當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初中數(shù)學(xué)知識點總結(jié)

初中數(shù)學(xué)知識點總結(jié)

時間:2024-06-15 07:58:45 初中數(shù)學(xué) 我要投稿

初中數(shù)學(xué)知識點總結(jié)15篇[推薦]

  總結(jié)是對某一特定時間段內(nèi)的學(xué)習(xí)和工作生活等表現(xiàn)情況加以回顧和分析的一種書面材料,寫總結(jié)有利于我們學(xué)習(xí)和工作能力的提高,因此我們需要回頭歸納,寫一份總結(jié)了?偨Y(jié)你想好怎么寫了嗎?以下是小編幫大家整理的初中數(shù)學(xué)知識點總結(jié),希望對大家有所幫助。

初中數(shù)學(xué)知識點總結(jié)15篇[推薦]

初中數(shù)學(xué)知識點總結(jié)1

  一、在創(chuàng)新中培養(yǎng)學(xué)生的歸納意?R

  在初中數(shù)學(xué)教學(xué)中,重點是對學(xué)生的創(chuàng)新精神和實踐能力的培養(yǎng),體現(xiàn)出現(xiàn)代素質(zhì)教育。學(xué)生創(chuàng)新能力的培養(yǎng)在學(xué)習(xí)中占據(jù)非常重要的作用,在創(chuàng)新中學(xué)生可以鞏固自身所學(xué)的知識,使數(shù)學(xué)知識在自己的頭腦中根深蒂固,各類知識點在學(xué)生的頭腦中形成清晰的框架,有助于學(xué)生歸納意識的培養(yǎng)。歸納意識的培養(yǎng),可以減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān),提升學(xué)生對知識的理解能力。

  初中生在學(xué)習(xí)數(shù)學(xué)的環(huán)節(jié)中,常常會接觸到大量的圖像,在數(shù)學(xué)學(xué)習(xí)中,老師應(yīng)該鼓勵學(xué)生大膽創(chuàng)新,在創(chuàng)新環(huán)節(jié)中完成對知識點的歸納。數(shù)學(xué)學(xué)習(xí)并不死板,不僅僅學(xué)習(xí)教科書上的知識,還應(yīng)該學(xué)習(xí)書本以外的知識,從而創(chuàng)新自己的思維。例如在進(jìn)行函數(shù)的學(xué)習(xí)中,老師可以讓學(xué)生繪制函數(shù)圖像,對函數(shù)進(jìn)行分類討論,從而掌握遞增函數(shù)和遞減函數(shù)的定義,在分類討論后,學(xué)生結(jié)合圖像進(jìn)行歸納。在數(shù)學(xué)教學(xué)中,老師不僅僅要重視書本上的邏輯內(nèi)容,而且在把握邏輯內(nèi)容的基礎(chǔ)上,將圖像和數(shù)學(xué)知識有機(jī)結(jié)合起來,使學(xué)生可以大膽創(chuàng)新。

  很多學(xué)生在數(shù)學(xué)學(xué)習(xí)中存在困難,認(rèn)為數(shù)學(xué)的學(xué)習(xí)就是解答大量的難題,他們在大量的題海戰(zhàn)術(shù)后不善于歸納,導(dǎo)致數(shù)學(xué)學(xué)習(xí)的效率不高。

  二、在交流中歸納知識點

  在數(shù)學(xué)學(xué)習(xí)中,如果學(xué)生只是自己探究,那么在學(xué)習(xí)中不會得到靈感。數(shù)學(xué)學(xué)習(xí)不僅僅要求學(xué)生具有認(rèn)真的鉆研態(tài)度,而且也需要老師幫助學(xué)生養(yǎng)成歸納的意識。溝通和交流不僅僅在語言的學(xué)習(xí)中發(fā)揮非常重要的作用,而且在數(shù)學(xué)學(xué)習(xí)中同樣非常重要。學(xué)生在解答數(shù)學(xué)問題中,常常會遇到一些問題,學(xué)生自己探究會陷入到死胡同中,需要老師和同學(xué)的幫助才能進(jìn)一步完成。

  為了切實在初中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的歸納意識,老師可以將班級內(nèi)的學(xué)生分成幾個不同的小組,組內(nèi)的同學(xué)可以通過合作的方式,對知識點進(jìn)行歸納,在數(shù)學(xué)的學(xué)習(xí)中更加變通,將數(shù)學(xué)這門學(xué)科應(yīng)用到生活中。

  例如,在進(jìn)行二次函數(shù)的學(xué)習(xí)中,老師可以將學(xué)生分成不同的小組,留給學(xué)生充足的時間,讓他們互相幫助,在溝通中對知識點進(jìn)行歸納。學(xué)生很快就能得到結(jié)論,如果函數(shù)有兩個解,那么函數(shù)與數(shù)軸會有兩個交點,如果方程只有一個解,那么函數(shù)與數(shù)軸只有一個交點,如果方程沒有解,那么函數(shù)與數(shù)軸沒有交點。學(xué)生通過分組討論的方式得到結(jié)論,通過歸納,學(xué)生對二次函數(shù)知識點的.印象非常深刻。

  三、學(xué)會正確歸納

  在數(shù)學(xué)學(xué)習(xí)中,歸納思想非常重要,數(shù)學(xué)這門學(xué)科的知識非常細(xì)碎,是一門系統(tǒng)性很強(qiáng)的學(xué)科。數(shù)學(xué)知識錯綜復(fù)雜,很多學(xué)生在學(xué)習(xí)數(shù)學(xué)中力不從心,掌握合理的歸納方式,可以切實提升學(xué)生的數(shù)學(xué)成績。初中生的思維還不是特別完善,在進(jìn)行數(shù)學(xué)學(xué)習(xí)環(huán)節(jié)中,對知識點進(jìn)行合理的歸納,是每位老師應(yīng)該采取的方法。如果學(xué)生不懂得歸納,那么在數(shù)學(xué)考試中,學(xué)生會將知識點混淆。為了提升學(xué)生的歸納能力,老師在課堂上應(yīng)該將一些容易混淆和容易出現(xiàn)錯誤的習(xí)題讓學(xué)生總結(jié)。

  例如,在學(xué)習(xí)圓和直線這部分內(nèi)容中,老師都會將重點內(nèi)容,圓和圓的位置關(guān)系,直線和圓的位置關(guān)系進(jìn)行重點分析。老師可以借助一些參考書目和資料,總結(jié)一些相似的題目,讓學(xué)生在課堂上解答這些題目,使學(xué)生對這部分知識點進(jìn)行總結(jié),從而加深對這部分知識的理解。歸納思想在數(shù)學(xué)學(xué)習(xí)中應(yīng)用非常多,在進(jìn)行初中數(shù)學(xué)教學(xué)環(huán)節(jié)中,學(xué)生應(yīng)該花更多的時間進(jìn)行歸納。

  在進(jìn)行初中數(shù)學(xué)的學(xué)習(xí)中,學(xué)生歸納意識的養(yǎng)成可以完善學(xué)生的數(shù)學(xué)思維,學(xué)生學(xué)會歸納,在學(xué)習(xí)中就會如魚得水,在考試中取得好成績。

  四、在反思中完成知識點的歸納

初中數(shù)學(xué)知識點總結(jié)2

  一、基本知識

  一、數(shù)與代數(shù)

  A、數(shù)與式:

  1、有理數(shù):

 、僬麛(shù)→正整數(shù),0,負(fù)整數(shù);

 、诜?jǐn)?shù)→正分?jǐn)?shù),負(fù)分?jǐn)?shù)

  數(shù)軸:

  ①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。

 、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。

  ③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。

 、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

  絕對值:

  ①在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。

  ②正數(shù)的絕對值是他的本身、負(fù)數(shù)的絕對值是他的相反數(shù)、0的絕對值是0、兩個負(fù)數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:帶上符號進(jìn)行正常運算。

  加法:

 、偻栂嗉,取相同的符號,把絕對值相加。

  ②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:

 、賰蓴(shù)相乘,同號得正,異號得負(fù),絕對值相乘。

 、谌魏螖(shù)與0相乘得0、

 、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。

  除法:

 、俪砸粋數(shù)等于乘以一個數(shù)的倒數(shù)。

 、0不能作除數(shù)。

  乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數(shù)

  無理數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù),例如:π=…

  平方根:

 、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。

  ②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。

 、垡粋正數(shù)有2個平方根;0的平方根為0;負(fù)數(shù)沒有平方根。

 、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:

 、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。

 、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

 、矍笠粋數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):

 、賹崝(shù)分有理數(shù)和無理數(shù)。

 、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣;

  ③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。

  3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:

 、偎帜赶嗤⑶蚁嗤帜傅闹笖(shù)也相同的項,叫做同類項;②把同類項合并成一項就叫做合并同類項。

 、墼诤喜⑼愴棔r,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:

 、贁(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

 、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

 、垡粋多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:

  A^M+A^N=A^(M+N)

 。ˋ^M)^N=A^(MN

 。ˋ/B)^N=A^N/B^N

  除法一樣。

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

  ②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

 、鄱囗検脚c多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式:A^2—B^2=(A+B)(A—B);

  完全平方公式:(A+B)^2=A^2+2AB+B^2;(A—B)^2=A^2—2AB+B^2、

  整式的除法:

 、賳雾検较喑,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

 、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:

 、僬紸除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0、

 、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:

