(xiàng)式定理可得到一些組合數(shù)的恒等式,因此,本小節(jié)復(fù)習(xí)可加深知識(shí)間縱橫聯(lián)系,形成知識(shí)網(wǎng)絡(luò)。

 。3)二項(xiàng)式定理是解決某些整除性、近似計(jì)算等問(wèn)題的一種方法。

  2、高考中二項(xiàng)式定理的試題幾乎年年有,多數(shù)試題的難度與課本習(xí)題相當(dāng),是容易題和中等難度的

  試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時(shí)也與應(yīng)用題結(jié)合在一起求某些數(shù)、式的

  近似值。

  二、學(xué)校情況與學(xué)生分析

 。1)我校是一所鎮(zhèn)普通高中,學(xué)生的基礎(chǔ)不好,記憶力較差,反應(yīng)速度慢,普遍感到數(shù)學(xué)難學(xué)。但大部分學(xué)生想考大學(xué),主觀上有學(xué)好數(shù)學(xué)的愿望。

 。2)授課班是政治、地理班,學(xué)生聽(tīng)課積極性不高,聽(tīng)課率低(60﹪),注意力不能持久,不能連續(xù)從事某項(xiàng)數(shù)學(xué)活動(dòng)。課堂上喜歡輕松詼諧的氣氛,大部分能機(jī)械的模仿,部分學(xué)生好記筆記。

  三、教學(xué)目標(biāo)

  復(fù)習(xí)課二項(xiàng)式定理計(jì)劃安排兩個(gè)課時(shí),本課是第一課時(shí),主要復(fù)習(xí)二項(xiàng)展開(kāi)式和通項(xiàng)。根據(jù)歷年高考對(duì)這部分的考查情況,結(jié)合學(xué)生的特點(diǎn),設(shè)定如下教學(xué)目標(biāo):

  1、知識(shí)目標(biāo):(1)理解并掌握二項(xiàng)式定理,從項(xiàng)數(shù)、指數(shù)、系數(shù)、通項(xiàng)幾個(gè)特征熟記它的展開(kāi)式。

 。2)會(huì)運(yùn)用展開(kāi)式的通項(xiàng)公式求展開(kāi)式的特定項(xiàng)。

  2、能力目標(biāo):(1)教給學(xué)生怎樣記憶數(shù)學(xué)公式,如何提高記憶的持久性和準(zhǔn)確性,從而優(yōu)化記憶品質(zhì)。記憶力是一般數(shù)學(xué)能力,是其它能力的基礎(chǔ)。

  (2)樹立由一般到特殊的解決問(wèn)題的意識(shí),了解解決問(wèn)題時(shí)運(yùn)用的數(shù)學(xué)思想方法。

  3、情感目標(biāo):通過(guò)對(duì)二項(xiàng)式定理的復(fù)習(xí),使學(xué)生感覺(jué)到能掌握數(shù)學(xué)的部分內(nèi)容,樹立學(xué)好數(shù)學(xué)的信心。有意識(shí)地讓學(xué)生演練一些歷年高考試題,使學(xué)生體驗(yàn)到成功,在明年的高考中,他們也能得分。

  四、教學(xué)過(guò)程

  1、知識(shí)歸納

 。1)創(chuàng)設(shè)情景:①同學(xué)們,還記得嗎? 、 、 展開(kāi)式是什么?

 、趯W(xué)生一起回憶、老師板書。

  設(shè)計(jì)意圖:①提出比較容易的問(wèn)題,吸引學(xué)生的.注意力,組織教學(xué)。

  ②為學(xué)生能回憶起二項(xiàng)式定理作鋪墊:激活記憶,引起聯(lián)想。

 。2)二項(xiàng)式定理:①設(shè)問(wèn) 展開(kāi)式是什么?待學(xué)生思考后,老師板書

  = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)

  ②老師要求學(xué)生說(shuō)出二項(xiàng)展開(kāi)式的特征并熟記公式:共有 項(xiàng);各項(xiàng)里a的指數(shù)從n起依次減小1,直到0為止;b的指數(shù)從0起依次增加1,直到n為止。每一項(xiàng)里a、b的指數(shù)和均為n。

 、垤柟叹毩(xí) 填空

  設(shè)計(jì)意圖:①教給學(xué)生記憶的方法,比較分析公式的特點(diǎn),記規(guī)律。

 、谧冇霉,熟悉公式。

 。3) 展開(kāi)式中各項(xiàng)的系數(shù)C , C , C ,… , 稱為二項(xiàng)式系數(shù).

  展開(kāi)式的通項(xiàng)公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開(kāi)式中第r+1項(xiàng).

