函數(shù)的奇偶性說課稿
作為一無名無私奉獻(xiàn)的教育工作者,可能需要進(jìn)行說課稿編寫工作,編寫說課稿助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。說課稿應(yīng)該怎么寫呢?以下是小編為大家整理的函數(shù)的奇偶性說課稿,歡迎大家借鑒與參考,希望對大家有所幫助。
今天我說課的課題是高中數(shù)學(xué)人教A版必修一第一章第三節(jié)"函數(shù)的基本性質(zhì)"中的"函數(shù)的奇偶性",下面我將從教材分析,教法、學(xué)法分析,教學(xué)過程,教輔手段,板書設(shè)計等方面對本課時的教學(xué)設(shè)計進(jìn)行說明。
一、教材分析
。ㄒ唬┙滩奶攸c、教材的地位與作用
本節(jié)課的主要學(xué)習(xí)內(nèi)容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個性質(zhì)。
函數(shù)的奇偶性是函數(shù)中的一個重要內(nèi)容,它不僅與現(xiàn)實生活中的對稱性密切相關(guān),而且為后面學(xué)習(xí)冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì)打下了堅實的基礎(chǔ)。因此本節(jié)課的內(nèi)容是至關(guān)重要的,它對知識起到了承上啟下的作用。
(二)重點、難點
1、本課時的教學(xué)重點是:函數(shù)的奇偶性及其幾何意義。
2、本課時的教學(xué)難點是:判斷函數(shù)的奇偶性的方法與格式。
。ㄈ┙虒W(xué)目標(biāo)
1、知識與技能:使學(xué)生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的方法;
2、方法與過程:引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)奇函數(shù)、偶函數(shù)等概念;能運用函數(shù)奇偶性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
3、情感態(tài)度與價值觀:在奇偶性概念形成過程中,使學(xué)生體會數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
二、教法、學(xué)法分析
1、教學(xué)方法:啟發(fā)引導(dǎo)式
結(jié)合本章實際,教材簡單易懂,重在應(yīng)用、解決實際問題,本節(jié)課準(zhǔn)備采用"引導(dǎo)發(fā)現(xiàn)法"進(jìn)行教學(xué),引導(dǎo)發(fā)現(xiàn)法可激發(fā)學(xué)生學(xué)習(xí)的積極性和創(chuàng)造性,分享到探索知識的方法和樂趣,在解決問題的過程中,體驗成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。使用多媒體輔助教學(xué),突出了知識的產(chǎn)生過程,又增加了課堂的趣味性。
2、學(xué)法指導(dǎo):引導(dǎo)學(xué)生采用自主探索與互相協(xié)作相結(jié)合的學(xué)習(xí)方式。讓每一位學(xué)生都能參與研究,并最終學(xué)會學(xué)習(xí)。
三、教輔手段
以學(xué)生獨立思考、自主探究、合作交流,教師啟發(fā)引導(dǎo)為主,以多媒體演示為輔的教學(xué)方式進(jìn)行教學(xué)
四、教學(xué)過程
為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對整個教學(xué)過程進(jìn)行了系統(tǒng)地規(guī)劃,設(shè)計了五個主要的教學(xué)程序:設(shè)疑導(dǎo)入,觀圖激趣。指導(dǎo)觀察,形成概念。學(xué)生探索、發(fā)展思維。知識應(yīng)用,鞏固提高。歸納小結(jié),布置作業(yè)。
。ㄒ唬┰O(shè)疑導(dǎo)入,觀圖激趣
讓學(xué)生感受生活中的美:展示圖片蝴蝶,雪花
學(xué)生舉例生活中的對稱現(xiàn)象
折紙:取一張紙,在其上畫出直角坐標(biāo)系,并在第一象限任畫一函數(shù)的圖象,以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形。
問題:將第一象限和第二象限的圖形看成一個整體,觀察圖象上相應(yīng)的點的坐標(biāo)有什么特點
