當前位置:育文網(wǎng)>教學文檔>說課稿> 中職函數(shù)的概念的說課稿

中職函數(shù)的概念的說課稿

時間:2024-06-22 07:24:20 說課稿 我要投稿
  • 相關推薦

中職函數(shù)的概念的說課稿

  作為一無名無私奉獻的教育工作者,時常需要用到說課稿,說課稿有助于提高教師理論素養(yǎng)和駕馭教材的能力。那么應當如何寫說課稿呢?以下是小編收集整理的中職函數(shù)的概念的說課稿,歡迎大家分享。

中職函數(shù)的概念的說課稿

中職函數(shù)的概念的說課稿1

  一、教材分析

  1、教材的地位和作用:

  函數(shù)是數(shù)學中最主要的概念之一,而函數(shù)概念貫穿在中學數(shù)學的始終,概念是數(shù)學的基礎,概念性強是函數(shù)理論的一個顯著特點,只有對概念作到深刻理解,才能正確靈活地加以應用。本課中學生對函數(shù)概念理解的程度會直接影響數(shù)學其它知識的學習,所以函數(shù)的第一課時非常的重要。

  2、教學目標及確立的依據(jù):

  教學目標:

 。1)教學知識目標:了解對應和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對函數(shù)抽象符號的理解。

 。2)能力訓練目標:通過教學培養(yǎng)學生的抽象概括能力、邏輯思維能力。

 。3)德育滲透目標:使學生懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點。

  教學目標確立的依據(jù):

  函數(shù)是數(shù)學中最主要的概念之一,而函數(shù)概念貫穿整個中學數(shù)學,如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強函數(shù)教學可幫助學生學好其他的數(shù)學內(nèi)容。而掌握好函數(shù)的概念是學好函數(shù)的基石。

  3、教學重點難點及確立的依據(jù):

  教學重點:映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號的理解。

  教學難點:映射的概念,函數(shù)近代概念,及函數(shù)符號的理解。

  重點難點確立的依據(jù):

  映射的概念和函數(shù)的近代定義抽象性都比較強,要求學生的理性認識的能力也比較高,對于剛剛升入高中不久的學生來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來高考有一種“函數(shù)熱”的趨勢,所以本節(jié)的重點難點必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號的理解與運用上。

  二、教材的處理:

  將映射的定義及類比手法的運用作為本課突破難點的關鍵。函數(shù)的定義,是以集合、映射的觀點給出,這與初中教材變量值與對應觀點給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點,主要是從實際出發(fā)調(diào)動學生的學習熱情與參與意識,運用引導對比的手法,啟發(fā)引導學生進行有目的的反復比較幾個概念的異同,使學生真正對函數(shù)的概念有很準確的認識。

  三、教學方法和學法

  教學方法:講授為主,學生自主預習為輔。

  依據(jù)是:因為以新的觀點認識函數(shù)概念及函數(shù)符號與運用時,更重要的是必須給學生講清楚概念及注意事項,并通過師生的共同討論來幫助學生深刻理解,這樣才能使函數(shù)的概念及符號的運用在學生的思想和知識結(jié)構(gòu)中打上深刻的烙印,為學生能學好后面的知識打下堅實的基礎。

  四、教學程序

  一、課程導入

  通過舉以下一個通俗的例子引出通過某個對應法則可以將兩個非空集合聯(lián)系在一起。

  例1:把高一(12)班和高一(11)全體同學分別看成是兩個集合,問,通過“找好朋友”這個對應法則是否能將這兩個集合的某些元素聯(lián)系在一起?

  二.新課講授:

  (1)接著再通過幻燈片給出六組學生熟悉的數(shù)集的對應關系引導學生總結(jié)歸納它們的共同性質(zhì)(一對一,多對一),進而給出映射的概念,表示符號f:A→B,及原像和像的定義。強調(diào)指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的對應法則f。進一步引導學生總結(jié)判斷一個從A到B的對應是否為映射的關鍵是看A中的任意一個元素通過對應法則f在B中是否有唯一確定的元素與之對應。

 。2)鞏固練習課本52頁第八題。

  此練習能讓學生更深刻的認識到映射可以“一對多,多對一”但不能是“一對多”。

  例1.給出學生初中學過的函數(shù)的傳統(tǒng)定義和幾個簡單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對應關系,引導學生發(fā)現(xiàn)它們是特殊的映射進而給出函數(shù)的近代定義(設A、B是兩個非空集合,如果按照某種對應法則f,使得A中的任何一個元素在集合B中都有唯一的`元素與之對應則這樣的對應叫做集合A到集合B的映射,它包括非空集合A和B以及從A到B的對應法則f),并說明把函f:A→B記為y=f(x),其中自變量x的取值范圍A叫做函數(shù)的定義域,與x的值相對應的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{f(x):x∈A}叫做函數(shù)的值域。

  三.講解例題

  例1.問y=1(x∈A)是不是函數(shù)?

  解:y=1可以化為y=0+1

  畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對應是“多對一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。

  [注]:引導學生從集合,映射的觀點認識函數(shù)的定義。

  四.課時小結(jié):

  1.映射的定義。

  2.函數(shù)的近代定義。

  3.函數(shù)的三要素及符號的正確理解和應用。

  4.函數(shù)近代定義的五大注意點。

  五.課后作業(yè)及板書設計

  書本P51習題2.1的1、2寫在書上3、4、5上交。

  預習函數(shù)三要素的定義域,并能求簡單函數(shù)的定義域。

中職函數(shù)的概念的說課稿2

  一、教材分析

  本節(jié)課選自《普通高中課程標準數(shù)學教科書-必修1》(人教A版)《1.2.1 函數(shù)的概念》共3課時,本節(jié)課是第1課時。

  托馬斯說:“函數(shù)概念是近代數(shù)學思想之花”。 生活中的許多現(xiàn)象如物體運動,氣溫升降,投資理財?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認識世界和預測未來的重要工具。

  函數(shù)是數(shù)學的重要的基礎概念之一,是高等數(shù)學重多學科的基礎概念和重要的研究對象。同時函數(shù)也是物理學等其他學科的重要基礎知識和研究工具,教學內(nèi)容中蘊涵著極其豐富的辯證思想。函數(shù)的的重要性正如恩格斯所說:“數(shù)學中的轉(zhuǎn)折點是笛卡爾的變數(shù),有了變數(shù),運動就進入了數(shù)學;有了變數(shù),辯證法就進入了數(shù)學”。

  二、學生學習情況分析

  函數(shù)是中學數(shù)學的主體內(nèi)容,學生在中學階段對函數(shù)的認識分三個階段:

  (一)初中從運動變化的角度來刻畫函數(shù),初步認識正比例、反比例、一次和二次函數(shù);

  (二)高中用集合與對應的觀點來刻畫函數(shù),研究函數(shù)的性質(zhì),學習典型的對、指、冪和三解函數(shù);

  (三)高中用導數(shù)工具研究函數(shù)的單調(diào)性和最值。

  1.有利條件

  現(xiàn)代教育心理學的研究認為,有效的概念教學是建立在學生已有知識結(jié)構(gòu)的基礎上的,因此教師在設計教學的過程中必須注意在學生已有知識結(jié)構(gòu)中尋找新概念的固著點,引導學生通過同化或順應,掌握新概念,進而完善知識結(jié)構(gòu)。

  初中用運動變化的觀點對函數(shù)進行定義的,它反映了歷史上人們對它的一種認識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學生認知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個程度是合適的。也為我們用集合與對應的.觀點研究函數(shù)打下了一定的基礎。

  2.不利條件

  用集合與對應的觀點來定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對學生的理解能力是一個挑戰(zhàn),是本節(jié)課教學的一個不利條件。

  三、教學目標分析

  課標要求:通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,在此基礎上學習用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域.

  1.知識與能力目標:

 、拍軓募吓c對應的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;

  ⑵理解函數(shù)的三要素的含義及其相互關系;

 、菚蠛唵魏瘮(shù)的定義域和值域

  2.過程與方法目標:

  ⑴通過豐富實例,使學生建立起函數(shù)概念的背景,體會函數(shù)是描述變量之間依賴關系的數(shù)學模型;

 、圃诤瘮(shù)實例中,通過對關鍵詞的強調(diào)和引導使學發(fā)現(xiàn)它們的共同特征,在此基礎上再用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用.

  3.情感、態(tài)度與價值觀目標:

  感受生活中的數(shù)學,感悟事物之間聯(lián)系與變化的辯證唯物主義觀點。

  四、教學重點、難點分析

  1.教學重點:對函數(shù)概念的理解,用集合與對應的語言來刻畫函數(shù);

  重點依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對應的語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對應關系”。 但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對y?1這樣的函數(shù)用運動變化的觀點也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應將函數(shù)定義為兩個數(shù)集之間的一種對應關系,按照這種觀點,使我們對函數(shù)概念有了更深一層的認識,也很容易說明y?1這函數(shù)表達式。因此,分析兩種函數(shù)概念的關系,讓學生融會貫通地理解函數(shù)的概念應為本節(jié)課的重點。

  突出重點:重點的突出依賴于對函數(shù)概念本質(zhì)屬性的把握,使學生通過表面的語言描述抓住概念的精髓。

  2.教學難點:

  第一:從實際問題中提煉出抽象的概念;

  第二:符號“y=f(x)”的含義的理解.

  難點依據(jù):數(shù)學語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負遷移。

  突破難點:難點的突破要依托豐富的實例,從集合與對應的角度恰當?shù)匾龑В鴮Τ橄蠓柕睦斫鈩t要結(jié)合函數(shù)的三要素和小例子進行說明。

  五、教法與學法分析

  1.教法分析

  本節(jié)課我主要采用教師導學法、知識遷移法和知識對比法,從學生熟悉的豐富實例出發(fā),關注學生的原有的知識基礎,注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。

  2.學法分析

  在教學過程中我注意在教學中引導學生用模型法分析函數(shù)問題、通過自主學習法總結(jié)“區(qū)間”的知識。

中職函數(shù)的概念的說課稿3

  一、說教材

  1、地位與重要性

  “反函數(shù)”一節(jié)課是《高中代數(shù)》第一冊的重要內(nèi)容。這一節(jié)課與函數(shù)的基本概念有著緊密的聯(lián)系,通過對這一節(jié)課的學習,既可以讓學生接受、理解反函數(shù)的概念并學會反函數(shù)的求法,又可使學生加深對函數(shù)基本概念的理解,還為日后反三角函數(shù)的教學做好準備,起到承上啟下的重要作用。

  2、教學目標

 。1)使學生接受、理解反函數(shù)的概念,并能判定一個函數(shù)是否存在反函數(shù);

 。2)使學生能夠求出指定函數(shù)的反函數(shù),并能理解原函數(shù)和反函數(shù)之間的內(nèi)在聯(lián)系;

 。3)培養(yǎng)學生發(fā)現(xiàn)問題、觀察問題、解決問題的能力;

 。4)使學生樹立對立統(tǒng)一的辯證思維觀點。

  3、教學重難點

  重點是反函數(shù)的概念及反函數(shù)的求法。理解反函數(shù)概念并求出函數(shù)的反函數(shù)是高一代數(shù)教學的重要內(nèi)容,這建立在對函數(shù)概念的真正理解的基礎上,必須使學生對于函數(shù)的基本概念有清醒的認識。

  難點是反函數(shù)概念的接受與理解。學生對于反函數(shù)的來歷、反函數(shù)與原函數(shù)間的關系都容易產(chǎn)生錯誤的認識,必須使學生認清反函數(shù)的實質(zhì)就是函數(shù)這一本質(zhì)問題,才能使學生接受概念并對反函數(shù)的存在有正確的認識。教學中復習函數(shù)概念,進而引出反函數(shù)概念,就是為突破難點做準備。

  二、說教法

  根據(jù)本節(jié)課的內(nèi)容及學生的實際水平,我采取引導發(fā)現(xiàn)式教學方法并充分發(fā)揮電腦多媒體的輔助教學作用。

  引導發(fā)現(xiàn)法作為一種啟發(fā)式教學方法,體現(xiàn)了認知心理學的基本理論。教學過程中,教師采用點撥的方法,啟發(fā)學生通過主動思考、動手操作來達到對知識的“發(fā)現(xiàn)”和接受,進而完成知識的內(nèi)化,使書本的知識成為自己的知識。課堂不再成為“一言堂”,學生也不會變成教師注入知識的“容器”。

  電腦多媒體以聲音、動畫、影像等多種形式強化對學生感觀的刺激,這一點是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學生的學習興趣,加大一堂課的信息容量,使教學目標更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來體現(xiàn),更好地為教學服務。

  三、說學法

  “授人以魚,不如授人以漁”,在教學過程中,不但要傳授學生課本知識,還要培養(yǎng)學生主動觀察、主動思考、自我發(fā)現(xiàn)的學習能力,增強學生的綜合素質(zhì),從而達到教學的終極目標。教學中,教師創(chuàng)設疑問,學生想辦法解決疑問,通過教師的啟發(fā)點撥,在積極的雙邊活動中,學生找到了解決疑難的方法。整個過程貫穿“懷疑”——“思索”——“發(fā)現(xiàn)”——“解惑”四個環(huán)節(jié),學生隨時對所學知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過程,符合學生認知水平,培養(yǎng)了學習能力。

  四、說過程

  在新課導入、新課講授及終結(jié)階段的教學中,我力求發(fā)揮學生自我發(fā)現(xiàn)的能力,突出學生的教學主體地位,以啟發(fā)、引導為教師的責任。

  一、新課導入

  首先,在導入階段的教學中,抓住反函數(shù)也是函數(shù)這一實質(zhì),以對函數(shù)概念的復習來引出反函數(shù)。指明函數(shù)是一種映射的實質(zhì),分析原函數(shù)中映射的具體情況,進而引導學生考慮,若將定義域、值域互換,此時映射還是不是一個函數(shù)呢?