  ①同分母分式相加減,分母不變,把分子相加減。

  ②異分母的分式先通分,化為同分母的分式,再加減。

  分式方程:

 、俜帜钢泻形粗獢(shù)的方程叫分式方程。

 、谑狗匠痰姆帜笧0的解稱為原方程的增根。

  B、方程與不等式

  1、方程與方程組

  一元一次方程:

  ①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1、

  二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的'方程叫做二元一次方程。

  二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

  適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。

  二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

  解二元一次方程組的方法:代入消元法;加減消元法。

  一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程:ax^2+bx+c=0;

  1)一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當(dāng)Y=0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖像與X軸的交點。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點式(—b/2a,4ac—b^2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

 。1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解

 。2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

  (3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={—b+√[b^2—4ac)]}/2a,X2={—b—√[b^2—4ac)]}/2a

  3)解一元二次方程的步驟:

 。1)配方法的步驟:

  先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式

 。2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

 。3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c

  4)韋達(dá)定理

  利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a

  也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

  5)一元二次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2—4ac,這里可以分為3種情況:

  I當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根;

  II當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根;

  III當(dāng)△B,則A+C>B+C;

  在不等式中,如果減去同一個數(shù)(或加上一個負(fù)數(shù)),不等式符號不改向;

  例如:如果A>B,則A—C>B—C;

  在不等式中,如果乘以同一個正數(shù),不等式符號不改向;

  例如:如果A>B,則A*C>B*C(C>0);

  在不等式中,如果乘以同一個負(fù)數(shù),不等號改向;

  例如:如果A>B,則A*C

  如果不等式乘以0,那么不等號改為等號;

  所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;

  3、函數(shù)

  變量:因變量Y,自變量X。

  在用圖像表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

  一次函數(shù):

 、偃魞蓚變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

 、诋(dāng)B=0時,稱Y是X的正比例函數(shù)。

  一次函數(shù)的圖像:

 、侔岩粋函數(shù)的自變量X與對應(yīng)的因變量Y的值分別作為點的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖像。

 、谡壤瘮(shù)Y=KX的圖像是經(jīng)過原點的一條直線。

 、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O時,則經(jīng)234象限;

  當(dāng)K〈0,B〉0時,則經(jīng)124象限;

  當(dāng)K〉0,B〈0時,則經(jīng)134象限;

  當(dāng)K〉0,B〉0時,則經(jīng)123象限。

 、墚(dāng)K〉0時,Y的值隨X值的增大而增大,當(dāng)X〈0時,Y的值隨X值的增大而減少。

  二空間與圖形

  A、圖形的認(rèn)識

  1、點,線,面

  點,線,面:

 、賵D形是由點,線,面構(gòu)成的。

 、诿媾c面相交得線,線與線相交得點。

 、埸c動成線,線動成面,面動成體。

  展開與折疊:

  ①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。

 、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  弧、扇形:

 、儆梢粭l弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。

  ②圓可以分割成若干個扇形。

  2、角

  線:

 、倬段有兩個端點。

  ②將線段向一個方向無限延長就形成了射線。射線只有一個端點。

 、蹖⒕段的兩端無限延長就形成了直線。直線沒有端點。

 、芙(jīng)過兩點有且只有一條直線。

  比較長短:

  ①兩點之間的所有連線中,線段最短。兩點之間直線最短。

  ②兩點之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:

  ①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

 、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

  角的比較:

 、俳且部梢钥闯墒怯梢粭l射線繞著他的端點旋轉(zhuǎn)而成的。

 、谝粭l射線繞著他的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所成的角叫做平角,180、始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時,所成的角叫做周角,360、

 、蹚囊粋角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:

  ①同一平面內(nèi),不相交的兩條直線叫做平行線。

  ②經(jīng)過直線外一點,有且只有一條直線與這條直線平行。

 、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:

 、偃绻麅蓷l直線相交成直角,那么這兩條直線互相垂直。

 、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。

 、燮矫鎯(nèi),過一點有且只有一條直線與已知直線垂直。

  垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;

  判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;

  角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角的角平分線就是到角兩邊距離相等的點的集合。

  性質(zhì)定理:角平分線上的點到該角兩邊的距離相等;

  判定定理:到角的兩邊距離相等的點在該角的角平分線上;

  正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

  判定:

  1、對角線相等的菱形

  2、鄰邊相等的矩形

  二、基本定理

  1、過兩點有且只有一條直線

  2、兩點之間線段最短

  3、同角或等角的補(bǔ)角相等——補(bǔ)角=180—角度。

  4、同角或等角的余角相等——余角=90—角度。

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯角相等,兩直線平行

  11、同旁內(nèi)角互補(bǔ),兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯角相等

  14、兩直線平行,同旁內(nèi)角互補(bǔ)

  15、定理:三角形兩邊的和大于第三邊

  16、推論:三角形兩邊的差小于第三邊

  17、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°

  18、推論1:直角三角形的兩個銳角互余

  19、推論2:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

  20、推論3:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

  21、全等三角形的對應(yīng)邊、對應(yīng)角相等

  22、邊角邊公理(SAS):有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

  23、角邊角公理(ASA):有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等

  24、推論(AAS):有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

  25、邊邊邊公理(SSS):有三邊對應(yīng)相等的兩個三角形全等

  26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等

  27、定理1:在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊

  31、推論2:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

  32、推論3:等邊三角形的各角都相等,并且每一個角都等于60°

  33、等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  34、等腰三角形的性質(zhì)定理:等腰三角形的兩個底角相等(即等邊對等角)

  35、推論1:三個角都相等的三角形是等邊三角形

  36、推論:有一個角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線等于斜邊上的一半

  39、定理:線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42、定理1:關(guān)于某條直線對稱的兩個圖形是全等形

  43、定理:如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

  44、定理3:兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

  45、逆定理:如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  46、勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理:如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形

  48、定理:四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理:n邊形的內(nèi)角的和等于(n—2)×180°

  51、推論:任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1:平行四邊形的對角相等

  53、平行四邊形性質(zhì)定理2:行四邊形的對邊相等

  54、推論:夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3:平行四邊形的對角線互相平分

  56、平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2:兩組對邊分別相等的四邊形是平行四邊形

  58、平行四邊形判定定理3:對角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4:一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1:矩形的四個角都是直角

  61、矩形性質(zhì)定理2:矩形的對角線相等

  62、矩形判定定理1:有三個角是直角的四邊形是矩形

  63、矩形判定定理2:對角線相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1:菱形的四條邊都相等

  65、菱形性質(zhì)定理2:菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1:四邊都相等的四邊形是菱形

  68、菱形判定定理2:對角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1:正方形的四個角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2:正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71、定理1:關(guān)于中心對稱的兩個圖形是全等的

  72、定理2:關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  73、逆定理:如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

  74、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個角相等

  75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形

  77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

  80、推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  81、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2,S=L×h

  83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc,ad=bc,那么a:b=c:d

  84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例

  87、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  88、定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

  90、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91、相似三角形判定定理1:兩角對應(yīng)相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  93、判定定理2:兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

  94、判定定理3:三邊對應(yīng)成比例,兩三角形相似(SSS)

  95、定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似(HL)

  96、性質(zhì)定理1:相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

  97、性質(zhì)定理2:相似三角形周長的比等于相似比

  98、性質(zhì)定理3:相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90—a),cos(a)=sin(90—a)(a<90)

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90—a),cot(a)=tan(90—a)

  101、圓是定點的距離等于定長的點的集合

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點的集合

  104、同圓或等圓的半徑相等

  105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理:不在同一直線上的三點確定一個圓。

  110、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111、推論1

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條。ㄖ睆剑

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112、推論2

  圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論

  在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116、定理

  一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1

  同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118、推論2

  半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3

  如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

  120、定理

  圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角

  121、①直線L和⊙O相交0<=d<r

 、谥本L和⊙O相切d=r

 、壑本L和⊙O相離d>r

  122、切線的判定定理

  經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質(zhì)定理

  圓的切線垂直于經(jīng)過切點的半徑

  124、推論1

  經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  125、推論2

  經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  126、切線長定理

  從圓外一點引圓的兩條切線相交與一點,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理

  弦切角等于它所夾的弧對的圓周角?

  129、推論

  如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  130、相交弦定理

  圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

  131、推論

  如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  132、切割線定理

  從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?