  2、例題講解

  例1求 的展開(kāi)式的第4項(xiàng)的二項(xiàng)式系數(shù),并求的第4項(xiàng)的系數(shù)。

  講解過(guò)程

  設(shè)問(wèn):這里 ,要求的第4項(xiàng)的有關(guān)系數(shù),如何解決?

  學(xué)生思考計(jì)算,回答問(wèn)題;

  老師指明①當(dāng)項(xiàng)數(shù)是4時(shí), ,此時(shí) ,所以第4項(xiàng)的二項(xiàng)式系數(shù)是 ,

 、诘4項(xiàng)的系數(shù)與的第4項(xiàng)的二項(xiàng)式系數(shù)區(qū)別。

  板書

  解:展開(kāi)式的第4項(xiàng)

  所以第4項(xiàng)的系數(shù)為 ,二項(xiàng)式系數(shù)為 。

  選題意圖:①利用通項(xiàng)公式求項(xiàng)的系數(shù)和二項(xiàng)式系數(shù);②復(fù)習(xí)指數(shù)冪運(yùn)算。

  例2 求 的展開(kāi)式中不含的 項(xiàng)。

  講解過(guò)程

  設(shè)問(wèn):①不含的 項(xiàng)是什么樣的項(xiàng)?即這一項(xiàng)具有什么性質(zhì)?

 、趩(wèn)題轉(zhuǎn)化為第幾項(xiàng)是常數(shù)項(xiàng),誰(shuí)能看出哪一項(xiàng)是常數(shù)項(xiàng)?

  師生討論 “看不出哪一項(xiàng)是常數(shù)項(xiàng),怎么辦?”

  共同探討思路:利用通項(xiàng)公式,列出項(xiàng)數(shù)的方程,求出項(xiàng)數(shù)。

  老師總結(jié)思路:先設(shè)第 項(xiàng)為不含 的項(xiàng),得 ,利用這一項(xiàng)的指數(shù)是零,得到關(guān)于 的方程,解出 后,代回通項(xiàng)公式,便可得到常數(shù)項(xiàng)。

  板書

  解:設(shè)展開(kāi)式的第 項(xiàng)為不含 項(xiàng),那么

  令 ,解得 ,所以展開(kāi)式的第9項(xiàng)是不含的 項(xiàng)。

  因此 。

  選題意圖:①鞏固運(yùn)用展開(kāi)式的通項(xiàng)公式求展開(kāi)式的特定項(xiàng),形成基本技能。

 、谂袛嗟趲醉(xiàng)是常數(shù)項(xiàng)運(yùn)用方程的思想;找到這一項(xiàng)的項(xiàng)數(shù)后,實(shí)現(xiàn)了轉(zhuǎn)化,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想。

  例3求 的展開(kāi)式中, 的系數(shù)。

  解題思路:原式局部展開(kāi)后,利用加法原理,可得到展開(kāi)式中的 系數(shù)。

  板書

  解:由于 ,則 的展開(kāi)式中 的系數(shù)為 的展開(kāi)式中 的系數(shù)之和。

  而 的展開(kāi)式含 的項(xiàng)分別是第5項(xiàng)、第4項(xiàng)和第3項(xiàng),則 的展開(kāi)式中 的系數(shù)分別是: 。

  所以 的展開(kāi)式中 的系數(shù)為

  例4 如果在( + )n的展開(kāi)式中,前三項(xiàng)系數(shù)成等差數(shù)列,求展開(kāi)式中的有理項(xiàng).

  解:展開(kāi)式中前三項(xiàng)的系數(shù)分別為1, , ,

  由題意得2× =1+ ,得n=8.

  設(shè)第r+1項(xiàng)為有理項(xiàng),T =C · ·x ,則r是4的倍數(shù),所以r=0,4,8.

  有理項(xiàng)為T1=x4,T5= x,T9= .

  3、課堂練習(xí)

  1.(20xx年江蘇,7)(2x+ )4的展開(kāi)式中x3的系數(shù)是

  A.6B.12 C.24 D.48

  解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數(shù)為C ·22=24.

  答案:C

  2.(20xx年全國(guó)Ⅰ,5)(2x3- )7的展開(kāi)式中常數(shù)項(xiàng)是

  A.14 B.14 C.42 D.-42

  解析:設(shè)(2x3- )7的展開(kāi)式中的第r+1項(xiàng)是T =C (2x3) (- )r=C 2 ·

 。ǎ1)r·x ,

  當(dāng)- +3(7-r)=0,即r=6時(shí),它為常數(shù)項(xiàng),∴C (-1)6·21=14.