  首先提問學生函數(shù)基本概念,使學生明白函數(shù)是一種單值對應,即映射。再出示電腦動畫,以函數(shù)y=2x來具體分析,結(jié)合圖象引導學生注意:在定義域內(nèi)所有自變量,都能在值域內(nèi)找到唯一確定的.一個函數(shù)值,即存在x→y的單值對應,例如:1→2,2→4,3→6,……若將定義域與值域互換,則對應變?yōu)?→1,4→2,6→3,…這種對應是否構(gòu)成單值對應,即映射呢?這種對應是否構(gòu)成函數(shù)呢?至此,引出反函數(shù)的概念,為概念的新授做好準備。

  這樣的引入方式,抓住了反函數(shù)概念的實質(zhì),確保學生不會產(chǎn)生概念上的偏差。此外,可以使學生明白新知識來源于舊知識,促使學生主動運用函數(shù)的研究方法去學習反函數(shù),為順利完成教學任務做好思維上的準備。

  二、新課講授

  在導入的基礎上,給出反函數(shù)的具體概念。

  給出概念后,必須防止學生對于反函數(shù)f—1(y)形式的誤解(以為是1/f(x))。此外,還要學生理解:最終的表達形式寫為y=f—1(x)是順應習慣,并且也為后面的圖象研究提供方便,y實際上是原函數(shù)中的x,x是原函數(shù)中的y。對于這一問題可以引導學生從圖象觀察得出。

  進一步深化對概念的理解,出示電腦幻燈,設置疑問:(1)反函數(shù)是不是函數(shù);(2)反函數(shù)有沒有三要素?如何確定?

  引導學生思索,學生逐漸會認識到:反函數(shù)也是函數(shù),其定義域是原函數(shù)的值域,對應法則可由原函數(shù)得到,值域則是原函數(shù)的定義域。

  這時,給出電腦動畫,指明反函數(shù)與原函數(shù)的關系。澄清學生對于概念的認識,抓住問題的關鍵。

  但是,具體怎樣求一個函數(shù)的反函數(shù)呢?

  這些問題,必須通過實例解決,于是進入例題解答過程。

  例1、求下列函數(shù)的反函數(shù)。

  (1)y=3x—1(x∈R);(2)y=x3+1;

  (3)y=(2x+3)/(x—1)(x∈R且x≠1)

  通過例1,要使學生明白具體求反函數(shù)的過程。以達到突出重點、突破難點的目的。

  啟發(fā)學生:既然反函數(shù)也存在三要素,那如何一一求出,得到具體的反函數(shù)呢?這時結(jié)合第(1)小題,讓學生思考問題。引導學生找出關鍵通過解關于x的方程,將x用y表達,以得到反函數(shù)的表達式。這個表達式中的x、y表示什么?這和我們通常的函數(shù)表達式有什么區(qū)別?進而引導學生想到交換x、y得到我們習慣使用的函數(shù)表達式。再考慮:反函數(shù)的定義域、值域怎么求?是怎樣來的?學生思考后,可得出通過求原函數(shù)值域來得到反函數(shù)的定義域的方法。

  教師板書第(1)小題,學生完成后兩題。

  此時,引導學生比較三道小題的解題步驟,師生共同小結(jié)出求反函數(shù)的三部曲:反解(把解析式看作x的方程,求出反函數(shù)的解析式)——→互換(求出所給函數(shù)的值域并把它改換成反函數(shù)的定義域)——→改寫(將函數(shù)寫成y=f—1(x)的形式)。

  教師在這一部分教學中,抓住反函數(shù)是函數(shù)這一本質(zhì)問題,突出了反函數(shù)與原函數(shù)之間的聯(lián)系,給出了具體求解的過程,使學生掌握了重點問題的解決方法。教師以一個個問題來引導學生逐步“發(fā)現(xiàn)”解決問題的方法,符合學生的認知水平。在教師創(chuàng)設的問題情境中,學生的認識達到了第一次平衡。

  “反函數(shù)的概念已經(jīng)理解,反函數(shù)也會求了,任務已基本完成,該休息了”,有的學生會這樣想。這時,出示第二道例題,打破平衡,激起學生的疑難。

  例2、(1)y=x2(x∈R)的反函數(shù)

  (2)y=x2(x≥0)的反函數(shù)是

 。3)y=x2(x<0)的反函數(shù)是

  相當一部分同學會按部就班求出第(1)小題的“反函數(shù)”y=(x∈R)。這對不對呢?出示電腦動畫,引導學生觀察圖象,從函數(shù)的概念出發(fā),必須存在x→y的單值對應,但反過來呢?y→x存不存在單值對應呢?適當?shù)囊龑釂枺箤W生抓住了問題的關鍵:在原函數(shù)的定義域內(nèi)必須存在y→x的單值對應,這是反函數(shù)存在的前提。認清這一問題后,引導學生進一步分析,y=x2(x∈R)不存在反函數(shù),在定義域的局部存不存在反函數(shù)呢?讓學生借助圖形發(fā)現(xiàn)答案,并且進一步得出y=x2(x≥0),y=x2(x<0)兩個函數(shù)的反函數(shù)。這樣,就突破了主要難點,澄清了概念,并為以后反正弦函數(shù)的教學做好理論準備。

  這樣設計的好處是:(1)通過函數(shù)圖像來研究問題,直觀形象,符合學生的認識水平,并且為后續(xù)的互為反函數(shù)的函數(shù)圖像關系問題做好鋪墊。(2)對于反函數(shù)的存在性問題,不能回避,必須使學生理解其內(nèi)在含義,由具體的二次函數(shù)結(jié)合圖像解決這一問題,可以澄清的學生的疑問,達到教學目標。$_:7au%X

  此時,趁學生對于概念有了一個比較清晰的認識,出示幻燈,從函數(shù)概念、反函數(shù)的存在性、反函數(shù)的求法三方面進行簡單的歸納,突出重點,突破難點。

中職函數(shù)的概念的說課稿4

 。ㄒ唬┱n堂練習

  出示電腦幻燈,讓學生完成以下練習:

  (1)函數(shù)y=2|x|在下列哪個定義區(qū)間內(nèi)不存在反函數(shù)?