  133、推論

  從圓外一點引圓的兩條割線,這一點到每條

  割線與圓的交點的兩條線段長的積相等

  134、如果兩個圓相切,那么切點一定在連心線上

  135、①兩圓外離d>R+r

 、趦蓤A外切d=R+r

  ③兩圓相交R—r<d<R+r(R>r)

 、軆蓤A內(nèi)切d=R—r(R>r)

 、輧蓤A內(nèi)含d<R—r(R>r)

  136、定理

  相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理

  把圓平均分成n(n≥3):

 、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

  ⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138、定理

  任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  139、正n邊形的每個內(nèi)角都等于(n—2)×180°/n

  140、定理

  正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  141、正n邊形的面積Sn=pn*rn/2,p表示正n邊形的周長

  142、正三角形面積√3a^2/4,a表示邊長

  143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4

  144、弧長計算公式:L=n兀R/180——》L=nR

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內(nèi)公切線長=d—(R—r),外公切線長=d—(R+r)

初中數(shù)學(xué)知識點總結(jié)3

  定義

  對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形

  比值與比的概念

  比值是一個具體的數(shù)字如:AB/EF=2

  而比不是一個具體的數(shù)字如:AB/EF=2:1判定方法

  證兩個相似三角形應(yīng)該把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上。如果是文字語言的“△ABC與△DEF相似”,那么就說明這兩個三角形的對應(yīng)頂點可能沒有寫在對應(yīng)的位置上,而如果是符號語言的“△ABC∽△DEF”,那么就說明這兩個三角形的對應(yīng)頂點寫在了對應(yīng)的位置上。

  方法一(預(yù)備定理)

  平行于三角形一邊的直線截其它兩邊所在的直線,截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎(chǔ)。這個引理的證明方法需要平行線與線段成比例的證明)

  方法二

  如果一個三角形的兩個角與另一個三角形的`兩個角對應(yīng)相等,那么這兩個三角形相似。

  方法三

  如果兩個三角形的兩組對應(yīng)邊成比例,并且相應(yīng)的夾角相等,

  那么這兩個三角形相似

  方法四

  如果兩個三角形的三組對應(yīng)邊成比例,那么這兩個三角形相似

  方法五(定義)

  對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形

  三個基本型

  Z型A型反A型

  方法六

  兩個直角三角形中,斜邊與直角邊對應(yīng)成比例,那么兩三角形相似。一定相似的三角形

  1、兩個全等的三角形

  (全等三角形是特殊的相似三角形,相似比為1:1)

  2、兩個等腰三角形

  (兩個等腰三角形,如果其中的任意一個頂角或底角相等,那么這兩個等腰三角形相似。)

  3、兩個等邊三角形

  (兩個等邊三角形,三角都是60度,且邊邊相等,所以相似)

  4、直角三角形中由斜邊的高形成的三個三角形(母子三角形)

  圖形的學(xué)習(xí)需要大家對于知識的詳細(xì)了解和滲透,而不是一帶而過。

初中數(shù)學(xué)知識點總結(jié)4

  ∴當(dāng)x1時函數(shù)取得最大值,且ymax(1)2(1)13例4、已知函數(shù)f(x)x22(a1)x2

  4],求實數(shù)a的取值(1)若函數(shù)f(x)的遞減區(qū)間是(,4]上是減函數(shù),求實數(shù)a的取值范圍(2)若函數(shù)f(x)在區(qū)間(,分析:二次函數(shù)的單調(diào)區(qū)間是由其開口方向及對稱軸決定的,要分清函數(shù)在區(qū)間A上是單調(diào)函數(shù)及單調(diào)區(qū)間是A的區(qū)別與聯(lián)系

  解:(1)f(x)的對稱軸是x可得函數(shù)圖像開口向上

  2(a1)21a,且二次項系數(shù)為1>0

  1a]∴f(x)的單調(diào)減區(qū)間為(,∴依題設(shè)條件可得1a4,解得a3

  4]上是減函數(shù)(2)∵f(x)在區(qū)間(,4]是遞減區(qū)間(,1a]的子區(qū)間∴(,∴1a4,解得a3

  例5、函數(shù)f(x)x2bx2,滿足:f(3x)f(3x)

 。1)求方程f(x)0的兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數(shù)圖像的對稱軸為x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的圖像與x軸交點(x1,0)、(x2,0)關(guān)于對稱軸x3對稱

  x1x223,可得x1x26

  第三章第32頁由二次項系數(shù)為1>0,可知拋物線開口向上又134,132,431

  ∴依二次函數(shù)的對稱性及單調(diào)性可f(4)f(1)f(1)(III)課后作業(yè)練習(xí)六

 。á簦┙虒W(xué)后記:

  第三章第33頁

  擴(kuò)展閱讀:初中數(shù)學(xué)函數(shù)知識點歸納

  學(xué)大教育

  初中數(shù)學(xué)函數(shù)板塊的知識點總結(jié)與歸類學(xué)習(xí)方法

  初中數(shù)學(xué)知識大綱中,函數(shù)知識占了很大的'知識體系比例,學(xué)好了函數(shù),掌握了函數(shù)的基本性質(zhì)及其應(yīng)用,真正精通了函數(shù)的每一個模塊知識,會做每一類函數(shù)題型,就讀于中考中數(shù)學(xué)成功了一大半,數(shù)學(xué)成績自然上高峰,同時,函數(shù)的思想是學(xué)好其他理科類學(xué)科的基礎(chǔ)。初中數(shù)學(xué)從性質(zhì)上分,可以分為:一次函數(shù)、反比例函數(shù)、二次函數(shù)和銳角三角函數(shù),下面介紹各類函數(shù)的定義、基本性質(zhì)、函數(shù)圖象及函數(shù)應(yīng)用思維方式方法。

  一、一次函數(shù)

  1.定義:在定義中應(yīng)注意的問題y=kx+b中,k、b為常數(shù),且k≠0,x的指數(shù)一定為1。2.圖象及其性質(zhì)(1)形狀、直線

初中數(shù)學(xué)知識點總結(jié)5

  首先你要有一個好的態(tài)度,有些人學(xué)習(xí)數(shù)學(xué),可能有的階段會喜歡學(xué)習(xí),但是某一階段,對數(shù)學(xué)就沒有什么興趣了,可能每個人都會有這樣一個階段,但是如果發(fā)現(xiàn)自己不喜歡學(xué)習(xí)數(shù)學(xué)了,一定要克制自己,在學(xué)習(xí)數(shù)學(xué)上,保持一個良好的學(xué)習(xí)態(tài)度,這是你學(xué)好數(shù)學(xué)的第一步。

  充分的利用好上課的時間,上課時間你所掌握的知識,會比你在課下學(xué)很長時間都有用,所以珍惜課堂老師所講的內(nèi)容,老師的某些話對我們以后做數(shù)學(xué)題都很有幫助,如果你上課走神,這些話沒有聽到,你在做題的時候,可能會走很多彎路,做題的效率也會降低,一旦有這樣的情況,可能你就會不喜歡數(shù)學(xué)了。

  學(xué)習(xí)最重要的`是思考,會思考數(shù)學(xué)才能學(xué)好,數(shù)學(xué)中的題都是需要我們?nèi)ヅe一反三的,沒做一道題,都要思考一下,圍繞著這道題的知識點,還會有什么樣的題型出現(xiàn),哪怕是遇到不會的題,也要勤加的思考,如果你把知識點自認(rèn)為學(xué)習(xí)透徹,那么就用做題檢驗吧,數(shù)學(xué)中多做題是必須的,成績都是用題堆積出來的,很少會有人不做題數(shù)學(xué)成績很高的。

初中數(shù)學(xué)知識點總結(jié)6

  初中數(shù)學(xué)的學(xué)科地位很高,一直以來是三大學(xué)科之一,影響著物理化學(xué)的學(xué)習(xí)。

  圓心角

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

  推理過程

  根據(jù)旋轉(zhuǎn)的性質(zhì),將∠aob繞圓心o旋轉(zhuǎn)到∠a'ob'的位置時,顯然∠aob=∠a'ob',射線oa與oa'重合,ob與ob'重合,而同圓的半徑相等,oa=oa',ob=ob',從而點a與a'重合,b與b'重合。

  因此,弧ab與弧a'b'重合,ab與a'b'重合。即

  弧ab=弧a'b',ab=a'b'。

  則得到上面定理。

  同樣還可以得到:

  在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。

  在同圓或等圓中,如果兩條弦相等,那么他們所對的`圓心角相等,所對的弧相等,所對的弦心距也相等。

  所以,在同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,它們所對應(yīng)的其余各組量也相等。

  圓的圓心角知識要領(lǐng)很容易掌握,經(jīng)常會出現(xiàn)在關(guān)于圓的證明題中。

初中數(shù)學(xué)知識點總結(jié)7

  初中數(shù)學(xué)總復(fù)習(xí),是對初中三年來所學(xué)數(shù)學(xué)知識的回顧,鞏固提高,查漏補(bǔ)缺,它不是對知識的簡單重復(fù),而是引導(dǎo)學(xué)生對所學(xué)知識進(jìn)行系統(tǒng)歸納和升華,并用已學(xué)的知識解決新問題。進(jìn)一步加深對數(shù)學(xué)概念的理解,弄清各部分知識的內(nèi)在聯(lián)系,熟練掌握重要的數(shù)學(xué)方法和數(shù)學(xué)思想,從而達(dá)到開發(fā)智力、培養(yǎng)能力的目的因此,初中數(shù)學(xué)總復(fù)習(xí)是非常重要的,復(fù)習(xí)的好壞將決定學(xué)生成績的好壞、決定學(xué)生掌握知識的牢固程度。一直以來,如何有效提高復(fù)習(xí)效率,是廣大教師多年來探求的重要課題之一。筆者從1999年以來,一直擔(dān)任初中數(shù)學(xué)的教學(xué)任務(wù),所教班級的數(shù)學(xué)中考考試成績一直名列前茅。下面筆者根據(jù)對初中數(shù)學(xué)總復(fù)習(xí)的實踐,總結(jié)出的一套較為實用的復(fù)習(xí)方法。

  一、復(fù)習(xí)基礎(chǔ)知識階段

  在初中數(shù)學(xué)復(fù)習(xí)中,第一階段要緊扣課本,疏理教材,使學(xué)生在頭腦中形成一個關(guān)于初中數(shù)學(xué)知識的前后相連、縱橫交錯、融會貫通的知識結(jié)構(gòu)。在第一階段中,一般按初中數(shù)學(xué)知識體系把初中數(shù)學(xué)知識分成九個單元,即:“數(shù)與式”“方程和不等式(組)”“函數(shù)及其圖像”“統(tǒng)計與概率”“圖形初步認(rèn)識和三角形”“四邊形”“相似和解直角三角形”“圓”“圖形的變換、投影與視圖”。按單元進(jìn)行復(fù)習(xí)。每個單元按下面步驟進(jìn)行。

