高中數學說課稿范文匯總9篇
作為一名老師,就有可能用到說課稿,編寫說課稿助于積累教學經驗,不斷提高教學質量。那要怎么寫好說課稿呢?下面是小編幫大家整理的高中數學說課稿9篇,歡迎大家借鑒與參考,希望對大家有所幫助。
高中數學說課稿 篇1
開始:各位專家領導, 好!
今天我將要為大家講的課題是
首先,我對本節(jié)教材進行一些分析
一、教材結構與內容簡析
本節(jié)內容在全書及章節(jié)的地位:《 》是高中數學新教材第 冊( )第 章第 節(jié)。在此之前,學生已學習了
,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內容是 部分,因此,在 中,占據 的地位。
數學思想方法分析:作為一名數學老師,不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想、數學意識,因此本節(jié)課在教學中力圖向學生:
二、 教學目標
根據上述教材結構與內容分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
1 基礎知識目標:
2 能力訓練目標:
3 創(chuàng)新素質目標:
4 個性品質目標:
三、 教學重點、難點、關鍵
本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點
重點: 通過 突出重點
難點: 通過 突破難點
關鍵:
下面,為了講清重點、難點,使學生能達到本節(jié)設定的教學目標,我再從教法和學法上談談:
四、 教法
數學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此,在教學中,不僅要使學生
“知其然”而且要使學生“知其所以然”,
我們在以師生既為主體,又為客體的原則下,展現(xiàn)獲取知識和方法的思維過程;诒竟(jié)課的特點:
,應著重采用 的教學方法。即:
五、 學法
我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。
1、理論:
2、實踐:
3、能力:
最后我來具體談一談這一堂課的教學過程:
六、 教學程序及設想
1、由 引入:
把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。
在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
對于本題:
2、由實例得出本課新的知識點是:
3、講解例題。
我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于發(fā)展學生的思維能力。在題中:
4、能力訓練。
課后練習
使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
5、總結結論,強化認識。
知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的.地位和應用,并且逐漸培養(yǎng)學生的良好的個性品質目標。
6、變式延伸,進行重構。
重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。
7、板書。
8、布置作業(yè)。
針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有佘力的學生有所提高,從而達到拔尖和“減負”的目的。
結束:說課是教師面對同行和其它聽眾口頭講述具體課題的教學設想及其根據的新的教學研究形式。以上,我僅從說教材,說學情,說教法,說學法,說教學程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說課對我們大家仍是新事物,今后我也將進一步說好課,并希望各位專家領導對本堂說課提出寶貴意見。
注意時間掌握
六、注意靈活導入新知識點。
電腦課件
使用投影
根據時間進行增刪
高中數學說課稿 篇2
各位評委老師好:今天我說課的題目是
是必修章第節(jié)的內容,我將以新課程標準的理念指導本節(jié)課的教學,從教材分析,教法學法,教學過程,教學評價四個方面加以說明。
一、 教材分析
是在學習了基礎上進一步研究 并為后面學習 做準備,在整個高中數學中起著承上啟下的作用,因此本節(jié)內容十分重要。
根據新課標要求和學生實際水平我制定以下教學目標
1、 知識能力目標:使學生理解掌握
2、 過程方法目標:通過觀察歸納抽象概括使學生構建領悟 數學思想,培養(yǎng) 能力
3、 情感態(tài)度價值觀目標:通過學習體驗數學的科學價值和應用價值,培養(yǎng)善于
觀察勇于思考的學習習慣和嚴謹 的科學態(tài)度
根據教學目標、本節(jié)特點和學生實際情況本節(jié)重點是 ,由于學生對 缺少感性認識,所以本節(jié)課的重點是
二、教法學法
根據教師主導地位和學生主體地位相統(tǒng)一的規(guī)律,我采用引導發(fā)現(xiàn)法為本節(jié)課的主要教學方法并借助多媒體為輔助手段。在教師點撥下,學生自主探索、合作交流來尋求解決問題的方法。
三、 教學過程
1、由……引入:
把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
對于本題:……
2、由實例得出本課新的知識點是:……
3、講解例題。
我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于發(fā)展學生的思維能力。在題中:
4、能力訓練。
課后練習……
使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
5、總結結論,強化認識。
知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的.地位和應用,并且逐漸培養(yǎng)學生的良好的個性品質目標。
6、變式延伸,進行重構。
重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。
四、教學評價
學生學習的學習結果評價當然重要,但是更重要的是學生學習的過程評價,教師應當高度重視學生學習過程中的參與度、自信心、團隊精神合作意識數學能力的發(fā)現(xiàn),以及學習的興趣和成就感。
高中數學說課稿 篇3
說課內容:普通高中課程標準實驗教科書(人教A版)《數學必修4》第二章第四節(jié)“平面向量的數量積”的第一課時---平面向量數量積的物理背景及其含義。