 。ˋ)[2,4];(B)[—4,4](C)(0,+∞](D)(—∞,0]

  (2)求反函數(shù):y=x/(2x+5),(x∈R且x≠—5/3)

 。3)已知y=,x∈[0,5/2],求出它的反函數(shù),并指明定義域。

  第一道題是概念題,使學生對于反函數(shù)的概念有更清晰的認識,使學生對于反函數(shù)的存在條件認識更深刻。第二道題使學生熟悉反函數(shù)的求法,突出重點。第三道題使學生加深對于概念的理解,弄清反函數(shù)與原函數(shù)的內(nèi)在關系。

  (二)小結(jié)歸納

  通過對反函數(shù)概念和性質(zhì)的小結(jié),使學生理清這節(jié)課的重難點,并使終結(jié)階段的教學更為完整,達到本堂課的教學目標。

  讓學生做課本P65習題六2、3、5,通過作業(yè)反饋學生掌握知識的效果,以利課后解決學生尚有疑難的地方。

  布置一道發(fā)散性的練習(已知函數(shù)y=f(x),(x∈A)是增函數(shù),問:反函數(shù)y=f—1(x)單調(diào)性如何?圖象中如何反映?),進一步深化教學。

  總之,在整個教學過程中,我抓住學生的“主體”作用作文章,不浪費任何一個促使學生“自省”的機會,以積極的雙邊活動使學生主動自覺地發(fā)現(xiàn)結(jié)果、發(fā)現(xiàn)方法。培養(yǎng)了學生的觀察分析能力和思維的.全面性。具體教學中,教師創(chuàng)設問題情境,學生在這一情境中去討論分析、探究發(fā)現(xiàn),以符合學生思維的形式發(fā)展了學生的能力,達到了教學目標,優(yōu)化了整個教學。

中職函數(shù)的概念的說課稿5

  一、說教材

  首先談談我對教材的理解,《函數(shù)的概念》是北師大版必修一第二章2.1的內(nèi)容,本節(jié)課的內(nèi)容是函數(shù)概念。函數(shù)內(nèi)容是高中數(shù)學學習的一條主線,它貫穿整個高中數(shù)學學習中。又是溝通代數(shù)、方程、不等式、數(shù)列、三角函數(shù)、解析幾何、導數(shù)等內(nèi)容的橋梁,同時也是今后進一步學習高等數(shù)學的基礎。函數(shù)學習過程經(jīng)歷了直觀感知、觀察分析、歸納類比、抽象概括等思維過程,通過學習可以提高了學生的數(shù)學思維能力。

  二、說學情

  接下來談談學生的實際情況。新課標指出學生是教學的主體,所以要成為符合新課標要求的教師,深入了解所面對的學生可以說是必修課。本階段的學生已經(jīng)具備了一定的分析能力,以及邏輯推理能力。所以,學生對本節(jié)課的學習是相對比較容易的。

  三、說教學目標

  根據(jù)以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:

  (一)知識與技能

  理解函數(shù)的概念,能對具體函數(shù)指出定義域、對應法則、值域,能夠正確使用“區(qū)間”符號表示某些函數(shù)的定義域、值域。

  (二)過程與方法

  通過實例,進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,在此基礎上學習用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用進一步加深集合與對應數(shù)學思想方法。

  (三)情感態(tài)度價值觀

  在自主探索中感受到成功的喜悅,激發(fā)學習數(shù)學的興趣。

  四、說教學重難點

  我認為一節(jié)好的數(shù)學課,從教學內(nèi)容上說一定要突出重點、突破難點。而教學重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學重點是:函數(shù)的模型化思想,函數(shù)的三要素。本節(jié)課的教學難點是:符號“y=f(x)”的含義,函數(shù)定義域、值域的區(qū)間表示,從具體實例中抽象出函數(shù)概念。

  五、說教法和學法

  現(xiàn)代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調(diào)學生的主動性、積極性為出發(fā)點。根據(jù)這一教學理念,結(jié)合本節(jié)課的內(nèi)容特點和學生的心理特征與認知規(guī)律以問題為主線,我采用啟發(fā)法、講授法、小組合作、自主探究等教學方法。

  六、說教學過程

  下面我將重點談談我對教學過程的設計。

  (一)新課導入

  首先是導入環(huán)節(jié),提問:關于函數(shù)你知道什么?在初中階段對函數(shù)是如何下定義的?你能否舉一個例子。從而引出本節(jié)課的課題《函數(shù)概念》。

  利用初中的函數(shù)概念進行導入,拉近學生與新知識之間的距離,幫助學生進一步完善知識框架行程知識體系。

  (二)新知探索

  接下來是教學中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、自主探究法等。

  首先利用多媒體展示生活實例

  (1)某山的海拔高度與氣溫的變化關系;

  (2)汽車勻速行駛,路程和時間的變化關系;

  (3)沸點和氣壓的變化關系。

  引導學生分析歸納以上三個實例,他們之間有什么共同點,并根據(jù)初中所學函數(shù)的概念,判斷各個實例中的兩個變量之間的'關系是否為函數(shù)關系。

  預設:

  ①都有兩個非空數(shù)集A、B;

 、趦蓚數(shù)集之間都有一種確定的對應關系;

  ③對于數(shù)集A中的每一個x,按照某種對應關系f,在數(shù)集B中都有唯一確定的y值和它對應。

  接下來引導學生思考通過對上述實例的共同點并結(jié)合課本歸納函數(shù)的概念。組織學生閱讀課本,在閱讀過程中注意思考以下問題

  問題1:函數(shù)的概念是什么?初中與高中對函數(shù)概念的定義的異同點是什么?符號“x”的含義是什么?

  問題2:構(gòu)成函數(shù)的三要素是什么?

  問題3:區(qū)間的概念是什么?區(qū)間與集合的關系是什么?在數(shù)軸上如何表示區(qū)間?