以y軸為折痕將紙對折,然后以x軸為折痕將紙對折,在紙的背面(即第三象限)畫出第二象限內(nèi)圖象的痕跡,然后將紙展開。觀察坐標(biāo)喜之中的圖形:
問題:將第一象限和第三象限的圖形看成一個整體,觀察圖象上相應(yīng)的點的坐標(biāo)有什么特點
。ǘ┲笇(dǎo)觀察,形成概念
這節(jié)課我們首先從兩類對稱:軸對稱和中心對稱展開研究。
思考:請同學(xué)們作出函數(shù)y=x2的圖象,并觀察這兩個函數(shù)圖象的對稱性如何
給出圖象,然后問學(xué)生初中是怎樣判斷圖象關(guān)于軸對稱呢此時提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律
借助課件演示,學(xué)生會回答自變量互為相反數(shù),函數(shù)值相等。接著再讓學(xué)生分別計算f(1),f(—1),f(2),f(—2),學(xué)生很快會得到f(—1)=f(1),f(—2)=f(2),進(jìn)而提出在定義域內(nèi)是否對所有的x,都有類似的情況借助課件演示,學(xué)生會得出結(jié)論,f(—x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。
思考:由于對任一x,必須有一—x與之對應(yīng),因此函數(shù)的定義域有什么特征引導(dǎo)學(xué)生發(fā)現(xiàn)函數(shù)的定義域一定關(guān)于原點對稱。根據(jù)以上特點,請學(xué)生用完整的語言敘述定義,同時給出板書:
。1)函數(shù)f(x)的定義域為A,且關(guān)于原點對稱,如果有f(—x)=f(x),則稱f(x)為偶函數(shù)
提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢(同時打出y=1/x的圖象讓學(xué)生觀察研究)
學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義:
。2)函數(shù)f(x)的定義域為A,且關(guān)于原點對稱,如果有f(—x)=f(x),則稱f(x)為奇函數(shù)
強(qiáng)調(diào)注意點:"定義域關(guān)于原點對稱"的條件必不可少。
接著再探究函數(shù)奇偶性的判斷方法,根據(jù)前面所授知識,歸納步驟:
。1)求出函數(shù)的定義域,并判斷是否關(guān)于原點對稱
。2)驗證f(—x)=f(x)或f(—x)=—f(x)
。3)得出結(jié)論
給出例題,加深理解:
例1,利用定義,判斷下列函數(shù)的奇偶性:
。1)f(x)=x2+1
。2)f(x)=x3—x
。3)f(x)=x4—3x2—1
。4)f(x)=1/x3+1
提出新問題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?
得到注意點:既不是奇函數(shù)也不是偶函數(shù)的稱為非奇非偶函數(shù)
接著進(jìn)行課堂鞏固,強(qiáng)調(diào)非奇非偶函數(shù)的原因有兩種,一是定義域不關(guān)于原點對稱,二是定義域雖關(guān)于原點對稱,但不滿足f(—x)=f(x)或f(—x)=—f(x)
然后根據(jù)前面引入知識中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:
函數(shù)f(x)是奇函數(shù)=圖象關(guān)于原點對稱;
函數(shù)f(x)是偶函數(shù)=圖象關(guān)于y軸對稱;
給出例2:書P63例3,再進(jìn)行當(dāng)堂鞏固。
1、書P65ex2
2、說出下列函數(shù)的奇偶性:
Y=x4;Y=x—1;Y=x;Y=x—2;Y=x5;Y=x—3
歸納:對形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)
。ㄈ⿲W(xué)生探索,發(fā)展思維。
思考:
1、函數(shù)y=2是什么函數(shù)
2、函數(shù)y=0有是什么函數(shù)
。ㄋ模┎贾米鳂I(yè):課本P39習(xí)題1。3(A組)第6題,B組第3
五、板書設(shè)計
【函數(shù)的奇偶性說課稿】相關(guān)文章:
《函數(shù)奇偶性》說課稿02-15
《函數(shù)的奇偶性》說課稿07-28
《函數(shù)奇偶性》說課稿3篇02-15
《函數(shù)的奇偶性》說課稿6篇11-24
《函數(shù)的奇偶性》教案07-11
《數(shù)的奇偶性》說課稿07-19
《數(shù)奇偶性》說課稿07-12
《數(shù)的奇偶性》的說課稿06-26
數(shù)的奇偶性說課稿05-25
《函數(shù)的概念》說課稿07-26