  1、疏理知識結(jié)構(gòu)

  首先,引導(dǎo)學(xué)生把本單元的知識用文字、圖表等方式編織知識網(wǎng)絡(luò),用簡表式的結(jié)構(gòu)表示本單元的知識結(jié)構(gòu);其次,引導(dǎo)學(xué)生回顧基礎(chǔ)知識;最后,以基本習(xí)題的形式再現(xiàn)知識的內(nèi)容,即通過一些判斷題、填空題、選擇題、簡單計算題的'訓(xùn)練達(dá)到鞏固基礎(chǔ)知識的目的

  2、訓(xùn)練基本技能和解題技巧

  在理順知識結(jié)構(gòu)的基礎(chǔ)上,把每個單元按知識點分成若干課時,然后按知識點精選例題和練習(xí)題,引導(dǎo)學(xué)生進(jìn)行多方練習(xí),多角度思考,正反求解,促進(jìn)學(xué)生掌握基礎(chǔ)知識和解題技巧。

  精選的例題和練習(xí)題最好從課本上尋找,因為中考的命題原則是:“源于教材,高于教材!彼x例題、練習(xí)題力求典型,緊扣教材。另外,也可從近幾年中考試題中改編新穎的題目進(jìn)行訓(xùn)練。

  每課時的教學(xué)可按“理順知識――嘗試做例題――講解例題――練習(xí)――變式練習(xí)――作業(yè)”幾個步驟進(jìn)行。在“理解知識”階段力求簡單明了地揭示本節(jié)課所要復(fù)習(xí)的知識點,領(lǐng)會概念、定理、公理和數(shù)學(xué)思想方法。講解的例題或作業(yè)一般可選擇一部分題進(jìn)行“一題多變”“一題多解”的題目。在分析、講解例題時切不可就題論題,應(yīng)注意揭示例題中所反映出的概念、原理和思想方法及解題技巧。

  3、單元測試

  在上述復(fù)習(xí)的基礎(chǔ)上,復(fù)習(xí)完每一個單元后,必須出示至少4份試卷。第一份試卷,以引導(dǎo)學(xué)生系統(tǒng)地梳理教材、構(gòu)建知識結(jié)構(gòu),歸納和總結(jié)各種概念、公理、定理、公式為主。第二份試卷,以歸納、總結(jié)本單元的常用結(jié)論、解題方法、一題多解、一題多變?yōu)橹。對學(xué)生進(jìn)行測試,以了解學(xué)生掌握知識的情況,及時查漏補(bǔ)缺。

  測試題應(yīng)以教學(xué)大綱、考標(biāo)、教材為依據(jù),要求內(nèi)容覆蓋面廣,題目搭配合理、難易適中、題型俱全,富有啟發(fā)性。通過測試,全面衡量復(fù)習(xí)效果,一般來說,測試題可從以下幾個方面精選題目:(1)全面體現(xiàn)本單元的基礎(chǔ)知識的填空題和選擇題;(2)本單元所反映出的基本技能和技巧的解答題;(3)綜合運用本單元知識的綜合題。

  上面三方面試題的比例為6∶3∶1測試完后,教師進(jìn)行講評,對學(xué)生未弄懂的知識點及時進(jìn)行補(bǔ)救。

  二、綜合訓(xùn)練,加強(qiáng)重點知識階段

  在完成第一階段的基礎(chǔ)上,根據(jù)初中數(shù)學(xué)知識的重點,選擇一些較為典型的綜合題,引導(dǎo)學(xué)生合作探索和研究,以培養(yǎng)學(xué)生綜合運用知識來分析問題和解決問題的能力。選擇的題目一般從本市及全省近5年的中考試題中去精選。

  綜合題,一般來說有代數(shù)綜合題、幾何綜合題、代數(shù)和幾何相結(jié)合的綜合題。代數(shù)綜合題的重點應(yīng)是二次方程和二次函數(shù);幾何綜合題的重點是三角形、四邊形和圖;代數(shù)與幾何相結(jié)合的綜合題則是方程、函數(shù)與圖像相結(jié)合的題。

  對于綜合題的訓(xùn)練,一般采用“嘗試練習(xí)――分析――講解――歸納解題方法與技巧――練習(xí)”的方式進(jìn)行。對重點問題進(jìn)行一題多解、一題多變的訓(xùn)練。

  三、綜合測試,查漏補(bǔ)缺階段

  為了進(jìn)一步鞏固數(shù)學(xué)知識,全面考查復(fù)習(xí)效果,提高學(xué)生的心理素質(zhì),在第二階段復(fù)習(xí)結(jié)束時,可進(jìn)行模擬測試。測試題一般自擬幾套和選擇其他省市上屆中考題和本省往屆的中考題,模擬試題,力求全面再現(xiàn)初中數(shù)學(xué)知識和方法,既要有考查雙基的基礎(chǔ)題,又要有考查學(xué)生能力的綜合題。有的知識還要與高中知識銜接并拓展。

  考完一套,及時講評,與學(xué)生一起分析,共同探討,列出知識清單使得每個學(xué)生經(jīng)歷知識收集、整理的過程,把書學(xué)“薄”,有效地回顧了一章書所學(xué)的知識。

初中數(shù)學(xué)知識點總結(jié)8

  1.有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);

  (2)有理數(shù)的分類:① ②

  2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。

  3.相反數(shù):

  (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

  (2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。

  4.絕對值:

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

  (2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

  5.有理數(shù)比大。

  (1)正數(shù)的絕對值越大,這個數(shù)越大;

  (2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;

  (3)正數(shù)大于一切負(fù)數(shù);

  (4)兩個負(fù)數(shù)比大小,絕對值大的反而小;

  (5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

  (6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。

  6.互為倒數(shù):

  乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1,a、b互為倒數(shù);若ab=—1,a、b互為負(fù)倒數(shù)。

  7.有理數(shù)加法法則:

  (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  (2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數(shù)與0相加,仍得這個數(shù)。

  8.有理數(shù)加法的運算律:

  (1)加法的交換律:a+b=b+a;

  (2)加法的結(jié)合律:(a+b)+c=a+(b+c)。

  9.有理數(shù)減法法則:

  減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)。

  10.有理數(shù)乘法法則:

  (1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;

  (2)任何數(shù)同零相乘都得零;

  (3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定。

  11.有理數(shù)乘法的運算律:

  (1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac 。

  12.有理數(shù)除法法則:

  除以一個數(shù)等于乘以這個數(shù)的'倒數(shù);注意:零不能做除數(shù)。

  13.有理數(shù)乘方的法則:

  (1)正數(shù)的任何次冪都是正數(shù);

  (2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時:(—a)n=—an或(a —b)n=—(b—a)n,當(dāng)n為正偶數(shù)時:(—a)n =an或(a—b)n=(b—a)n 。

  14.乘方的定義:

  (1)求相同因式積的運算,叫做乘方;

  (2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

  15.科學(xué)記數(shù)法:

  把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。

  16.近似數(shù)的精確位:

  一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。

  17.有效數(shù)字:

  從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。

  18.混合運算法則:

  先乘方,后乘除,最后加減。

  本章內(nèi)容要求學(xué)生正確認(rèn)識有理數(shù)的概念,在實際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對值的意義所在。重點利用有理數(shù)的運算法則解決實際問題。

  體驗數(shù)學(xué)發(fā)展的一個重要原因是生活實際的需要。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實際問題的能力。教師在講授本章內(nèi)容時,應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。

  有關(guān)初中數(shù)學(xué)知識點

  一、圓

  1、圓的有關(guān)性質(zhì)

  在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。

  由圓的意義可知:

  圓上各點到定點(圓心O)的距離等于定長的點都在圓上。

  就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結(jié)圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。

  圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個圓叫同心圓。

  能夠重合的兩個圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過三點的圓

  1、過三點的圓

  過三點的'圓的作法:利用中垂線找圓心

  定理不在同一直線上的三個點確定一個圓。

  經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內(nèi)接三角形。

  2、反證法

  反證法的三個步驟:

  ①假設(shè)命題的結(jié)論不成立;

 、趶倪@個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;

 、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。

  例如:求證三角形中最多只有一個角是鈍角。

  證明:設(shè)有兩個以上是鈍角

  則兩個鈍角之和>180°

  與三角形內(nèi)角和等于180°矛盾。

  ∴不可能有二個以上是鈍角。

  即最多只能有一個是鈍角。

  三、垂直于弦的直徑

  圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

  弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

  平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關(guān)系

  圓是以圓心為對稱中心的中心對稱圖形。

  實際上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。

  頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

  推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。

  五、圓周角

  頂點在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

  為什么要學(xué)習(xí)數(shù)學(xué)

  作為一門普及度極廣的學(xué)科,數(shù)學(xué)在人類文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會對數(shù)學(xué)產(chǎn)生排斥,認(rèn)為它枯燥無味,但事實上,數(shù)學(xué)是所有學(xué)科的基石之一,對我們?nèi)粘I钜约拔磥淼穆殬I(yè)發(fā)展有著重大影響。下面我將詳細(xì)闡述學(xué)習(xí)數(shù)學(xué)的重要性。