下面,我從背景分析、教學目標設計、課堂結構設計、教學過程設計、教學媒體設計及教學評價設計六個方面對本節(jié)課的思考進行說明。
一、 背景分析
1、學習任務分析
平面向量的數量積是繼向量的線性運算之后的又一重要運算,也是高中數學的一個重要概念,在數學、物理等學科中應用十分廣泛。本節(jié)內容教材共安排兩課時,其中第一課時主要研究數量積的概念,第二課時主要研究數量積的坐標運算,本節(jié)課是第一課時。
本節(jié)課的主要學習任務是通過物理中“功”的事例抽象出平面向量數量積的概念,在此基礎上探究數量積的性質與運算律,使學生體會類比的思想方法,進一步培養(yǎng)學生的抽象概括和推理論證的能力。其中數量積的概念既是對物理背景的抽象,又是研究性質和運算律的基礎。同時也因為在這個概念中,既有長度又有角度,既有形又有數,是代數、幾何與三角的最佳結合點,不僅應用廣泛,而且很好的體現(xiàn)了數形結合的數學思想,使得數量積的概念成為本節(jié)課的核心概念,自然也是本節(jié)課教學的重點。
2、學生情況分析
學生在學習本節(jié)內容之前,已熟知了實數的運算體系,掌握了向量的概念及其線性運算,具備了功等物理知識,并且初步體會了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發(fā),在與實數運算類比的基礎上研究性質和運算律。這為學生學習數量積做了很好的鋪墊,使學生倍感親切。但也正是這些干擾了學生對數量積概念的理解,一方面,相對于線性運算而言,數量積的結果發(fā)生了本質的變化,兩個有形有數的向量經過數量積運算后,形卻消失了,學生對這一點是很難接受的;另一方面,由于受實數乘法運算的影響,也會造成學生對數量積理解上的偏差,特別是對性質和運算律的理解。因而本節(jié)課教學的難點數量積的概念。
二、 教學目標設計
《普通高中數學課程標準(實驗)》 對本節(jié)課的要求有以下三條:
(1)通過物理中“功”等事例,理解平面向量數量積的含義及其物理意義。
(2)體會平面向量的數量積與向量投影的關系。
(3)能用運數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。
從以上的背景分析可以看出,數量積的概念既是本節(jié)課的重點,也是難點。為了突破這一難點,首先無論是在概念的引入還是應用過程中,物理中“功”的實例都發(fā)揮了重要作用。其次,作為數量積概念延伸的性質和運算律,不僅能夠使學生更加全面深刻地理解概念,同時也是進行相關計算和判斷的理論依據。最后,無論是數量積的性質還是運算律,都希望學生在類比的基礎上,通過主動探究來發(fā)現(xiàn),因而對培養(yǎng)學生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。
綜上所述,結合“課標”要求和學生實際,我將本節(jié)課的教學目標定為:
1、了解平面向量數量積的物理背景,理解數量積的含義及其物理意義;
2、體會平面向量的數量積與向量投影的關系,掌握數量積的性質和運算律,
并能運用性質和運算律進行相關的運算和判斷;
3、體會類比的數學思想和方法,進一步培養(yǎng)學生抽象概括、推理論證的能力。
三、課堂結構設計
本節(jié)課從總體上講是一節(jié)概念教學,依據數學課程改革應關注知識的發(fā)生和發(fā)展過程的理念,結合本節(jié)課的知識的邏輯關系,我按照以下順序安排本節(jié)課的教學:
即先從數學和物理兩個角度創(chuàng)設問題情景,通過歸納和抽象得到數量積的概念,在此基礎上研究數量積的性質和運算律,使學生進一步加深對概念的理解,然后通過例題和練習使學生鞏固概念,加深印象,最后通過課堂小結提高學生認識,形成知識體系。
四、 教學媒體設計
和“大綱”教材相比,“課標”教材在本節(jié)課的內容安排上,雖然將向量的夾角在“平面向量基本定理”一節(jié)提前做了介紹,但卻將原來分兩節(jié)課完成的內容合并成一節(jié),相比較而言本節(jié)課的教學任務加重了許多。為了保證教學任務的完成,順利實現(xiàn)本節(jié)課的教學目標,考慮到本節(jié)課的實際特點,在教學媒體的使用上,我的設想主要有以下兩點:
1、制作高效實用的電腦多媒體課件,主要作用是改變相關內容的呈現(xiàn)方式,以此來節(jié)約課時,增加課堂容量。
2、設計科學合理的板書(見下),一方面使學生加深對主要知識的印象,另一方面使學生清楚本節(jié)內容知識間的邏輯關系,形成知識網絡。
平面向量數量積的物理背景及其含義
一、 數量積的概念 二、數量積的性質 四、應用與提高
1、 概念: 例1:
2、 概念強調 (1)記法 例2:
(2)“規(guī)定” 三、數量積的運算律 例3:
3、幾何意義:
4、物理意義:
五、 教學過程設計
課標指出:數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學,本節(jié)課我主要安排以下六個活動:
活動一:創(chuàng)設問題情景,激發(fā)學習興趣
正如教材主編寄語所言,數學是自然的,而不是強加于人的。平面向量的數量積這一重要概念,和向量的線性運算一樣,也有其數學背景和物理背景,為了體現(xiàn)這一點,我設計以下幾個問題:
問題1:我們已經研究了向量的哪些運算?這些運算的結果是什么?
問題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?
期望學生回答:物理模型→概念→性質→運算律→應用
問題3:如圖所示,一物體在力F的作用下產生位移S,
(1)力F所做的功W= 。
(2)請同學們分析這個公式的特點:
W(功)是 量,
F(力)是 量,
S(位移)是 量,
α是 。
問題1的設計意圖在于使學生了解數量積的數學背景,讓學生明白本節(jié)課所要研究的數量積與向量的加法、減法及數乘一樣,都是向量的運算,但與向量的線性運算相比,數量積運算又有其特殊性,那就是其結果發(fā)生了本質的變化。
問題2的設計意圖在于使學生在與向量加法類比的基礎上明了本節(jié)課的研究方法和順序,為教學活動指明方向。
問題3的設計意圖在于使學生了解數量積的物理背景,讓學生知道,我們研究數量積絕不僅僅是為了數學自身的完善,而是有其客觀背景和現(xiàn)實意義的,從而產生了進一步研究這種新運算的愿望。同時,也為抽象數量積的概念做好鋪墊。
活動二:探究數量積的概念
1、概念的抽象
在分析“功”的計算公式的基礎上提出問題4
問題4:你能用文字語言來表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結果又該如何表述?