  答案:A

  3.(20xx年湖北,文14)已知(x +x )n的展開(kāi)式中各項(xiàng)系數(shù)的和是128,則展開(kāi)式中x5的系數(shù)是_____________.(以數(shù)字作答)

  解析:∵(x +x )n的展開(kāi)式中各項(xiàng)系數(shù)和為128,

  ∴令x=1,即得所有項(xiàng)系數(shù)和為2n=128.

  ∴n=7.設(shè)該二項(xiàng)展開(kāi)式中的r+1項(xiàng)為T =C (x ) ·(x )r=C ·x ,

  令 =5即r=3時(shí),x5項(xiàng)的系數(shù)為C =35.

  答案:35

  五、課堂教學(xué)設(shè)計(jì)說(shuō)明

  1、這是一堂復(fù)習(xí)課,通過(guò)對(duì)例題的研究、討論,鞏固二項(xiàng)式定理通項(xiàng)公式,加深對(duì)項(xiàng)的系數(shù)、項(xiàng)的二項(xiàng)式系數(shù)等有關(guān)概念的理解和認(rèn)識(shí),形成求二項(xiàng)式展開(kāi)式某些指定項(xiàng)的基本技能,同時(shí),要培養(yǎng)學(xué)生的運(yùn)算能力,邏輯思維能力,強(qiáng)化方程的思想和轉(zhuǎn)化的思想。

  2、在例題的選配上,我設(shè)計(jì)了一定梯度。第一層次是給出二項(xiàng)式,求指定的項(xiàng),即項(xiàng)數(shù)已知,只需直接代入通項(xiàng)公式即可(例1);第二層次(例2)則需要自己創(chuàng)造代入的條件,先判斷哪一項(xiàng)為所求,即先求項(xiàng)數(shù),利用通項(xiàng)公式中指數(shù)的關(guān)系求出,此后轉(zhuǎn)化為第一層次的問(wèn)題。第三層次突出數(shù)學(xué)思想的滲透,例3需要變形才能求某一項(xiàng)的系數(shù),恒等變形是實(shí)現(xiàn)轉(zhuǎn)化的手段。在求每個(gè)局部展開(kāi)式的某項(xiàng)系數(shù)時(shí),又有分類討論思想的指導(dǎo)。而例4的設(shè)計(jì)是想增加題目的綜合性,求的n過(guò)程中,運(yùn)用等差數(shù)列、組合數(shù)n等知識(shí),求出后,有化歸為前面的問(wèn)題。

  六、個(gè)人見(jiàn)解

高中數(shù)學(xué)說(shuō)課稿 篇9

  拋物線焦點(diǎn)性質(zhì)的探索(說(shuō)課)

  一、教材分析

  1 教材的地位與作用 “拋物線焦點(diǎn)的性質(zhì)”是拋物線的重要性質(zhì)之一,它是在學(xué)生學(xué)習(xí)拋物線的一般性質(zhì)的基礎(chǔ)上,學(xué)習(xí)和研究的拋物線有關(guān)問(wèn)題的基本工具之一;本節(jié)教材對(duì)于培養(yǎng)學(xué)生觀察、猜想、概括能力和邏輯推理能力具有重要的意義。

  2 教學(xué)目的 全日制普通高級(jí)中學(xué)《數(shù)學(xué)教學(xué)大綱》第22頁(yè)“重視現(xiàn)代教育技術(shù)的運(yùn)用”中明確提出:在數(shù)學(xué)教學(xué)過(guò)程中,應(yīng)有意識(shí)地利用計(jì)算機(jī)網(wǎng)絡(luò)等現(xiàn)代信息技術(shù),認(rèn)識(shí)計(jì)算機(jī)的智能圖形、快速計(jì)算、機(jī)器證明、自動(dòng)求解及人機(jī)交互等功能在數(shù)學(xué)教學(xué)中的巨大潛力,努力探索在現(xiàn)代信息技術(shù)支持下的教學(xué)方法、教學(xué)模式。設(shè)計(jì)和組織能吸引學(xué)生積極參與的數(shù)學(xué)活動(dòng),支持和鼓勵(lì)學(xué)生運(yùn)用信息技術(shù)學(xué)習(xí)數(shù)學(xué)、開(kāi)展課題研究,改進(jìn)學(xué)習(xí)方式,提高學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識(shí)。因此本人在現(xiàn)行高中新教材(試驗(yàn)修訂本·必修)數(shù)學(xué)第二冊(cè)(上)拋物線這一節(jié)內(nèi)容為背景材料,以多媒體網(wǎng)絡(luò)教室為場(chǎng)地,以《幾何畫板》為教學(xué)工具與學(xué)習(xí)工具,設(shè)計(jì)了一堂《拋物線焦點(diǎn)性質(zhì)的探索》,具體目標(biāo)如下:

 。1) 知識(shí)目標(biāo):了解焦點(diǎn)的有關(guān)性質(zhì);并掌握這些性質(zhì)的證明方法;體會(huì)數(shù)形結(jié)合思想與分類討論思想在解決解析幾何題中的指導(dǎo)作用

 。2) 能力目標(biāo):使學(xué)生學(xué)會(huì)研究數(shù)學(xué)問(wèn)題的基本過(guò)程,能夠根據(jù)條件建立恰當(dāng)?shù)臄?shù)學(xué)模型;培養(yǎng)辯證唯物主義思想和辯證思維能力(主要包括量變與質(zhì)變,常量與變量,運(yùn)動(dòng)與靜止)培養(yǎng)學(xué)生通過(guò)計(jì)算機(jī)來(lái)自主學(xué)習(xí)的能力與創(chuàng)新的能力。

  (3) 情感目標(biāo):培養(yǎng)學(xué)生不畏困難,勇于鉆研、探索、大膽創(chuàng)新的精神,在挫折中成長(zhǎng)鍛煉,培養(yǎng)學(xué)生良好的心理素質(zhì)和抗挫折能力,通過(guò)拋物線焦點(diǎn)性質(zhì)的探索及證明,使學(xué)生得到數(shù)學(xué)美和創(chuàng)造美的享受。

  3 教學(xué)內(nèi)容、重點(diǎn)、難點(diǎn)及關(guān)鍵 本節(jié)安排兩節(jié)課,

  第一節(jié)課:主要內(nèi)容是利用《幾何畫板》探索拋物線的'有關(guān)性質(zhì);

  第二節(jié)課:證明第一節(jié)所得到的有關(guān)性質(zhì)。

  重點(diǎn):

 。1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點(diǎn)的性質(zhì);

 。2)如何證明這些性質(zhì)。

  難點(diǎn);

 。1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點(diǎn)的性質(zhì);

  (2)如何證明這些性質(zhì)。

  二、教學(xué)策略及教法設(shè)計(jì)

  學(xué)生在網(wǎng)絡(luò)教室(每人一機(jī)),其中裝有《幾何畫板》軟件及上課系統(tǒng),每個(gè)學(xué)生的窗口,其他學(xué)生及教師都可以通過(guò)教師機(jī)切換,從而和其他學(xué)生交流,也可以通過(guò)網(wǎng)上論壇交流研究結(jié)果。

  三、網(wǎng)絡(luò)教學(xué)環(huán)境設(shè)計(jì)

  學(xué)生在網(wǎng)絡(luò)教室(每人一機(jī))中有幾何畫板軟件,學(xué)生通過(guò)教師提供的網(wǎng)絡(luò),自已閱讀,下載有關(guān),利用《幾何畫板》的操作、試驗(yàn)、猜想,通過(guò)自已的研究獲得結(jié)論,并互相討論觀察到的現(xiàn)象、交流研究結(jié)果。

  四、教學(xué)過(guò)程設(shè)計(jì)

  4.1 使學(xué)生學(xué)會(huì)研究數(shù)學(xué)問(wèn)題的基本過(guò)程,能夠根據(jù)條件建立恰當(dāng)?shù)臄?shù)學(xué)模型 問(wèn)題1 回顧一下拋物線的定義,并根據(jù)拋物線的定義思考用《幾何畫板》如何作出焦點(diǎn)在x軸上的拋物線圖象。 由于創(chuàng)設(shè)了一個(gè)創(chuàng)作的《幾何畫板》的窗口及網(wǎng)絡(luò)窗口,學(xué)生通過(guò)網(wǎng)絡(luò)學(xué)習(xí),得到以上問(wèn)題的多種作法,以下就其中的一種作法作為探索、研究拋物線焦點(diǎn)性質(zhì)的基本圖形。

【高中數(shù)學(xué)說(shuō)課稿】相關(guān)文章:

高中數(shù)學(xué)《集合》說(shuō)課稿07-22

高中數(shù)學(xué)說(shuō)課稿07-09

關(guān)于高中數(shù)學(xué)說(shuō)課稿11-26

高中數(shù)學(xué)《向量》說(shuō)課稿范文02-15

高中數(shù)學(xué)說(shuō)課稿范文11-02

高中數(shù)學(xué)說(shuō)課稿7篇02-12

高中數(shù)學(xué)說(shuō)課稿 15篇11-14

高中數(shù)學(xué)說(shuō)課稿九篇02-13

高中數(shù)學(xué)《古典概型》說(shuō)課稿02-16

【精選】高中數(shù)學(xué)說(shuō)課稿4篇02-03