  首先,數(shù)學(xué)可以幫助我們提高邏輯思維能力。數(shù)學(xué)的學(xué)科性質(zhì)使我們在學(xué)習(xí)的過程中時時刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機(jī)會。通過長期的學(xué)習(xí)和練習(xí),我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復(fù)雜問題時更能得心應(yīng)手。

  其次,數(shù)學(xué)在現(xiàn)代科技中起著至關(guān)重要的作用。在計算機(jī)科學(xué)、物理學(xué)、經(jīng)濟(jì)學(xué)、工程學(xué)等領(lǐng)域,數(shù)學(xué)可以幫助我們建立模型、分析數(shù)據(jù)、預(yù)測趨勢,并且可以在實際應(yīng)用中優(yōu)化和改進(jìn)。例如,在人工智能領(lǐng)域,深度學(xué)習(xí)技術(shù)所涉及的數(shù)學(xué)概念包括線性代數(shù)、微積分和概率論等,如果沒有深厚的數(shù)學(xué)基礎(chǔ),很難理解和應(yīng)用這些技術(shù)。同時,在工程學(xué)領(lǐng)域,許多機(jī)械、電子、化工等產(chǎn)品的設(shè)計和制造過程,也需要運用到數(shù)學(xué)知識,因此學(xué)習(xí)數(shù)學(xué)可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。

  除此之外,數(shù)學(xué)也是一種普遍使用的語言,許多學(xué)科和領(lǐng)域都使用數(shù)學(xué)語言進(jìn)行表達(dá)和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數(shù)學(xué)語言來描述自然世界的規(guī)律和現(xiàn)象。在社會科學(xué)和商科領(lǐng)域,經(jīng)濟(jì)學(xué)和金融學(xué)運用的數(shù)學(xué)概念,如微積分、線性代數(shù)和統(tǒng)計學(xué)等,使得我們能夠更好地理解經(jīng)濟(jì)和財務(wù)數(shù)據(jù),并進(jìn)行決策。因此,學(xué)習(xí)數(shù)學(xué)可以讓我們更好地理解、溝通和交流各個領(lǐng)域的知識。

  最后,學(xué)習(xí)數(shù)學(xué)也可以為我們的職業(yè)發(fā)展帶來廣泛的機(jī)遇和發(fā)展空間。在許多領(lǐng)域,數(shù)學(xué)專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機(jī)會,如金融界、數(shù)據(jù)科學(xué)、研究機(jī)構(gòu)、教育等。數(shù)學(xué)專業(yè)的人才,不只會提供理論支持,同時也能夠解決現(xiàn)實中具體的問題,使其在各自領(lǐng)域脫穎而出。

  怎樣快速提高數(shù)學(xué)成績?

  一、查缺補(bǔ)漏,主攻薄弱

  請制作“失分分析表”,包括“不會做的”和“不該丟分的”兩部分,分析模擬考試等試卷失分情況,在緊跟老師復(fù)習(xí)的基礎(chǔ)上,針對自己的薄弱環(huán)節(jié)重點彌補(bǔ)、改進(jìn)。

  別一味沖刺難題。做題是對理論知識的進(jìn)一步鞏固與實檢,我們要在理解的基礎(chǔ)上加強(qiáng)練習(xí),以達(dá)到鞏固的目的,但不能一味追求難題偏題。

  因為中考試卷中有30%是比較靈活的題型,只有10%是真正的難題。30%那部分題目是我們能拿但容易失分的題目,我們要做到盡量多拿分,但如果我們一味求難求險,就會因為忽視基礎(chǔ)題型的夯實和鞏固而失掉這部分該得的分。在基礎(chǔ)掌握后,有條件的同學(xué)可再進(jìn)行一些難題怪題的攻關(guān),這樣的策略才更能保證效率。

  二、反思錯題

  不要盲目找題做,陷入題海中,不要“就題論題”停留在“這題我會了”的低水平上。解題能力是在反思中提升的。懂、會、悟是數(shù)學(xué)水平的三個層次。簡單說,聽懂了,但不一定會,更不意味著真正領(lǐng)悟了。

  三、克服無謂失分

  如何避免審題出錯?

  原因:看太快。

  應(yīng)對策略:

  1.默讀法;2.重點字詞圈點勾畫法;3.審圖法。

  如何降低計算失誤?

  表面原因是粗心,其實是計算能力不足。平時對計算不以為然,認(rèn)為“沒有技術(shù)含量”。事實上計算也有很多“聰明算法”,如:邊化簡邊計算、寧加勿減、寧乘勿除、小數(shù)化分?jǐn)?shù)、找最小最短的設(shè)元、放縮法、湊整法、圖象法等等計算技巧。

  應(yīng)對策略:

  1.不要為了趕時間而跳步計算;

  2.寧可筆算,少用口算,更不要再抱著計算器;

  3.對平時易算錯的題型,可以驗算一遍。

  四、關(guān)注幾個重點問題

  1.新定義題型、非常規(guī)題型、存在性問題。

  2.分析法—執(zhí)果索因,逆向思維,倒過來想,假設(shè)存在;不完全歸納法—根據(jù)例子,大膽猜想、努力驗證。反例排除法、特殊圖形(特殊位置、極端值)探究法等。

  提高數(shù)學(xué)成績常用方法有哪些

  1、預(yù)習(xí)

  預(yù)期常常由于 “沒時間,看不懂,不必要”等等原因被忽略。實際上預(yù)習(xí)是學(xué)習(xí)的必要過程,更是提高自學(xué)能力的好方法。

  2、學(xué)會聽課

  聽分析、聽思路、聽?wèi)?yīng)用,關(guān)鍵內(nèi)容一字不漏,注意記錄。

  3、做好錯題本

  每個會學(xué)習(xí)的學(xué)生都會有錯題本。調(diào)查發(fā)現(xiàn)那些沒有錯題本,或者是只做不用的同學(xué),學(xué)習(xí)效果都不好。

  4、用好課外書

  正確認(rèn)識網(wǎng)絡(luò)課程和課外書籍,是副食,是幫助吸收的良藥。

  5、注重數(shù)學(xué)思維方法的培養(yǎng)

  要注意數(shù)學(xué)思想和方法的指導(dǎo),站得高,才能看得遠(yuǎn)。

初中數(shù)學(xué)知識點總結(jié)9

  初中數(shù)學(xué)知識點總結(jié):中位線

  知識要點:梯形的中位線平行于兩底,并且等于兩底和的一半。

  1.中位線概念

  (1)三角形中位線定義:連接三角形兩邊中點的線段叫做三角形的中位線。

  (2)梯形中位線定義:連結(jié)梯形兩腰中點的線段叫做梯形的中位線。

  注意:

  (1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連結(jié)一頂點和它對邊的中點,而三角形中位線是連結(jié)三角形兩邊中點的線段。

  (2)梯形的中位線是連結(jié)兩腰中點的線段而不是連結(jié)兩底中點的線段。

  (3)兩個中位線定義間的聯(lián)系:可以把三角形看成是上底為零時的梯形,這時梯形的中位線就變成三角形的中位線。

  2.中位線定理

  (1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.

  三角形兩邊中點的連線(中位線)平行于第BC邊,且等于第三邊的一半。

  知識要領(lǐng)總結(jié):三角形的中位線所構(gòu)成的小三角形(中點三角形)面積是原三角形面積的四分之一。

  初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系

  下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的'掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成

  對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。

  通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)

  下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。

  一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。

  希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

  初中數(shù)學(xué)知識點:因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。

  初中數(shù)學(xué)知識點:因式分解

  下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

  因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

 、俅_定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

 、诓粶(zhǔn)丟常數(shù)項注意查項數(shù)

  ③雙重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項式多項式順序排列

 、菹嗤蚴綄懗蓛绲男问

  ⑥首項負(fù)號放括號外

 、呃ㄌ杻(nèi)同類項合并。

  通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

初中數(shù)學(xué)知識點總結(jié)10

  1有理數(shù)加法法則

  1、同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  2、異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  3、一個數(shù)與0相加,仍得這個數(shù)。

  2有理數(shù)加法的運算律

  1、加法的交換律:a+b=b+a;

  2、加法的結(jié)合律:(a+b)+c=a+(b+c)

  3有理數(shù)減法法則

  減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)

  4有理數(shù)乘法法則

  1、兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;

  2、任何數(shù)同零相乘都得零;

  3、幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定。

  5有理數(shù)乘法的運算律

  1、乘法的交換律:ab=ba;

  2、乘法的結(jié)合律:(ab)c=a(bc);

  3、乘法的分配律:a(b+c)=ab+ac

  6單項式

  只含有數(shù)字與字母的積的代數(shù)式叫做單項式。

  注意:單項式是由系數(shù)、字母、字母的指數(shù)構(gòu)成的。

  7多項式

  1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的`次數(shù),叫做這個多項式的次數(shù)。

  2、同類項所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。

  8中心對稱

  1、定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心。這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點。

  2、心對稱的兩條基本性質(zhì):

 。1)關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。

 。2)關(guān)于中心對稱的兩個圖形是全等圖形。

  3、中心對稱圖形

  把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

初中數(shù)學(xué)知識點總結(jié)11

  初中數(shù)學(xué)知識點總結(jié)及解法

  基本知識

  數(shù)與代數(shù)A、數(shù)與式:

  1、有理數(shù)

  有理數(shù):

 、僬麛(shù)正整數(shù)/0/負(fù)整數(shù)

  ②分?jǐn)?shù)正分?jǐn)?shù)/負(fù)分?jǐn)?shù)

  數(shù)軸:

 、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。

  ②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。

 、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。

 、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

  絕對值:

 、僭跀(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。

 、谡龜(shù)的絕對值是他的本身、負(fù)數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負(fù)數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:

  加法:

  ①同號相加,取相同的符號,把絕對值相加。

  ②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:

  ①兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。

 、谌魏螖(shù)與0相乘得0。

 、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。

  除法:

 、俪砸粋數(shù)等于乘以一個數(shù)的倒數(shù)。

 、0不能作除數(shù)。

  乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:

  ①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。

 、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。

 、垡粋正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。

 、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:

 、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。

  ②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

 、矍笠粋數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):

 、賹崝(shù)分有理數(shù)和無理數(shù)。

 、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。

 、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。

  3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:

 、贁(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

 、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

 、垡粋多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:

 、 同底數(shù)冪相乘:a^ma^n=a^(m+n)

 、 冪的乘方:(a^m)n=a^mn

 、 積的乘方:(ab)^m=a^mb^m

 、 同底數(shù)冪相除:a^ma^n=a^(m-n) (a0)

  這些公式也可以這樣用:⑤a^(m+n)= a^ma^n

 、轪^mn=(a^m)n

 、遖^mb^m=(ab)^m

  ⑧ a^(m-n)= a^ma^n (a0)

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

  ②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

  ③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:

 、賳雾検较喑,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

 、诙囗検匠詥雾検剑劝堰@個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:

 、偻帜阜质较嗉訙p,分母不變,把分子相加減。

 、诋惙帜傅姆质较韧ǚ郑癁橥帜傅姆质,再加減。

  分式方程:

 、俜帜钢泻形粗獢(shù)的方程叫分式方程。

  ②使方程的分母為0的解稱為原方程的增根。

  方程與不等式

  1、方程與方程組

  一元一次方程:

 、僭谝粋方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。

  二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的'項的次數(shù)都是1的方程叫做二元一次方程。

  二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

  適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。

  二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

  解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程

  1、一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對它也有很深的了解,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當(dāng)Y的0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了。

  2、一元二次方程的解法

  大家知道,二次函數(shù)有頂點式(,),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解。

  (1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解。

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解。

  (3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+[b2-4ac)]}/2a,X2={-b-[b2-4ac)]}/2a

  3、解一元二次方程的步驟:

  (1)配方法的步驟:

  先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式。

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式。

  (3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c。

  4、韋達(dá)定理

  利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=,二根之積=

  也可以表示為x1+x2=,x1x2=。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用。

  5、一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為△,讀作diao ta,而△=b2-4ac,這里可以分為3種情況:

  I當(dāng)△0時,一元二次方程有2個不相等的實數(shù)根;

  II當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根;

  III當(dāng)△0時,一元二次方程沒有實數(shù)根(在這里,學(xué)到高中就會知道,這里有2個虛數(shù)根)。

  2、不等式與不等式組

  不等式:

 、儆梅枴,=,〈號連接的式子叫不等式。

 、诓坏仁降膬蛇叾技由匣驕p去同一個整式,不等號的方向不變。

  ③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。

  ④不等式的兩邊都乘以或除以同一個負(fù)數(shù),不等號方向相反。

  不等式的解集:

  ①能使不等式成立的未知數(shù)的值,叫做不等式的解。

 、谝粋含有未知數(shù)的不等式的所有解,組成這個不等式的解集。

 、矍蟛坏仁浇饧倪^程叫做解不等式。

  一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。

  一元一次不等式組:

  ①關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

 、谝辉淮尾坏仁浇M中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

 、矍蟛坏仁浇M解集的過程,叫做解不等式組。

  一元一次不等式的符號方向:

  在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。

  在不等式中,如果加上同一個數(shù)(或加上一個正數(shù)),不等式符號不改向;例如:AB,A+CB+C

  在不等式中,如果減去同一個數(shù)(或加上一個負(fù)數(shù)),不等式符號不改向;例如:AB,A-CB-C

  在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:AB,A*CB*C(C0)

  在不等式中,如果乘以同一個負(fù)數(shù),不等號改向;例如:AB,A*C

  如果不等式乘以0,那么不等號改為等號

  所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。

  函數(shù)

  變量:因變量,自變量。

  在用圖象表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

  一次函數(shù):

 、偃魞蓚變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

 、诋(dāng)B=0時,稱Y是X的正比例函數(shù)。

  一次函數(shù)的圖象:①把一個函數(shù)的自變量X與對應(yīng)的因變量Y的值分別作為點的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過原點的一條直線。③在一次函數(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時,則經(jīng)124象限;當(dāng)K〉0,B〈0時,則經(jīng)134象限;當(dāng)K〉0,B〉0時,則經(jīng)123象限。④當(dāng)K〉0時,Y的值隨X值的增大而增大,當(dāng)X〈0時,Y的值隨X值的增大而減少。

  空間與圖形

  圖形的認(rèn)識

  1、點,線,面

  點,線,面:

 、賵D形是由點,線,面構(gòu)成的。

 、诿媾c面相交得線,線與線相交得點。

 、埸c動成線,線動成面,面動成體。

  展開與折疊:

 、僭诶庵,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。

 、贜棱柱就是底面圖形有N條邊的棱柱。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  弧、扇形:

 、儆梢粭l弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個扇形。

  角

  線:

 、倬段有兩個端點。

 、趯⒕段向一個方向無限延長就形成了射線。射線只有一個端點。

  ③將線段的兩端無限延長就形成了直線。直線沒有端點。

 、芙(jīng)過兩點有且只有一條直線。

  比較長短:

 、賰牲c之間的所有連線中,線段最短。

  ②兩點之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:

 、俳怯蓛蓷l具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

  ②一度的1/60是一分,一分的1/60是一秒。

  角的比較:

 、俳且部梢钥闯墒怯梢粭l射線繞著他的端點旋轉(zhuǎn)而成的。

 、谝粭l射線繞著他的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時,所成的角叫做周角。

  ③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:

  ①同一平面內(nèi),不相交的兩條直線叫做平行線。

 、诮(jīng)過直線外一點,有且只有一條直線與這條直線平行。

 、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:

  ①如果兩條直線相交成直角,那么這兩條直線互相垂直。

  ②互相垂直的兩條直線的交點叫做垂足。

  ③平面內(nèi),過一點有且只有一條直線與已知直線垂直。

  垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;

  判定定理:到線段2端點距離相等的點在這線段的垂直平分線上

  角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

  性質(zhì)定理:角平分線上的點到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點在該角的角平分線上

  正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

  判定:

  1、對角線相等的菱形

  2、鄰邊相等的矩形

  基本方法

  1、配方法

  所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

  2、因式分解法

  因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。

  3、換元法

  換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

  4、判別式法與韋達(dá)定理

  一元二次方程ax2+bx+c=0(a、b、c屬于R,a0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。

  韋達(dá)定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等

  5、待定系數(shù)法

  在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6、構(gòu)造法

  在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。

  7、反證法

  反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。

  反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個、一個也沒有;至少有n個、至多有(n一1)個;至多有一個、至少有兩個;唯一、至少有兩個。

  歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

  8、面積法

  平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

  用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。

  9、幾何變換法

  在數(shù)學(xué)問題的研究中,常常運用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個**的任一元素到同一**的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識。

  幾何變換包括:

  (1)平移;

  (2)旋轉(zhuǎn);

  (3)對稱。

  10、客觀性題的解題方法

  選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

  填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識復(fù)蓋面廣,評卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。

  要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。

  (1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進(jìn)行推理或運算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。

  (2)驗證法:由題設(shè)找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當(dāng)遇到定量命題時,常用此法。

  (3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。

  (4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學(xué)知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。

  (5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

  (6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,為分析法。

初中數(shù)學(xué)知識點總結(jié)12

  一、關(guān)于初高中數(shù)學(xué)成績分化原因的分析

  1、環(huán)境與心理的變化。

  對高一新生來講,環(huán)境可以說是全新的,新教材、新同學(xué)、新教師、新集體……學(xué)生有一個由陌生到熟悉的適應(yīng)過程。另外,經(jīng)過緊張的中考復(fù)習(xí),考取了自己理想的高中,必有些學(xué)生產(chǎn)生“松口氣”想法,入學(xué)后無緊迫感。也有些學(xué)生有畏懼心理,他們在入學(xué)前,就耳聞高中數(shù)學(xué)很難學(xué),高中數(shù)學(xué)課一開始也確是些難理解的抽象概念,如映射、集合、異面直線等,使他們從開始就處于怵頭無趣的被動局面。以上這些因素都嚴(yán)重影響高一新生的學(xué)習(xí)質(zhì)量。

  2、教材的變化。

  首先,初中數(shù)學(xué)教材內(nèi)容通俗具體,多為常量,題型少而簡單;而高中數(shù)學(xué)內(nèi)容抽象,多研究變量、字母,不僅注重計算,而且還注重理論分析,這與初中相比增加了難度。

  其次,由于近幾年教材內(nèi)容的調(diào)整,雖然初高中教材都降低了難度,但相比之下,初中降低的幅度大,而高中由于受高考的限制,教師都不敢降低難度,造成了高中數(shù)學(xué)實際難度沒有降低。因此,從一定意義上講,調(diào)整后的教材不僅沒有縮小初高中教材內(nèi)容的難度差距,反而加大了。