學生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向量的大小及其夾角余弦的乘積。這樣,學生事實上已經得到數量積概念的文字表述了,在此基礎上,我進一步明晰數量積的概念。
2、概念的明晰
已知兩個非零向量
與
,它們的夾角為
,我們把數量 ︱
︱·︱
︱cos
叫做
與
的數量積(或內積),記作:
·
,即:
·
= ︱
︱·︱
︱cos
在強調記法和“規(guī)定”后 ,為了讓學生進一步認識這一概念,提出問題5
問題5:向量的數量積運算與線性運算的結果有什么不同?影響數量積大小的因素有哪些?并完成下表:
角
的范圍0°≤
<90°
=90°0°<
≤180°
·
的符號
通過此環(huán)節(jié)不僅使學生認識到數量積的結果與線性運算的結果有著本質的不同,而且認識到向量的夾角是決定數量積結果的重要因素,為下面更好地理解數量積的性質和運算律做好鋪墊。
3、探究數量積的幾何意義
這個問題教材是這樣安排的:在給出向量數量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結論的形式呈現(xiàn)給學生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的'概念后,直接由學生自己歸納得出,所以做了調整。為此,我首先給出給出向量投影的概念,然后提出問題5。
如圖,我們把│
│cos
(│
│cos
)叫做向量
在
方向上(
在
方向上)的投影,記做:OB1=│
│cos
問題6:數量積的幾何意義是什么?
這樣做不僅讓學生從“形”的角度重新認識數量積的概念,從中體會數量積與向量投影的關系,同時也更符合知識的連貫性,而且也節(jié)約了課時。
4、研究數量積的物理意義
數量積的概念是由物理中功的概念引出的,學習了數量積的概念后,學生就會明白功的數學本質就是力與位移的數量積。為此,我設計以下問題 一方面使學生嘗試計算數量積,另一方面使學生理解數量積的物理意義,同時也為數量積的性質埋下伏筆。
問題7:
(1) 請同學們用一句話來概括功的數學本質:功是力與位移的數量積 。
(2)嘗試練習:一物體質量是10千克,分別做以下運動:
①、在水平面上位移為10米;
②、豎直下降10米;
、邸⒇Q直向上提升10米;
、、沿傾角為30度的斜面向上運動10米;
分別求重力做的功。
活動三:探究數量積的運算性質
1、性質的發(fā)現(xiàn)
教材中關于數量積的三條性質是以探究的形式出現(xiàn)的,為了很好地完成這一探究活動,在完成上述練習后,我不失時機地提出問題8:
(1)將嘗試練習中的① ② ③的結論推廣到一般向量,你能得到哪些結論?
(2)比較︱
·
︱與︱
︱×︱
︱的大小,你有什么結論?
在學生討論交流的基礎上,教師進一步明晰數量積的性質,然后再由學生利用數量積的定義給予證明,完成探究活動。
2、明晰數量積的性質
3、性質的證明
這樣設計體現(xiàn)了教師只是教學活動的引領者,而學生才是學習活動的主體,讓學生成為學習的研究者,不斷地體驗到成功的喜悅,激發(fā)學生參與學習活動的熱情,不僅使學生獲得了知識,更培養(yǎng)了學生由特殊到一般的思維品質。
活動四:探究數量積的運算律
1、運算律的發(fā)現(xiàn)
關于運算律,教材仍然是以探究的形式出現(xiàn),為此,首先提出問題9
問題9:我們學過了實數乘法的哪些運算律?這些運算律對向量是否也適用?
通過此問題主要是想使學生在類比的基礎上,猜測提出數量積的運算律。
學生可能會提出以下猜測: ①
·
=
·
②(
·
)
=
(
·
) ③(
+
)·
=
·
+
·
猜測①的正確性是顯而易見的。
關于猜測②的正確性,我提示學生思考下面的問題:
猜測②的左右兩邊的結果各是什么?它們一定相等嗎?
學生通過討論不難發(fā)現(xiàn),猜測②是不正確的。
這時教師在肯定猜測③的基礎上明晰數量積的運算律:
2、明晰數量積的運算律
3、證明運算律
學生獨立證明運算律(2)
我把運算運算律(2)的證明交給學生完成,在證明時,學生可能只考慮到λ>0的情況,為了幫助學生完善證明,提出以下問題:
當λ<0時,向量
與λ
,
與λ
的方向 的關系如何?此時,向量λ
與
及
與λ
的夾角與向量
與
的夾角相等嗎?
師生共同證明運算律(3)
運算律(3)的證明對學生來說是比較困難的,為了節(jié)約課時,這個證明由師生共同完成,我想這也是教材的本意。
在這個環(huán)節(jié)中,我仍然是首先為學生創(chuàng)設情景,讓學生在類比的基礎上進行猜想歸納,然后教師明晰結論,最后再完成證明,這樣做不僅培養(yǎng)了學生推理論證的能力,同時也增強了學生類比創(chuàng)新的意識,將知識的獲得和能力的培養(yǎng)有機的結合在一起。
活動五:應用與提高
例1、(師生共同完成)已知︱
︱=6,︱
︱=4,
與
的夾角為60°,求
(
+2
)·(
-3
),并思考此運算過程類似于哪種運算?
例2、(學生獨立完成)對任意向量
,b是否有以下結論:
(1)(
+
)2=
2+2
·
+
2
(2)(
+
)·(
-
)=
2—
2
例3、(師生共同完成)已知︱
︱=3,︱
︱=4, 且
與
不共線,k為何值時,向量
+k
與
-k
互相垂直?并思考:通過本題你有什么收獲?
本節(jié)教材共安排了四道例題,我根據學生實際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數量積的性質和運算律的綜合應用,教學時,我重點從對運算原理的分析和運算過程的規(guī)范書寫兩個方面加強示范。完成計算后,進一步提出問題:此運算過程類似于哪種運算?目的是想讓學生在類比多項式乘法的基礎上自己猜測提出例2給出的兩個公式,再由學生獨立完成證明,一方面這并不困難,另一方面培養(yǎng)了學生通過類比這一思維模式達到創(chuàng)新的目的。例3的主要作用是,在繼續(xù)鞏固性質和運算律的同時,教給學生如何利用數量積來判斷兩個向量的垂直,是平面向量數量積的基本應用之一,教學時重點給學生分析數與形的轉化原理。
為了使學生更好的理解數量積的含義,熟練掌握性質及運算律,并能夠應用數量積解決有關問題,再安排如下練習:
1、 下列兩個命題正確嗎?為什么?
、佟⑷
≠0,則對任一非零向量
,有
·
≠0.
、凇⑷
≠0,
·
=
·
,則
=
.