  十分鐘過后,組織學生進行全班交流。

  預設:函數(shù)的概念:給定兩個非空數(shù)集A和B,如果按照某個對應關系f,對于集合A中任何一個數(shù)x,在集合B中都存在唯一確定的數(shù)f(x)與之對應,那么就把這對應關系f叫作定義在幾何A上的函數(shù),記作f:A→B,或y=f(x),x∈A。此時,x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)▏x∈A}叫作函數(shù)的值域。

  函數(shù)的三要素包括:定義域、值域、對應法則。

  區(qū)間:

  為了使得學生對函數(shù)概念的本質(zhì)了解的更加深入此時進行追問

  追問1:初中的函數(shù)概念與高中的函數(shù)概念有什么異同點?

  講解過程中注意強調(diào),函數(shù)的本質(zhì)為兩個數(shù)集之間都有一種確定的對應關系,而且是一對一,或者多對一,不能一對多。

  追問2:符號“y=f(x)”的含義是什么?“y=g(x)”可以表示函數(shù)嗎?

  講解過程中注意強調(diào),符號“y=f(x)”是函數(shù)符號,可以用任意的字母表示,f(x)表示與x對應的函數(shù)值,一個數(shù)不是f與x相乘。

  追問3:對應關系f可以是什么形式?

  講解過程中注意強調(diào),對應關系f可以是解析式、圖象、表格

  追問4:函數(shù)的三要素可以缺失嗎?指出三個實例中的三要素分別是什么。

  講解過程中注意強調(diào),函數(shù)的三要素缺一不可。

  追問5:用區(qū)間表示三個實例的定義域和值域。

  設計意圖:在這個過程當中我將課堂完全交給學生,教師發(fā)揮組織者,引導者的作用,在運用啟發(fā)性的原則,學生能夠獨立思考問題,動手操作,還能在這個過程中和同學之間討論,加強了學生們之間的交流,這樣有利于培養(yǎng)學生們的合作意識和探究能力。

  (三)課堂練習

  接下來是鞏固提高環(huán)節(jié)。

  組織學生自己列舉幾個生活中有關函數(shù)的例子,并用定義加以描述,指出函數(shù)的定義域和值域并用區(qū)間表示。

  這樣的問題的設置,讓學生對知識進一步鞏固,讓學生逐漸熟練掌握。

  (四)小結(jié)作業(yè)

  在課程的最后我會提問:今天有什么收獲?

  引導學生回顧:函數(shù)的概念、函數(shù)的三要素、區(qū)間的表示。

  本節(jié)課的課后作業(yè)我設計為:

  1.求解下列函數(shù)的值

  已知f(x)=5x-3,求發(fā)(x)=4。

  2.如圖,某灌溉渠道的橫截面是等腰梯形,底寬2m,渠深1.8m,邊坡的傾角是45°

  (1)試用解析表達式將橫截面中水的面積A表示成水深h的函數(shù)

  (2)確定函數(shù)的定義域和值域

  (3)嘗試繪制函數(shù)的圖象

  這樣的設計能讓學生理解本節(jié)課的核心,并為下節(jié)課學習函數(shù)的表示方法做鋪墊。

中職函數(shù)的概念的說課稿6

  一、教材分析及處理

  函數(shù)是高中數(shù)學的重要內(nèi)容之一,函數(shù)的基礎知識在數(shù)學和其他許多學科中有著廣泛的應用;函數(shù)與代數(shù)式、方程、不等式等內(nèi)容聯(lián)系非常密切;函數(shù)是近一步學習數(shù)學的重要基礎知識;函數(shù)的概念是運動變化和對立統(tǒng)一等觀點在數(shù)學中的具體體現(xiàn);函數(shù)概念及其反映出的數(shù)學思想方法已廣泛滲透到數(shù)學的各個領域,《函數(shù)》教學設計。

  對函數(shù)概念本質(zhì)的理解,首先應通過與初中定義的比較、與其他知識的聯(lián)系以及不斷地應用等,初步理解用集合與對應語言刻畫的函數(shù)概念.其次在后續(xù)的學習中通過基本初等函數(shù),引導學生以具體函數(shù)為依托、反復地、螺旋式上升地理解函數(shù)的本質(zhì)。

  教學重點是函數(shù)的概念,難點是對函數(shù)概念的本質(zhì)的理解。

  學生現(xiàn)狀

  學生在第一章的時候已經(jīng)學習了集合的概念,同時在初中時已學過一次函數(shù)、反比例函數(shù)和二次函數(shù),那么如何用集合知識來理解函數(shù)概念,結(jié)合原有的知識背景,活動經(jīng)驗和理解走入今天的課堂,如何有效地激活學生的學習興趣,讓學生積極參與到學習活動中,達到理解知識、掌握方法、提高能力的目的,使學生獲得有益有效的學習體驗和情感體驗,是在教學設計中應思考的。

  二、教學三維目標分析

  1、知識與技能(重點和難點)

  (1)、通過實例讓學生能夠進一步體會到函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型。并且在此基礎上學習應用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用。不但讓學生能完成本節(jié)知識的學習,還能較好的復習前面內(nèi)容,前后銜接。

  (2)、了解構(gòu)成函數(shù)的三要素,缺一不可,會求簡單函數(shù)的定義域、值域、判斷兩個函數(shù)是否相等等。

  (3)、掌握定義域的表示法,如區(qū)間形式等。

  (4)、了解映射的概念。

  2、過程與方法

  函數(shù)的概念及其相關知識點較為抽象,難以理解,學習中應注意以下問題:

  (1)、首先通過多媒體給出實例,在讓學生以小組的形式開展討論,運用猜想、觀察、分析、歸納、類比、概括等方法,探索發(fā)現(xiàn)知識,找出不同點與相同點,實現(xiàn)學生在教學中的主體地位,培養(yǎng)學生的創(chuàng)新意識。

  (2)、面向全體學生,根據(jù)課本大綱要求授課。

  (3)、加強學法指導,既要讓學生學會本節(jié)知識點,也要讓學生會自我主動學習。

  3、情感態(tài)度與價值觀

  (1)、通過多媒體給出實例,學生小組討論,給出自己的結(jié)論和觀點,加上老師的.輔助講解,培養(yǎng)學生的實踐能力和和大膽創(chuàng)新意識

  (2)、讓學生自己討論給出結(jié)論,培養(yǎng)學生的自我動手能力和小組團結(jié)能力。

  三、教學器材

  多媒體ppt課件

  四、教學過程

  教學內(nèi)容教師活動學生活動設計意圖

  《函數(shù)》課題的引入(用時一分鐘)配著簡單的音樂,從簡單的例子引入函數(shù)應用的廣泛,將同學們的視線引入函數(shù)的學習上聽著悠揚的音樂,讓同學們的視線全注意在老師所講的內(nèi)容上從貼近學生生活入手,符合學生的認知特點。讓學生在領略大自然的美妙與和諧中進入函數(shù)的世界,體現(xiàn)了新課標的理念:從知識走向生活