  3、課時的變化。

  在初中,由于內(nèi)容少,題型簡單,課時較充足。因此,課容量小,進(jìn)度慢,對重難點內(nèi)容均有充足時間反復(fù)強(qiáng)調(diào),對各類習(xí)題的解法,教師有時間進(jìn)行舉例示范,學(xué)生也有足夠時間進(jìn)行鞏固。而到高中,由于知識點增多,靈活性加大和新工時制實行,使課時減少,課容量增大,進(jìn)度加快,對重難點內(nèi)容沒有更多的時間強(qiáng)調(diào),對各類型題也不可能講全講細(xì)和鞏固強(qiáng)化。這也使高一新生開始不適應(yīng)高中學(xué)習(xí)而影響成績的提高。

  4、學(xué)法的變化。

  在初中,教師講得細(xì),類型歸納得全,練得熟,考試時,學(xué)生只要記準(zhǔn)概念、公式及教師所講例題類型,一般均可對號入座取得好成績。因此,學(xué)生習(xí)慣于圍著教師轉(zhuǎn),不注重獨立思考和對規(guī)律的歸納總結(jié)。到高中,由于內(nèi)容多時間少,教師不可能把知識應(yīng)用形式和題型講全講細(xì),只能選講一些具有典型性的題目,以落實“三基”培養(yǎng)能力。因此,高中數(shù)學(xué)學(xué)習(xí)要求學(xué)生要勤于思考,善于歸納總結(jié)規(guī)律,掌握數(shù)學(xué)思想方法,做到舉一反三,觸類旁通。然而,剛?cè)雽W(xué)的高一新生,往往繼續(xù)沿用初中學(xué)法,致使學(xué)習(xí)困難較多,完成當(dāng)天作業(yè)都很困難,更沒有預(yù)習(xí)、復(fù)習(xí)及總結(jié)等自我消化自我調(diào)整的時間。這顯然不利于良好學(xué)法的形成和學(xué)習(xí)質(zhì)量的提高。

  二、搞好初高中銜接所采取的主要措施

  1、做好準(zhǔn)備工作,為搞好銜接打好基礎(chǔ)。

 、俑愫萌雽W(xué)教育。這是搞好銜接的基礎(chǔ)工作,也是首要工作。通過入學(xué)教育提高學(xué)生對初高中銜接重要性的認(rèn)識,增強(qiáng)緊迫感,消除松懈情緒,初步了解高中數(shù)學(xué)學(xué)習(xí)的特點,為其它措施的落實奠定基礎(chǔ)這里主要做好四項工作:一是給學(xué)生講清高一數(shù)學(xué)在整個中學(xué)數(shù)學(xué)中所占的位置和作用;二是結(jié)合實例,采取與初中對比的方法,給學(xué)生講清高中數(shù)學(xué)內(nèi)容體系特點和課堂教學(xué)特點;三是結(jié)合實例給學(xué)生講明初高中數(shù)學(xué)在學(xué)法上存在的本質(zhì)區(qū)別,并向?qū)W生介紹一些優(yōu)秀學(xué)法,指出注意事項;四是請高年級學(xué)生談體會講感受,引導(dǎo)學(xué)生少走彎路,盡快適應(yīng)高中學(xué)習(xí)。

 、诿宓讛(shù),規(guī)劃教學(xué)。

  為了搞好初高中銜接,教師首先要摸清學(xué)生的學(xué)習(xí)基礎(chǔ),然后以此來規(guī)劃自己的教學(xué)和落實教學(xué)要求,以提高教學(xué)的針對性。在教學(xué)實際中,我們一方面通過進(jìn)行摸底測試和對入學(xué)成績的分析,了解學(xué)生的基礎(chǔ);另一方面,認(rèn)真學(xué)習(xí)和比較初高中教學(xué)大綱和教材,以全面了解初高中數(shù)學(xué)知識體系,找出初高中知識的銜接點、區(qū)別點和需要鋪路搭橋的知識點,以使備課和講課更符合學(xué)生實際,更具有針對性。

  2、優(yōu)化課堂教學(xué)環(huán)節(jié),搞好初高中銜接。

 、倭⒆阌诖缶V和教材,尊重學(xué)生實際,實行層次教學(xué)。高一數(shù)學(xué)中有許多難理解和掌握的知識點,如集合、映射等,對高一新生來講確實困難較大。因此,在教學(xué)中,應(yīng)從高一學(xué)生實際出發(fā),采勸低起點、小梯度、多訓(xùn)練、分層次”的方法,將教學(xué)目標(biāo)分解成若干遞進(jìn)層次逐層落實。在速度上,放慢起始進(jìn)度,逐步加快教學(xué)節(jié)奏。在知識導(dǎo)入上,多由實例和已知引入。在知識落實上,先落實“死”課本,后變通延伸用活課本。在難點知識講解上,從學(xué)生理解和掌握的實際出發(fā),對教材作必要層次處理和知識鋪墊,并對知識的理解要點和應(yīng)用注意點作必要總結(jié)及舉例說明。

 、谥匾曅屡f知識的聯(lián)系與區(qū)別,建立知識網(wǎng)絡(luò)。初高中數(shù)學(xué)有很多銜接知識點,如函數(shù)概念、平面幾何與立體幾何相關(guān)知識等,到高中,它們有的加深了,有的研究范圍擴(kuò)大了,有些在初中成立的結(jié)論到高中可能不成立。因此,在講授新知識時,我們有意引導(dǎo)學(xué)生聯(lián)系舊知識,復(fù)習(xí)和區(qū)別舊知識,特別注重對那些易錯易混的知識加以分析、比較和區(qū)別。這樣可達(dá)到溫故知新、溫故而探新的效果。

 、壑匾曊故局R的'形成過程和方法探索過程,培養(yǎng)學(xué)生創(chuàng)造能力。高中數(shù)學(xué)較初中抽象性強(qiáng),應(yīng)用靈活,這就要求學(xué)生對知識理解要透,應(yīng)用要活,不能只停留在對知識結(jié)論的死記硬套上,這就要求教師應(yīng)向?qū)W生展示新知識和新解法的產(chǎn)生背景、形成和探索過程,不僅使學(xué)生掌握知識和方法的本質(zhì),提高應(yīng)用的靈活性,而且還使學(xué)生學(xué)會如何質(zhì)疑和解疑的思想方法,促進(jìn)創(chuàng)造性思維能力的提高。

 、苤匾暸囵B(yǎng)學(xué)生自我反思自我總結(jié)的良好習(xí)慣,提高學(xué)習(xí)的自覺性。高中數(shù)學(xué)概括性強(qiáng),題目靈活多變,只靠課上聽懂是不夠的,需要課后進(jìn)行認(rèn)真消化,認(rèn)真總結(jié)歸納。這就要求學(xué)生應(yīng)具備善于自我反思和自我總結(jié)的能力。為此,我們在教學(xué)中,抓住時機(jī)積極培養(yǎng)。在單元結(jié)束時,幫助學(xué)生進(jìn)行自我章節(jié)小結(jié),在解題后,積極引導(dǎo)學(xué)生反思:思解題思路和步驟,思一題多解和一題多變,思解題方法和解題規(guī)律的總結(jié)。由此培養(yǎng)學(xué)生善于進(jìn)行自我反思的習(xí)慣,擴(kuò)大知識和方法的應(yīng)用范圍,提高學(xué)習(xí)效率。

  ⑤重視專題教學(xué)。利用專題教學(xué),集中精力攻克難點,強(qiáng)化重點和彌補(bǔ)弱點,系統(tǒng)歸納總結(jié)某一類問題的前后知識、應(yīng)用形式、解決方法和解題規(guī)律。并借此機(jī)會對學(xué)生進(jìn)行學(xué)法的指點,有意滲透數(shù)學(xué)思想方法。

  3、加強(qiáng)學(xué)法指導(dǎo)。

  高中數(shù)學(xué)教學(xué)要把對學(xué)生加強(qiáng)學(xué)法指導(dǎo)作為教學(xué)的重要任務(wù)之一。指導(dǎo)以培養(yǎng)學(xué)習(xí)能力為重點,狠抓學(xué)習(xí)基本環(huán)節(jié),如“怎樣預(yù)習(xí)”、“怎樣聽課”等等。

  具體措施有三:一是寓學(xué)法指導(dǎo)于知識講解、作業(yè)講評、試卷分析等教學(xué)活動之中,這種形式貼近學(xué)生學(xué)習(xí)實際,易被學(xué)生接受;二是舉辦系列講座,介紹學(xué)習(xí)方法;三是定期進(jìn)行學(xué)法交流,同學(xué)間互相取長補(bǔ)短,共同提高。