2、已知△ABC中,
=
,
=
,當
·
<0或
·
=0時,試判斷△ABC的形狀。
安排練習1的主要目的是,使學生在與實數乘法比較的基礎上全面認識數量積這一重要運算,
通過練習2使學生學會用數量積表示兩個向量的夾角,進一步感受數量積的應用價值。
活動六:小結提升與作業(yè)布置
1、本節(jié)課我們學習的主要內容是什么?
2、平面向量數量積的兩個基本應用是什么?
3、我們是按照怎樣的思維模式進行概念的歸納和性質的探究?在運算律的探究過程中,滲透了哪些數學思想?
4、類比向量的線性運算,我們還應該怎樣研究數量積?
通過上述問題,使學生不僅對本節(jié)課的知識、技能及方法有了更加全面深刻的認識,同時也為下
一節(jié)做好鋪墊,繼續(xù)激發(fā)學生的求知欲。
布置作業(yè):
1、課本P121習題2.4A組1、2、3。
2、拓展與提高:
已知
與
都是非零向量,且
+3
與7
-5
垂直,
-4
與 7
-2
垂直求
與
的夾角。
在這個環(huán)節(jié)中,我首先考慮檢測全體學生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學生繼續(xù)加深對數量積概念的理解和應用,為后續(xù)學習打好基礎。其次,為了能讓不同的學生在數學領域得到不同的發(fā)展,我又安排了一道有一定難度的問題供學有余力的同學選做。
六、教學評價設計
評價方式的轉變是新課程改革的一大亮點,課標指出:相對于結果,過程更能反映每個學生的發(fā)展變化,體現(xiàn)出學生成長的歷程。因此,數學學習的評價既要重視結果,也要重視過程。結合“課標”對數學學習的評價建議,對本節(jié)課的教學我主要通過以下幾種方式進行:
1、 通過與學生的問答交流,發(fā)現(xiàn)其思維過程,在鼓勵的基礎上,糾正偏差,并對其進行定
性的評價。
2、在學生討論、交流、協(xié)作時,教師通過觀察,就個別或整體參與活動的態(tài)度和表現(xiàn)做出評價,以此來調動學生參與活動的積極性。
3、 通過練習來檢驗學生學習的效果,并在講評中,肯定優(yōu)點,指出不足。
4、 通過作業(yè),反饋信息,再次對本節(jié)課做出評價,以便查漏補缺。
高中數學說課稿 篇4
各位老師:
大家好!
我叫***,來自**。我說課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節(jié),課時安排為兩個課時,本節(jié)課內容為第一課時。下面我將從教材分析、教學目標分析、教法與學法分析、教學過程分析四大方面來闡述我對這節(jié)課的分析和設計:
一、教材分析
1.教材所處的地位和作用
古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著前面學過的隨機事件的概率及其性質,又是以后學習條件概率的基礎,起到承前啟后的作用。
2.教學的重點和難點
重點:理解古典概型及其概率計算公式。
難點:古典概型的判斷及把一些實際問題轉化成古典概型。
二、教學目標分析
1.知識與技能目標
。1)通過試驗理解基本事件的概念和特點
。2)在數學建模的過程中,抽離出古典概型的兩個基本特征,推導出古典概型下的概率的計算公式。
2、過程與方法:
經歷公式的推導過程,體驗由特殊到一般的數學思想方法。
3、情感態(tài)度與價值觀:
(1)用具有現(xiàn)實意義的實例,激發(fā)學生的學習興趣,培養(yǎng)學生勇于探索,善于發(fā)現(xiàn)的創(chuàng)新思想。
。2)讓學生掌握"理論來源于實踐,并把理論應用于實踐"的辨證思想。
三、教法與學法分析
1、教法分析:根據本節(jié)課的特點,采用引導發(fā)現(xiàn)和歸納概括相結合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發(fā)學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。
2、學法分析:學生在教師創(chuàng)設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結合,體現(xiàn)了學生的主體地位,培養(yǎng)了學生由具體到抽象,由特殊到一般的數學思維能力,形成了實事求是的科學態(tài)度。
、鍎(chuàng)設情景、引入新課
在課前,教師布置任務,以小組為單位,完成下面兩個模擬試驗:
試驗一:拋擲一枚質地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個數學小組至少完成20次(最好是整十數),最后由代表匯總;
試驗二:拋擲一枚質地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數,要求每個數學小組至少完成60次(最好是整十數),最后由代表匯總。
在課上,學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受,教師最后匯總方法、結果和感受,并提出兩個問題。
1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結果是頻率,而不是概率。
2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?]
「設計意圖」通過課前的模擬實驗,讓學生感受與他人合作的重要性,培養(yǎng)學生運用數學語言的能力。隨著新問題的提出,激發(fā)了學生的求知欲望,通過觀察對比,培養(yǎng)了學生發(fā)現(xiàn)問題的能力。
、嫠伎冀涣、形成概念
學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深對新概念的理解。
[基本事件有如下的兩個特點:
(1)任何兩個基本事件是互斥的;
。2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「設計意圖」讓學生從問題的相同點和不同點中找出研究對象的對立統(tǒng)一面,這能培養(yǎng)學生分析問題的能力,同時也教會學生運用對立統(tǒng)一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學生更好的把握問題的關鍵。
例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基本事件?
先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優(yōu)點。
「設計意圖」將數形結合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數這一難點
觀察對比,發(fā)現(xiàn)兩個模擬試驗和例1的共同特點:
讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,教師最后補充說明。
[經概括總結后得到:
。1)試驗中所有可能出現(xiàn)的基本事件只有有限個;(有限性)
(2)每個基本事件出現(xiàn)的可能性相等。(等可能性)
我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。
「設計意圖」培養(yǎng)運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現(xiàn)了數學的化歸思想。啟發(fā)誘導的同時,訓練了學生觀察和概括歸納的能力。通過列出相同和不同點,能讓學生很好的理解古典概型。
、缬^察分析、推導方程
問題思考:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機事件出現(xiàn)的概率如何計算?