  知識回顧:初中所學習的函數(shù)知識(用時兩分鐘)回顧初中函數(shù)定義及其性質(zhì),簡單回顧一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)的性質(zhì)、定義及簡單作圖認真聽老師回顧初中知識,發(fā)現(xiàn)異同在初中知識的基礎上引導學生向更深的內(nèi)容探索、求知。即復習了所學內(nèi)容又做了即將所學內(nèi)容的鋪墊

  思考與討論:通過給出的問題,引出本節(jié)課的主要內(nèi)容(用時四分鐘)給出兩個簡單的問題讓同學們思考,講述初中內(nèi)容無法給出正確答案,需要從新的高度來認識函數(shù)結(jié)合老師所回顧的知識,結(jié)合自己所掌握的知識,思考老師給出的問題,小組形式作討論,從簡單問題入手,循序漸進,引出本節(jié)主要知識,回顧前一節(jié)的集合感念,應用到本節(jié)知識,前后聯(lián)系、銜接

  新知識的講解:從概念開始講解本節(jié)知識(用時三分鐘)詳細講解函數(shù)的知識,包括定義域,值域等,回到開始提問部分作答做筆記,專心聽講講解函數(shù)概念,由知識講解回到問題身上,解決問題

  對提問的回答(用時五分鐘)引導學生自己解決開始所提的兩個問題,然后同個互動給出最后答案通過與老師共同討論回答開始問題,總結(jié)更好的掌握函數(shù)概念,通過問題來更好的掌握知識

  函數(shù)區(qū)間(用時五分鐘)引入函數(shù)定義域的表示方法簡潔明了的方法表示函數(shù)的定義域或值域,在集合表示方法的基礎上引入另一種方法

  注意點(用時三分鐘)做個簡單的的回顧新內(nèi)容,把難點重點提出來,讓同學們記住通過問題回答,概念解答,把重難點給出,提醒學生注意內(nèi)容和知識點

  習題(用時十分鐘)給出習題,分析題意在稿紙上簡單作答,回答問題通過習題練習明確重難點,把不懂的地方記住,課后學生在做進一步的聯(lián)系

  映射(用時兩分鐘)從概念方面講解映射的意義,象與原象在新知識的基礎上了解更多知識,映射的學習給以后的知識內(nèi)容做更好的鋪墊

  小結(jié)(用時五分鐘)簡單講述本節(jié)的知識點,重難點做筆記前后知識的連貫,總結(jié),使學生更明白知識點

  五、教學評價

  為了使學生了解函數(shù)概念產(chǎn)生的背景,豐富函數(shù)的感性認識,獲得認識客觀世界的體驗,本課采用"突出主題,循序漸進,反復應用"的方式,在不同的場合考察問題的不同側(cè)面,由淺入深。本課在教學時采用問題探究式的教學方法進行教學,逐層深入,這樣使學生對函數(shù)概念的理解也逐層深入,從而準確理解函數(shù)的概念。函數(shù)引入中的三種對應,與初中時學習函數(shù)內(nèi)容相聯(lián)系,這樣起到了承上啟下的作用。這三種對應既是函數(shù)知識的生長點,又突出了函數(shù)的本質(zhì),為從數(shù)學內(nèi)部研究函數(shù)打下了基礎。

  在培養(yǎng)學生的能力上,本課也進行了整體設計,通過探究、思考,培養(yǎng)了學生的實踐能力、觀察能力、判斷能力;通過揭示對象之間的內(nèi)在聯(lián)系,培養(yǎng)了學生的辨證思維能力;通過實際問題的解決,培養(yǎng)了學生的'分析問題、解決問題和表達交流能力;通過案例探究,培養(yǎng)了學生的創(chuàng)新意識與探究能力。

  雖然函數(shù)概念比較抽象,難以理解,但是通過這樣的教學設計,學生基本上能很好地理解了函數(shù)概念的本質(zhì),達到了課程標準的要求,體現(xiàn)了課改的教學理念。

中職函數(shù)的概念的說課稿7

  尊敬的各位考官大家好,我是今天的X號考生,今天我說課的題目是《函數(shù)的概念》。

  新課標指出:數(shù)學課程要面向全體學生,適應學生個性發(fā)展的需要,使得人人都能獲得良好的數(shù)學教育,不同的人在數(shù)學上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。

  一、說教材

  首先談談我對教材的理解,本節(jié)課的內(nèi)容是函數(shù)概念。函數(shù)內(nèi)容是初中數(shù)學學習的一條主線,它貫穿整個初中數(shù)學學習中。又是溝通代數(shù)、方程、、不等式、數(shù)列、三角函數(shù)、解析幾何、導數(shù)等內(nèi)容的橋梁,同時也是今后進一步學習高等數(shù)學的基礎。函數(shù)學習過程經(jīng)歷了直觀感知、觀察分析、歸納類比、抽象概括等思維過程,通過學習可以提高了學生的數(shù)學思維能力。

  二、說學情

  接下來談談學生的實際情況。新課標指出學生是教學主體,所以要成為符合新課標要求的教師,深入了解所面對的學生可以說是必修課。本階段的學生已經(jīng)具備了一定分析能力,以及邏輯推理能力。所以,學生對本節(jié)課的學習是相對比較容易的。

  三、說教學目標

  根據(jù)以上對教材分析以及對學情的把握,我制定了如下三維教學目標:

  (一)知識與技能

  理解函數(shù)概念,能對具體函數(shù)指出定義域、對應法則、值域,能夠正確使用“區(qū)間”符號表示某些函數(shù)的定義域、值域。

  (二)過程與方法

  通過實例,進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,在此基礎上學習用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用進一步加深集合與對應數(shù)學思想方法。

  (三)情感態(tài)度價值觀

  在自主探索中感受到成功的喜悅,激發(fā)學習數(shù)學的興趣。

  四、說教學重難點

  我認為一節(jié)好的數(shù)學課,從教學內(nèi)容上說一定要突出重點、突破難點。而教學重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學重點是:函數(shù)的模型化思想,函數(shù)的三要素。本節(jié)課的教學難點是:符號“y=f(x)”的含義,函數(shù)定義域、值域的區(qū)間表示,從具體實例中抽象出函數(shù)概念。