  4、優(yōu)化教育管理環(huán)節(jié),促進(jìn)初高中良好銜接。

  ①重視運用情感和成功原理,喚起學(xué)生學(xué)好數(shù)學(xué)的熱情。搞好初高中銜接,除了優(yōu)化教學(xué)環(huán)節(jié)外,還應(yīng)充分發(fā)揮情感和心理的積極作用。我們在高一教學(xué)中,注意運用情感和成功原理,調(diào)動學(xué)生學(xué)習(xí)熱情,培養(yǎng)學(xué)習(xí)數(shù)學(xué)興趣。學(xué)生學(xué)不好數(shù)學(xué),少責(zé)怪學(xué)生,要多找自己的原因。要深入學(xué)生當(dāng)中,從各方面了解關(guān)心他們,特別是差生,幫助他們解決思想、學(xué)習(xí)及生活上存在的問題。給他們多講數(shù)學(xué)在各行各業(yè)廣泛應(yīng)用,講祖國四化建設(shè)需要大批懂?dāng)?shù)學(xué)的專家學(xué)者;講愛因斯坦在初中一次數(shù)學(xué)竟沒有考及格,但他沒有氣餒,終于成了一名偉大科學(xué)家,華羅庚在學(xué)生時代奮發(fā)圖強(qiáng),終于在數(shù)學(xué)研究中做出了卓越貢獻(xiàn),等等。使學(xué)生提高認(rèn)識,增強(qiáng)學(xué)好數(shù)學(xué)的信心。在提問和布置作業(yè)時,從學(xué)生實際出發(fā),多給學(xué)生創(chuàng)設(shè)成功的機(jī)會,以體會成功的喜悅,激發(fā)學(xué)習(xí)熱情。

 、谥匾暸囵B(yǎng)學(xué)生正確對待困難和挫折的良好心理素質(zhì)。由于高中數(shù)學(xué)的特點,決定了高一學(xué)生在學(xué)習(xí)中的困難大挫折多。為此,我們在教學(xué)中注意培養(yǎng)學(xué)生正確對待困難和挫折的良好心理素質(zhì),使他們善于在失敗面前,能冷靜地總結(jié)教訓(xùn),振作精神,主動調(diào)整自己的學(xué)習(xí),并努力爭取今后的勝利。平時多注意觀察學(xué)生情緒變化,開展心理咨詢,做好個別學(xué)生思想工作。

  ③電視知識的反饋和落實。通過建立多渠道的反饋途徑,及時收集學(xué)生對知識的掌握情況和對教學(xué)的意見,為及時矯上學(xué)生的錯誤,調(diào)整教學(xué),提高教學(xué)針對性提供依據(jù)。知識落實的思路為:以落實“三基”為中心,實行分層落實,做到提優(yōu)補(bǔ)差。主要措施是:平時練習(xí)層次化,單元結(jié)束考查制度化,做到章節(jié)會,單元清。

初中數(shù)學(xué)知識點總結(jié)13

  三角形兩邊:

  定理三角形兩邊的和大于第三邊。

  推論三角形兩邊的差小于第三邊。

  三角形中位線定理:

  三角形的中位線平行于第三邊,并且等于它的一半。

  三角形的重心:

  三角形的重心到頂點的距離是它到對邊中點距離的2倍。

  在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線,三角形的三條中線交于一點,這一點叫做“三角形的重心”。

  與三角形有關(guān)的角:

  1、三角形的內(nèi)角和定理:三角形的內(nèi)角和為180°,與三角形的形狀無關(guān)。

  2、直角三角形兩個銳角的關(guān)系:直角三角形的兩個銳角互余(相加為90°)。有兩個角互余的三角形是直角三角形。

  3、三角形外角的性質(zhì):三角形的.一個外角等于與它不相鄰的兩個內(nèi)角之和;三角形的一個外角大于與它不相鄰的任何一個內(nèi)角;三角形三個外角和為360°。

  全等三角形的性質(zhì)和判定:

  全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉(zhuǎn)、對折也會構(gòu)成全等三角形。

  (邊邊邊),即三邊對應(yīng)相等的兩個三角形全等。

 。ㄟ吔沁叄慈切蔚钠渲袃蓷l邊對應(yīng)相等,且兩條邊的夾角也對應(yīng)相等的兩個三角形全等。

 。ń沁吔牵,即三角形的其中兩個角對應(yīng)相等,且兩個角夾的的邊也對應(yīng)相等的兩個三角形全等。

 。ń墙沁叄慈切蔚钠渲袃蓚角對應(yīng)相等,且對應(yīng)相等的角所對應(yīng)的邊也對應(yīng)相等的兩個三角形全等。

 。ㄐ边、直角邊),即在直角三角形中一條斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等。

  等邊三角形的判定:

  1、三邊相等的三角形是等邊三角形(定義)。

  2、三個內(nèi)角都相等的三角形是等邊三角形。

  3、有一個角是60度的等腰三角形是等邊三角形。

  4、有兩個角等于60度的三角形是等邊三角形。

初中數(shù)學(xué)知識點總結(jié)14

  1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等

  5過一點有且只有一條直線和已知直線垂直

  6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊

  17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18推論1直角三角形的兩個銳角互余

  19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等

  26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于60°

  34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60°的等腰三角形是等邊三角形

  37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半

  39定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關(guān)于某條直線對稱的兩個圖形是全等形

  43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

  45逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形

  48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°

  50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°

  52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等

  55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

  56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個角都是直角61矩形性質(zhì)定理2矩形的對角線相等

  62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對角線互相垂直的平行四邊形是菱形69正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71定理1關(guān)于中心對稱的兩個圖形是全等的

  72定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  73逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

  74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等

  76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形

  78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79推論1經(jīng)過梯形一腰的中點與底平行的.直線,必平分另一腰80推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2S=L×h

  83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),

  那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例

  87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

  90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

  95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

  96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比97性質(zhì)定理2相似三角形周長的比等于相似比98性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點的距離等于定長的點的集合

  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合103圓的外部可以看作是圓心的距離大于半徑的點的集合104同圓或等圓的半徑相等

  105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點確定一個圓。

  110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116定理一條弧所對的圓周角等于它所對的圓心角的一半

  117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點125推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  127圓的外切四邊形的兩組對邊的和相等128弦切角定理弦切角等于它所夾的弧對的圓周角

  129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

  131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

  133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

  134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交R-r<d<R+r(R>r)④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)

  136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):

 、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

 、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  (n2)180139正n邊形的每個內(nèi)角都等于

  n140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  pnrn141正n邊形的面積Sn=p表示正n邊形的周長

  2142正三角形面積

  32aa表示邊長4143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,

  k(n2)180360化為(n-2)(k-2)=4因此

  n144弧長計算公式:L=

  nR180nR2LR145扇形面積公式:S扇形==

  3602146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

  公式分類及公式表達(dá)式

  乘法與因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解

  bb24ac2a

  根與系數(shù)的關(guān)系:X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式

  b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根b2-4ac

初中數(shù)學(xué)知識點總結(jié)15

  一、投影

  1、投影:一般地,用光線照射物體,在某個平面(地面、墻壁等)上得到的影子叫做物體的投影,照射光線叫做投影線,投影所在的平面叫做投影面。

  2、平行投影:由平行光線形成的投影是平行投影。(光源特別遠(yuǎn))

  3、中心投影:由同一點(點光源發(fā)出的光線)形成的投影叫做中心投影

  4、正投影:投影線垂直于投影面產(chǎn)生的投影叫做正投影。物體正投影的形狀、大小與它相對于投影面的位置有關(guān)。

  5、當(dāng)物體的某個面平行于投影面時,這個面的正投影與這個面的形狀、大小完全相同。當(dāng)物體的某個面頂斜于投影面時,這個面的正投影變小。當(dāng)物體的某個面垂直于投影面時,這個面的正投影成為一條直線。

  二、三視圖

  1、三視圖:是觀測者從三個不同位置(正面、水平面、側(cè)面)觀察同一個空間幾何體而畫出的圖形。三視圖就是主視圖、俯視圖、左視圖的總稱。另外還有如剖面圖、半剖面圖等做為輔助,基本能完整的表達(dá)物體的結(jié)構(gòu)。

  2、主視圖:在正面內(nèi)得到的由前向后觀察物體的視圖。

  3、俯視圖:在水平面內(nèi)得到的由上向下觀察物體的視圖。

  4、左視圖:在側(cè)面內(nèi)得到的由左向右觀察物體的'視圖。

  5、三個視圖的位置關(guān)系:

 、僦饕晥D在上、俯視圖在下、左視圖在右;

 、谥饕、俯視表示物體的長,主視、左視表示物體的高,左視、俯視表示物體的寬。

  ③主視、俯視長對正,主視、左視高平齊,左視、俯視寬相等。

  6、畫法:看得見的部分的輪廓線畫成實線,因被其它部分遮檔而看不見的部分的輪廓線畫成虛線。

  鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補(bǔ)角。

  對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。

  垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

  平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

  同位角、內(nèi)錯角、同旁內(nèi)角:

  同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。

  內(nèi)錯角:∠2與∠6像這樣的一對角叫做內(nèi)錯角。

  同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。

  命題:判斷一件事情的語句叫命題。

  平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

  對應(yīng)點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應(yīng)點。

【初中數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

初中數(shù)學(xué)知識點總結(jié)07-14

初中數(shù)學(xué)幾何知識點總結(jié)11-05

初中數(shù)學(xué)圓的知識點總結(jié)12-05

初中數(shù)學(xué)函數(shù)知識點總結(jié)11-24

初中數(shù)學(xué)知識點總結(jié)07-15

初中數(shù)學(xué)必備知識點總結(jié)03-01

數(shù)學(xué)初中知識點總結(jié)06-10

初中數(shù)學(xué)函數(shù)知識點總結(jié)06-14

初中數(shù)學(xué)知識點歸納總結(jié)12-02

(優(yōu))初中數(shù)學(xué)知識點總結(jié)12-04