教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結果,發(fā)現(xiàn)其中的聯(lián)系,最后概括總結得出古典概型計算任何事件的概率計算公式:
「設計意圖」鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數學化歸思想的優(yōu)越性和這一做法的'合理性,突出了古典概型的概率計算公式這一重點。
提問:
。1)在例1的實驗中,出現(xiàn)字母"d"的概率是多少?
。2)在使用古典概型的概率公式時,應該注意什么?
「設計意圖」教師提問,學生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。
、枥}分析、推廣應用
例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
學生先思考再回答,教師對學生沒有注意到的關鍵點加以說明。
「設計意圖」讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。鞏固學生對已學知識的掌握。
例3同時擲兩個骰子,計算:
。1)一共有多少種不同的結果?
(2)其中向上的點數之和是5的結果有多少種?
。3)向上的點數之和是5的概率是多少?
先給出問題,再讓學生完成,然后引導學生分析問題,發(fā)現(xiàn)解答中存在的問題。引導學生用列表來列舉試驗中的基本事件的總數。
「設計意圖」利用列表數形結合和分類討論,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養(yǎng)學生運用數形結合的思想,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力,增強學生數學思維情趣,形成學習數學知識的積極態(tài)度。
、樘骄克枷、鞏固深化
問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現(xiàn)什么情況?你能解釋其中的原因嗎?
要求學生觀察對比兩種結果,找出問題產生的原因。
「設計意圖」通過觀察對比,發(fā)現(xiàn)兩種結果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現(xiàn)了學生的主體地位,逐漸養(yǎng)成自主探究能力。
㈥總結概括、加深理解
1.基本事件的特點
2.古典概型的特點
3.古典概型的概率計算公式
學生小結歸納,不足的地方老師補充說明。
「設計意圖」使學生對本節(jié)課的知識有一個系統(tǒng)全面的認識,并把學過的相關知識有機地串聯(lián)起來,便于記憶和應用,也進一步升華了這節(jié)課所要表達的本質思想,讓學生的認知更上一層。
、氩贾米鳂I(yè)
課本練習1、2、3
「設計意圖」進一步讓學生掌握古典概型及其概率公式,并能夠學以致用,加深對本節(jié)課的理解。
高中數學說課稿 篇5
一、教材地位與作用
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內容,與初中學習的三角形的邊和角的基本關系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產中也時常有解三角形的問題,而且解三角形和三角函數聯(lián)系在高考當中也時常考一些解答題。因此,正弦定理的知識非常重要。
二、學情分析
作為高一學生,同學們已經掌握了基本的三角函數,特別是在一些特殊三角形中,而學生們在解決任意三角形的邊與角問題,就比較困難。
教學重點:正弦定理的內容,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。
根據我的教學內容與學情分析以及教學重難點,我制定了如下幾點教學目標
教學目標分析:
知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。
能力目標:探索正弦定理的證明過程,用歸納法得出結論。
情感目標:通過推導得出正弦定理,讓學生感受數學公式的整潔對稱美和數學的實際應用價值。
三、教法學法分析
教法:采用探究式課堂教學模式,在教師的`啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
學法:指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,動手嘗試相結合,增強學生由特殊到一般的數學思維能力,鍥而不舍的求學精神。
四、教學過程
(一)創(chuàng)設情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。
(二)探尋特例,提出猜想
1.激發(fā)學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。
2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3.讓學生總結實驗結果,得出猜想:
在三角形中,角與所對的邊滿足關系
這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數聯(lián)系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現(xiàn)了數形結合的數學思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明。
(四)歸納總結,簡單應用
1.讓學生用文字敘述正弦定理,引導學生發(fā)現(xiàn)定理具有對稱和諧美,提升對數學美的享受。
2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。
3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。
(六)課堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
學生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(七)小結反思,提高認識
通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定
理,體現(xiàn)了數形結合的數學思想。
2.它表述了三角形的邊與對角的正弦值的關系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。
(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。)