  五、說教法和學法

  現(xiàn)代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調(diào)學生的主動性、積極性為出發(fā)點。根據(jù)這一教學理念,結(jié)合本節(jié)課的內(nèi)容特點和學生的心理特征與認知規(guī)律以問題為主線,我采用啟發(fā)法、講授法、小組合作、自主探究等教學方法。

  六、說教學過程

  下面我將重點談談我對教學過程的設計。

 。ㄒ唬┬抡n導入

  首先是導入環(huán)節(jié),提問:關于函數(shù)你知道什么?在初中階段對函數(shù)是如何下定義的'?你能否舉一個例子。從而引出本節(jié)課的課題《函數(shù)概念》。

  利用初中的函數(shù)概念進行導入,拉近學生與新知識之間的距離,幫助學生進一步完善知識框架行程知識體系。

 。ǘ┬轮剿

  接下來是教學中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、自主探究法等。

  首先利用多媒體展示生活實例

 。1)某山的海拔高度與氣溫的變化關系;

 。2)汽車勻速行駛,路程和時間的變化關系;

 。3)沸點和氣壓的變化關系。

  引導學生分析歸納以上三個實例,他們之間有什么共同點,并根據(jù)初中所學函數(shù)的概念,判斷各個實例中的兩個變量之間的關系是否為函數(shù)關系。

  預設:①都有兩個非空數(shù)集A、B;②兩個數(shù)集之間都有一種確定的對應關系;③對于數(shù)集A中的每一個x,按照某種對應關系f,在數(shù)集B中都有唯一確定的y值和它對應。

  接下來引導學生思考通過對上述實例的共同點并結(jié)合課本歸納函數(shù)的概念。組織學生閱讀課本,在閱讀過程中注意思考以下問題

  問題1:函數(shù)的概念是什么?初中與初中對函數(shù)概念的定義的異同點是什么?符號“__”的含義是什么?

  問題2:構(gòu)成函數(shù)的三要素是什么?

  問題3:區(qū)間的概念是什么?區(qū)間與集合的關系是什么?在數(shù)軸上如何表示區(qū)間?

  十分鐘過后,組織學生進行全班交流。

  預設:函數(shù)的概念:給定兩個非空數(shù)集A和B,如果按照某個對應關系f,對于集合A中任何一個數(shù)x,在集合B中都存在唯一確定的數(shù)f(x)與之對應,那么就把這對應關系f叫作定義在幾何A上的函數(shù),記作f:A→B,或y=f(x),x∈A。此時,x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)▏x∈A}叫作函數(shù)的值域。

  函數(shù)的三要素包括:定義域、值域、對應法則。

  區(qū)間:

  為了使得學生對函數(shù)概念的本質(zhì)了解的更加深入此時進行追問

  追問1:初中的函數(shù)概念與初中的函數(shù)概念有什么異同點?

  講解過程中注意強調(diào),函數(shù)的本質(zhì)為兩個數(shù)集之間都有一種確定的對應關系,而且是一對一,或者多對一,不能一對多。

  追問2:符號“y=f(x)”的含義是什么?“y=g(x)”可以表示函數(shù)嗎?

  講解過程中注意強調(diào),符號“y=f(x)”是函數(shù)符號,可以用任意的字母表示,f(x)表示與x對應的函數(shù)值,一個數(shù)不是f與x相乘。

  追問3:對應關系f可以是什么形式?

  講解過程中注意強調(diào),對應關系f可以是解析式、圖象、表格。

  追問4:函數(shù)的三要素可以缺失嗎?指出三個實例中的三要素分別是什么。

  講解過程中注意強調(diào),函數(shù)的三要素缺一不可。

  追問5:用區(qū)間表示三個實例的定義域和值域。

  設計意圖:在這個過程當中我將課堂完全交給學生,教師發(fā)揮組織者,引導者的作用,在運用啟發(fā)性的原則,學生能夠獨立思考問題,動手操作,還能在這個過程中和同學之間討論,加強了學生們之間的交流,這樣有利于培養(yǎng)學生們的合作意識和探究能力。

  (三)課堂練習

  接下來是鞏固提高環(huán)節(jié)。

  組織學生自己列舉幾個生活中有關函數(shù)的例子,并用定義加以描述,指出函數(shù)的定義域和值域并用區(qū)間表示。

  這樣的問題的設置,讓學生對知識進一步鞏固,讓學生逐漸熟練掌握。

  (四)小結(jié)作業(yè)

  在課程的最后我會提問:今天有什么收獲?

  引導學生回顧:函數(shù)的概念、函數(shù)的三要素、區(qū)間的表示。

中職函數(shù)的概念的說課稿8

  教學目標:

  1.通過現(xiàn)實生活中豐富的實例,讓學生了解函數(shù)概念產(chǎn)生的背景,進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,在此基礎上學習用集合與對應的語言來刻畫函數(shù)的概念,掌握函數(shù)是特殊的數(shù)集之間的對應;

  2.了解構(gòu)成函數(shù)的要素,理解函數(shù)的定義域、值域的定義,會求一些簡單函數(shù)的定義域和值域;

  3.通過教學,逐步培養(yǎng)學生由具體逐步過渡到符號化,代數(shù)式化,并能對以往學習過的知識進行理性化思考,對事物間的聯(lián)系的一種數(shù)學化的思考.

  教學重點:

  兩集合間用對應來描述函數(shù)的概念;求基本函數(shù)的定義域和值域.

  教學過程:

  一、問題情境

  1.情境.

  正方形的邊長為a,則正方形的周長為 ,面積為 .

  2.問題.

  在初中,我們曾認識利用函數(shù)來描述兩個變量之間的關系,如何定義函數(shù)?常見的函數(shù)模型有哪些?

  二、學生活動

  1.復述初中所學函數(shù)的概念;

  2.閱讀課本23頁的問題(1)、(2)、(3),并分別說出對其理解;

  3.舉出生活中的.實例,進一步說明函數(shù)的對應本質(zhì).

  三、數(shù)學建構(gòu)

  1.用集合的語言分別闡述23頁的問題(1)、(2)、(3);

  問題1 某城市在某一天24小時內(nèi)的氣溫變化情況如下圖所示,試根據(jù)函數(shù)圖象回答下列問題:

 。1)這一變化過程中,有哪幾個變量?

  (2)這幾個變量的范圍分別是多少?

  問題2 略.

  問題3 略(詳見23頁).

  2.函數(shù):一般地,設A、B是兩個非空的數(shù)集,如果按某種對應法則f,對于集合A中的每一個元素x,在集合B中都有惟一的元素和它對應,這樣的對應叫做從A到B的一個函數(shù),通常記為=f(x),x∈A.其中,所有輸入值x組成的集合A叫做函數(shù)=f(x)的定義域.