(八)任務后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內容,余弦定理。布置作業(yè),預習下一節(jié)內容。
高中數學說課稿 篇6
【教材分析】
1、本節(jié)教材的地位與作用
本節(jié)主要研究閉區(qū)間上的連續(xù)函數最大值和最小值的求法和實際應用,分兩課時,這里是第一課時,它是在學生已經會求某些函數的最值,并且已經掌握了性質:“如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數,那么f(x)在閉區(qū)間[a,b]上有最大值和最小值”,以及會求可導函數的極值之后進行學習的,學好這一節(jié),學生將會求更多的函數的最值,運用本節(jié)知識可以解決科技、經濟、社會中的一些如何使成本最低、產量最高、效益最大等實際問題。這節(jié)課集中體現(xiàn)了數形結合、理論聯(lián)系實際等重要的數學思想方法,學好本節(jié),對于進一步完善學生的知識結構,培養(yǎng)學生用數學的意識都具有極為重要的意義。
2、教學重點
會求閉區(qū)間上連續(xù)開區(qū)間上可導的函數的最值。
3、教學難點
高三年級學生雖然已經具有一定的知識基礎,但由于對求函數極值還不熟練,特別是對優(yōu)化解題過程依據的理解會有較大的困難,所以這節(jié)課的難點是理解確定函數最值的方法。
4、教學關鍵
本節(jié)課突破難點的關鍵是:理解方程f′(x)=0的解,包含有指定區(qū)間內全部可能的極值點。
【教學目標】
根據本節(jié)教材在高中數學知識體系中的地位和作用,結合學生已有的認知水平,制定本節(jié)如下的教學目標:
1、知識和技能目標
(1)理解函數的最值與極值的區(qū)別和聯(lián)系。
。2)進一步明確閉區(qū)間[a,b]上的連續(xù)函數f(x),在[a,b]上必有最大、最小值。
。3)掌握用導數法求上述函數的.最大值與最小值的方法和步驟。
2、過程和方法目標
。1)了解開區(qū)間內的連續(xù)函數或閉區(qū)間上的不連續(xù)函數不一定有最大、最小值。
。2)理解閉區(qū)間上的連續(xù)函數最值存在的可能位置:極值點處或區(qū)間端點處。
(3)會求閉區(qū)間上連續(xù),開區(qū)間內可導的函數的最大、最小值。
3、情感和價值目標
。1)認識事物之間的的區(qū)別和聯(lián)系。
(2)培養(yǎng)學生觀察事物的能力,能夠自己發(fā)現(xiàn)問題,分析問題并最終解決問題。
。3)提高學生的數學能力,培養(yǎng)學生的創(chuàng)新精神、實踐能力和理性精神。
【教法選擇】
根據皮亞杰的建構主義認識論,知識是個體在與環(huán)境相互作用的過程中逐漸建構的結果,而認識則是起源于主客體之間的相互作用。
本節(jié)課在幫助學生回顧肯定了閉區(qū)間上的連續(xù)函數一定存在最大值和最小值之后,引導學生通過觀察閉區(qū)間內的連續(xù)函數的幾個圖象,自己歸納、總結出函數最大值、最小值存在的可能位置,進而探索出函數最大值、最小值求解的方法與步驟,并優(yōu)化解題過程,讓學生主動地獲得知識,老師只是進行適當的引導,而不進行全部的灌輸。為突出重點,突破難點,這節(jié)課主要選擇以合作探究式教學法組織教學。
【學法指導】
對于求函數的最值,高三學生已經具備了良好的知識基礎,剩下的問題就是有沒有一種更一般的方法,能運用于更多更復雜函數的求最值問題?教學設計中注意激發(fā)起學生強烈的求知欲望,使得他們能積極主動地觀察、分析、歸納,以形成認識,參與到課堂活動中,充分發(fā)揮他們作為認知主體的作用。
【教學過程】
本節(jié)課的教學,大致按照“創(chuàng)設情境,鋪墊導入——合作學習,探索新知——指導應用,鼓勵創(chuàng)新——歸納小結,反饋回授”四個環(huán)節(jié)進行組織。
高中數學說課稿 篇7
一、教材分析
1.教材所處的地位和作用
本節(jié)課所學內容為算法案例3,主要學習如何給一組數據排序,學習作程序框圖和設計程序,通過本節(jié)課的學習之后將能使許多復雜的問題在計算機上得到解決,減少工作量。
2 教學的重點和難點
重點:兩種排序法的排序步驟及計算機程序設計
難點:排序法的計算機程序設計
二、教學目標分析
1.知識與技能目標:
掌握數據排序的原理能使用直接排序法與冒泡排序法給一組數據排序,進而能設計冒泡排序法的程序框圖及程序,理解數學算法與計算機算法的區(qū)別,理解計算機對數學的輔助作用。
2.過程與方法目標:
能根據排序法中的直接插入排序法與冒泡排序法的步驟,了解數學計算轉換為計算機計算的`途徑,從而探究計算機算法與數學算法的區(qū)別,體會計算機對數學學習的輔助作用。
3.情感,態(tài)度和價值觀目標
通過對排序法的學習,領會數學計算與計算機計算的區(qū)別,充分認識信息技術對數學的促進。
三、教學方法與手段分析
1.教學方法:充分發(fā)揮學生的主體作用和教師的主導作用,采用啟發(fā)式,并遵循循序漸進的教學原則。這有利于學生掌握從現(xiàn)象到本質,從已知到未知逐步形成概念的學習方法,有利于發(fā)展學生抽象思維能力和邏輯推理能力。
2.教學手段:通過各種教學媒體(計算機)調動學生參與課堂教學的主動性與積極性。
四、學法分析
模仿排序法中數字排序的步驟,理解計算機計算的一般步驟,領會數學計算在計算機上實施的要求。
五、教學過程分析
一、創(chuàng)設情境
提出問題:大家考完試后如果要排一下成績的話,單靠人手該怎樣操作呢?如果我們用計算機里的軟件電子表格對分數排序就非常簡單,那么電子計算機是怎么對數據進行排序的呢?
通過這個問題,引出我們這節(jié)課所要學習的兩種排序方法--直接插入排序法與冒泡排序法
二、探索新知
這里我先讓學生們閱讀課本P30-P31的內容,然后回答下面的問題:
(1)排序法中的直接插入排序法與冒泡排序法的步驟有什么區(qū)別?
(2)冒泡法排序中對5個數字進行排序最多需要多少趟?
(3)在冒泡法排序對5個數字進行排序的每一趟中需要比較大小幾次?
提出問題,然后讓學生們作出回答,這樣可以促使學生們能夠積極思考,自主地去學習新的知識,而不只是單向的由老師向學生灌輸。
三、知識應用
例1 用冒泡排序法對數據7,5,3,9,1從小到大進行排序
。ǜ鶕⻊倓偺釂査偨Y的方法完成解題步驟)
練習:寫出用冒泡排序法對5個數據4,11,7,9,6排序的過程中每一趟排序的結果.
。皶r將學到的知識應用,有利于知識的掌握)
例2 設計冒泡排序法對5個數據進行排序的程序框圖.
(在之前所學習知識的基礎上畫出程序框圖,然后給出一個思考題)
思考:直接插入排序法的程序框圖如何設計?可否把上述程序框圖轉化為程序?
(之后出一個練習題,找出思考題的答案)
練習:用直接插入排序法對例1中的數據從小到大排序,畫出程序框圖,并轉化為程序運行求出最終答案。
。ㄟ@里可以使學生們領會數學計算與計算機計算的區(qū)別,充分認識信息技術對數學的促進。)
四、課堂小結:
(1)數字排序法中的常見的兩種排序法直接插入排序法與冒泡排序法它們的排序步驟
(2兩種排序法的計算機程序設計
(3)注意循環(huán)語句的使用與算法的循環(huán)次數,對算法進行改進。
通過小結使學生們對知識有一個系統(tǒng)的認識,突出重點,抓住關鍵,培養(yǎng)概括能力。
高中數學說課稿 篇8
高三第一階段復習,也稱“知識篇”。在這一階段,學生重溫高一、高二所學課程,全面復習鞏固各個知識點,熟練掌握基本方法和技能;然后站在全局的高度,對學過的知識產生全新認識。在高一、高二時,是以知識點為主線索,依次傳授講解的,由于后面的相關知識還沒有學到,不能進行縱向聯(lián)系,所以,學的知識往往是零碎和散亂,而在第一輪復習時,以章節(jié)為單位,將那些零碎的、散亂的知識點串聯(lián)起來,并將他們系統(tǒng)化、綜合化,把各個知識點融會貫通。對于普通高中的學生,第一輪復習更為重要,我們希望能做高考試題中一些基礎題目,必須側重基礎,加強復習的針對性,講求實效。
一、內容分析說明
1、本小節(jié)內容是初中學習的多項式乘法的繼續(xù),它所研究的二項式的乘方的展開式,與數學的其他部分有密切的聯(lián)系:
。1)二項展開式與多項式乘法有聯(lián)系,本小節(jié)復習可對多項式的變形起到復習深化作用。
。2)二項式定理與概率理論中的二項分布有內在聯(lián)系,利用二項式定理可得到一些組合數的恒等式,因此,本小節(jié)復習可加深知識間縱橫聯(lián)系,形成知識網絡。
(3)二項式定理是解決某些整除性、近似計算等問題的一種方法。
2、高考中二項式定理的試題幾乎年年有,多數試題的難度與課本習題相當,是容易題和中等難度的
試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時也與應用題結合在一起求某些數、式的
近似值。
二、學校情況與學生分析
。1)我校是一所鎮(zhèn)普通高中,學生的基礎不好,記憶力較差,反應速度慢,普遍感到數學難學。但大部分學生想考大學,主觀上有學好數學的愿望。
。2)授課班是政治、地理班,學生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續(xù)從事某項數學活動。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學生好記筆記。
三、教學目標
復習課二項式定理計劃安排兩個課時,本課是第一課時,主要復習二項展開式和通項。根據歷年高考對這部分的考查情況,結合學生的特點,設定如下教學目標:
1、知識目標:(1)理解并掌握二項式定理,從項數、指數、系數、通項幾個特征熟記它的展開式。
(2)會運用展開式的通項公式求展開式的特定項。
2、能力目標:(1)教給學生怎樣記憶數學公式,如何提高記憶的持久性和準確性,從而優(yōu)化記憶品質。記憶力是一般數學能力,是其它能力的基礎。
。2)樹立由一般到特殊的解決問題的意識,了解解決問題時運用的數學思想方法。
3、情感目標:通過對二項式定理的復習,使學生感覺到能掌握數學的部分內容,樹立學好數學的信心。有意識地讓學生演練一些歷年高考試題,使學生體驗到成功,在明年的高考中,他們也能得分。
四、教學過程
1、知識歸納
。1)創(chuàng)設情景:①同學們,還記得嗎? 、 、 展開式是什么?
、趯W生一起回憶、老師板書。
設計意圖:①提出比較容易的問題,吸引學生的.注意力,組織教學。
、跒閷W生能回憶起二項式定理作鋪墊:激活記憶,引起聯(lián)想。
。2)二項式定理:①設問 展開式是什么?待學生思考后,老師板書
= C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)
、诶蠋熞髮W生說出二項展開式的特征并熟記公式:共有 項;各項里a的指數從n起依次減小1,直到0為止;b的指數從0起依次增加1,直到n為止。每一項里a、b的指數和均為n。
、垤柟叹毩 填空
設計意圖:①教給學生記憶的方法,比較分析公式的特點,記規(guī)律。
②變用公式,熟悉公式。
。3) 展開式中各項的系數C , C , C ,… , 稱為二項式系數.
展開式的通項公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開式中第r+1項.
2、例題講解
例1求 的展開式的第4項的二項式系數,并求的第4項的系數。
講解過程
設問:這里 ,要求的第4項的有關系數,如何解決?
學生思考計算,回答問題;
老師指明①當項數是4時, ,此時 ,所以第4項的二項式系數是 ,
②第4項的系數與的第4項的二項式系數區(qū)別。
板書
解:展開式的第4項
所以第4項的系數為 ,二項式系數為 。
選題意圖:①利用通項公式求項的系數和二項式系數;②復習指數冪運算。
例2 求 的展開式中不含的 項。
講解過程
設問:①不含的 項是什么樣的項?即這一項具有什么性質?
、趩栴}轉化為第幾項是常數項,誰能看出哪一項是常數項?
師生討論 “看不出哪一項是常數項,怎么辦?”
共同探討思路:利用通項公式,列出項數的方程,求出項數。
老師總結思路:先設第 項為不含 的項,得 ,利用這一項的指數是零,得到關于 的方程,解出 后,代回通項公式,便可得到常數項。
板書
解:設展開式的第 項為不含 項,那么
令 ,解得 ,所以展開式的第9項是不含的 項。
因此 。
選題意圖:①鞏固運用展開式的通項公式求展開式的特定項,形成基本技能。
、谂袛嗟趲醉検浅淀椷\用方程的思想;找到這一項的項數后,實現(xiàn)了轉化,體現(xiàn)轉化的數學思想。
例3求 的展開式中, 的系數。
解題思路:原式局部展開后,利用加法原理,可得到展開式中的 系數。
板書
解:由于 ,則 的展開式中 的系數為 的展開式中 的系數之和。
而 的展開式含 的項分別是第5項、第4項和第3項,則 的展開式中 的系數分別是: 。
所以 的展開式中 的系數為
例4 如果在( + )n的展開式中,前三項系數成等差數列,求展開式中的有理項.
解:展開式中前三項的系數分別為1, , ,
由題意得2× =1+ ,得n=8.
設第r+1項為有理項,T =C · ·x ,則r是4的倍數,所以r=0,4,8.
有理項為T1=x4,T5= x,T9= .
3、課堂練習
1.(20xx年江蘇,7)(2x+ )4的展開式中x3的系數是
A.6B.12 C.24 D.48
解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數為C ·22=24.