 。1)函數(shù)作為一種數(shù)學模型,主要用于刻畫兩個變量之間的關系;

 。2)函數(shù)的本質(zhì)是一種對應;

 。3)對應法則f可以是一個數(shù)學表達式,也可是一個圖形或是一個表格

 。4)對應是建立在A、B兩個非空的數(shù)集之間.可以是有限集,當然也就可以是單元集,如f(x)=2x,(x=0).

  3.函數(shù)=f(x)的定義域:

  (1)每一個函數(shù)都有它的定義域,定義域是函數(shù)的生命線;

 。2)給定函數(shù)時要指明函數(shù)的定義域,對于用解析式表示的集合,如果沒

  有指明定義域,那么就認為定義域為一切實數(shù).

  四、數(shù)學運用

  例1.判斷下列對應是否為集合A 到 B的函數(shù):

 。1)A={1,2,3,4,5},B={2,4,6,8,10},f:x→2x;

 。2)A={1,2,3,4,5},B={0,2,4,6,8},f:x→2x;

 。3)A={1,2,3,4,5},B=N,f:x→2x.

  練習:判斷下列對應是否為函數(shù):

 。1)x→2x,x≠0,x∈R;

 。2)x→,這里2=x,x∈N,∈R。

  例2 求下列函數(shù)的定義域:

 。1)f(x)=x—1;(2)g(x)=x+1+1x。

  例3 下列各組函數(shù)中,是否表示同一函數(shù)?為什么?

  A.=x與=(x)2; B.=x2與=3x3;

  C.=2x-1(x∈R)與=2t-1(t∈R); D.=x+2x-2與=x2-4

  練習:課本26頁練習1~4,6.

  五、回顧小結(jié)

  1.生活中兩個相關變量的刻畫→函數(shù)→對應(A→B)

  2.函數(shù)的對應本質(zhì);

  3.函數(shù)的對應法則和定義域.

中職函數(shù)的概念的說課稿9

  一、說課內(nèi)容:

  蘇教版九年級數(shù)學下冊第六章第一節(jié)的二次函數(shù)的概念及相關習題二、教材分析:

  1、教材的地位和作用這節(jié)課是在學生已經(jīng)學習了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎上,來學習二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學習二次函數(shù)將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學習二次函數(shù)的基礎,是為后來學習二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。

  2、教學目標和要求:

 。1)知識與技能:使學生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。

 。2)過程與方法:復習舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學生解決問題的能力。

 。3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學活動加深對二次函數(shù)概念的理解,發(fā)展學生的數(shù)學思維,增強學好數(shù)學的愿望與信心。

  3、教學重點:對二次函數(shù)概念的理解。

  4、教學難點:由實際問題確定函數(shù)解析式和確定自變量的取值范圍。

  二、教法學法設計:

  1、從創(chuàng)設情境入手,通過知識再現(xiàn),孕伏教學過程。

  2、從學生活動出發(fā),通過以舊引新,順勢教學過程。

  3、利用探索、研究手段,通過思維深入,領悟教學過程四。

  三、教學過程:

 。ㄒ唬⿵土曁釂

  1.什么叫函數(shù)?我們之前學過了那些函數(shù)?(一次函數(shù),正比例函數(shù),反比例函數(shù))

  2.它們的形式是怎樣的?(y=kx+b,k≠0;y=kx,k≠0;y=,k≠0)3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件?k值對函數(shù)性質(zhì)有什么影響?

 。ǘ┰O計意圖

  復習這些問題是為了幫助學生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k≠0的條件,以備與二次函數(shù)中的a進行比較。

  引入新課函數(shù)是研究兩個變量在某變化過程中的相互關系,我們已學過正比例函數(shù),反比例函數(shù)和一次函數(shù)。

  看下面三個例子中兩個變量之間存在怎樣的關系:

  例1、圓的半徑是r(cm)時,面積s(cm)與半徑之間的關系是什么?解:s=πr(r>0)。

  例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關系是什么?解:y=x(20/2-x)=x(10-x)=-x+10x(0

  例3、設人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關系是什么(不考慮利息稅)?解:y=100(1+x)=100(x+2x+1)=100x+200x+100(0

  教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?

  (三)講解新課以上函數(shù)不同于我們所學過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

  二次函數(shù)的定義:形如y=ax2+bx+c(a≠0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。

  鞏固對二次函數(shù)概念的理解:

  1、強調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y是關于x的二次多項式(關于的x代數(shù)式一定要是整式)。

  2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r>0)

  3、為什么二次函數(shù)定義中要求a≠0?(若a=0,ax2+bx+c就不是關于x的二次多項式了)

  4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.

  5、b和c是否可以為零?

 。ㄋ模╈柟叹毩

  已知一個直角三角形的兩條直角邊長的'和是10cm。

  (1)當它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;

 。2)設這個直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關于x的函數(shù)關系式。

  此題由具體數(shù)據(jù)逐步過渡到用字母表示關系式,讓學生經(jīng)歷由具體到抽象的過程,從而降低學生學習的難度。

 。ㄎ澹┬〗Y(jié)思考:本節(jié)課你有哪些收獲?還有什么不清楚的地方?

  讓學生來談本節(jié)課的收獲,培養(yǎng)學生自我檢查、自我小結(jié)的良好習慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。

 。┳鳂I(yè)布置

  必做題:

  正方形的邊長為4,如果邊長增加x,則面積增加y,求y關于x的函數(shù)關系式。這個函數(shù)是二次函數(shù)嗎?

  在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關系,并注明自變量的取值范圍?

  選做題:

  1.已知函數(shù)是二次函數(shù),求m的值?

  2.試在平面直角坐標系畫出二次函數(shù)y=x2和y=-x2圖象?

  作業(yè)中分為必做題與選做題,實施分層教學,體現(xiàn)新課標人人學有價值的數(shù)學,不同的人得到不同的發(fā)展。另外補充第4題,旨在激發(fā)學生繼續(xù)學習二次函數(shù)圖象的興趣。

【中職函數(shù)的概念的說課稿】相關文章:

《函數(shù)的概念》說課稿07-26

《函數(shù)的概念》說課稿12-16

《函數(shù)概念》說課稿07-07

函數(shù)概念說課稿11-28

《函數(shù)的概念》說課稿(7篇)12-12

《函數(shù)概念》說課稿7篇12-15

《函數(shù)的概念》說課稿7篇07-27

二次函數(shù)概念說課稿12-29

函數(shù)的概念教學反思02-07