答案:C
2.(20xx年全國Ⅰ,5)(2x3- )7的展開式中常數項是
A.14 B.14 C.42 D.-42
解析:設(2x3- )7的展開式中的第r+1項是T =C (2x3) (- )r=C 2 ·
。ǎ1)r·x ,
當- +3(7-r)=0,即r=6時,它為常數項,∴C (-1)6·21=14.
答案:A
3.(20xx年湖北,文14)已知(x +x )n的展開式中各項系數的和是128,則展開式中x5的系數是_____________.(以數字作答)
解析:∵(x +x )n的展開式中各項系數和為128,
∴令x=1,即得所有項系數和為2n=128.
∴n=7.設該二項展開式中的r+1項為T =C (x ) ·(x )r=C ·x ,
令 =5即r=3時,x5項的系數為C =35.
答案:35
五、課堂教學設計說明
1、這是一堂復習課,通過對例題的研究、討論,鞏固二項式定理通項公式,加深對項的系數、項的二項式系數等有關概念的理解和認識,形成求二項式展開式某些指定項的基本技能,同時,要培養(yǎng)學生的運算能力,邏輯思維能力,強化方程的思想和轉化的思想。
2、在例題的選配上,我設計了一定梯度。第一層次是給出二項式,求指定的項,即項數已知,只需直接代入通項公式即可(例1);第二層次(例2)則需要自己創(chuàng)造代入的條件,先判斷哪一項為所求,即先求項數,利用通項公式中指數的關系求出,此后轉化為第一層次的問題。第三層次突出數學思想的滲透,例3需要變形才能求某一項的系數,恒等變形是實現(xiàn)轉化的手段。在求每個局部展開式的某項系數時,又有分類討論思想的指導。而例4的設計是想增加題目的綜合性,求的n過程中,運用等差數列、組合數n等知識,求出后,有化歸為前面的問題。
六、個人見解
高中數學說課稿 篇9
拋物線焦點性質的探索(說課)
一、教材分析
1 教材的地位與作用 “拋物線焦點的性質”是拋物線的重要性質之一,它是在學生學習拋物線的一般性質的基礎上,學習和研究的拋物線有關問題的基本工具之一;本節(jié)教材對于培養(yǎng)學生觀察、猜想、概括能力和邏輯推理能力具有重要的意義。
2 教學目的 全日制普通高級中學《數學教學大綱》第22頁“重視現(xiàn)代教育技術的運用”中明確提出:在數學教學過程中,應有意識地利用計算機網絡等現(xiàn)代信息技術,認識計算機的智能圖形、快速計算、機器證明、自動求解及人機交互等功能在數學教學中的巨大潛力,努力探索在現(xiàn)代信息技術支持下的教學方法、教學模式。設計和組織能吸引學生積極參與的數學活動,支持和鼓勵學生運用信息技術學習數學、開展課題研究,改進學習方式,提高學生的自主學習能力和創(chuàng)新意識。因此本人在現(xiàn)行高中新教材(試驗修訂本·必修)數學第二冊(上)拋物線這一節(jié)內容為背景材料,以多媒體網絡教室為場地,以《幾何畫板》為教學工具與學習工具,設計了一堂《拋物線焦點性質的探索》,具體目標如下:
。1) 知識目標:了解焦點的有關性質;并掌握這些性質的證明方法;體會數形結合思想與分類討論思想在解決解析幾何題中的指導作用
。2) 能力目標:使學生學會研究數學問題的基本過程,能夠根據條件建立恰當的數學模型;培養(yǎng)辯證唯物主義思想和辯證思維能力(主要包括量變與質變,常量與變量,運動與靜止)培養(yǎng)學生通過計算機來自主學習的能力與創(chuàng)新的能力。
。3) 情感目標:培養(yǎng)學生不畏困難,勇于鉆研、探索、大膽創(chuàng)新的精神,在挫折中成長鍛煉,培養(yǎng)學生良好的心理素質和抗挫折能力,通過拋物線焦點性質的探索及證明,使學生得到數學美和創(chuàng)造美的享受。
3 教學內容、重點、難點及關鍵 本節(jié)安排兩節(jié)課,
第一節(jié)課:主要內容是利用《幾何畫板》探索拋物線的'有關性質;
第二節(jié)課:證明第一節(jié)所得到的有關性質。
重點:
。1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點的性質;
。2)如何證明這些性質。
難點;
。1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點的性質;
。2)如何證明這些性質。
二、教學策略及教法設計
學生在網絡教室(每人一機),其中裝有《幾何畫板》軟件及上課系統(tǒng),每個學生的窗口,其他學生及教師都可以通過教師機切換,從而和其他學生交流,也可以通過網上論壇交流研究結果。
三、網絡教學環(huán)境設計
學生在網絡教室(每人一機)中有幾何畫板軟件,學生通過教師提供的網絡,自已閱讀,下載有關,利用《幾何畫板》的操作、試驗、猜想,通過自已的研究獲得結論,并互相討論觀察到的現(xiàn)象、交流研究結果。
四、教學過程設計
4.1 使學生學會研究數學問題的基本過程,能夠根據條件建立恰當的數學模型 問題1 回顧一下拋物線的定義,并根據拋物線的定義思考用《幾何畫板》如何作出焦點在x軸上的拋物線圖象。 由于創(chuàng)設了一個創(chuàng)作的《幾何畫板》的窗口及網絡窗口,學生通過網絡學習,得到以上問題的多種作法,以下就其中的一種作法作為探索、研究拋物線焦點性質的基本圖形。
【高中數學說課稿】相關文章:
高中數學《集合》說課稿07-22
高中數學說課稿07-09
關于高中數學說課稿11-26
高中數學《向量》說課稿范文02-15
高中數學說課稿范文11-02
高中數學說課稿7篇02-12
高中數學說課稿 15篇11-14
高中數學說課稿九篇02-13
高中數學《古典概型》說課稿02-16
【精選】高中數學說課稿4篇02-03