(集合)初中數(shù)學(xué)知識(shí)點(diǎn)15篇
在我們的學(xué)習(xí)時(shí)代,說到知識(shí)點(diǎn),大家是不是都習(xí)慣性的重視?知識(shí)點(diǎn)也可以通俗的理解為重要的內(nèi)容。為了幫助大家掌握重要知識(shí)點(diǎn),下面是小編收集整理的初中數(shù)學(xué)知識(shí)點(diǎn),歡迎大家分享。
初中數(shù)學(xué)知識(shí)點(diǎn)1
代數(shù)部分:有理數(shù)、無理數(shù)、實(shí)數(shù)整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))
幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。
1、實(shí)數(shù)的分類
有理數(shù):整數(shù)(包括:正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)(包括:有限小數(shù)和無限環(huán)循小數(shù))都是有理數(shù)。如:—3,0.231,0.737373......
無理數(shù):無限不環(huán)循小數(shù)叫做無理數(shù)如:π,—,0.1010010001......(兩個(gè)1之間依次多1個(gè)0)。
實(shí)數(shù):有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)。
2、無理數(shù)
在理解無理數(shù)時(shí),要抓住"無限不循環(huán)"這一時(shí)之,它包含兩層意思:一是無限小數(shù);二是不循環(huán)。二者缺一不可。歸納起來有四類:
。1)開方開不盡的數(shù),如等;
(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;
。3)有特定結(jié)構(gòu)的數(shù),如0.1010010001......等;
。4)某些三角函數(shù),如sin60o等。
注意:判斷一個(gè)實(shí)數(shù)的屬性(如有理數(shù)、無理數(shù)),應(yīng)遵循:一化簡,二辨析,三判斷。要注意:"神似"或"形似"都不能作為判斷的標(biāo)準(zhǔn)。
3、非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)
常見的非負(fù)數(shù)有:
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。
4、數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。
解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的'點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。
、佼嬕粭l水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長度作為單位長度,規(guī)定直線上向右的方向?yàn)檎较,就得到?shù)軸("三要素")。
、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。
、廴绻麅蓚(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。
作用:A、直觀地比較實(shí)數(shù)的大。籅、明確體現(xiàn)絕對(duì)值意義;C、建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
5、相反數(shù)
實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。
即:(1)實(shí)數(shù)的相反數(shù)是。
初中數(shù)學(xué)知識(shí)點(diǎn)2
正棱錐是棱錐的一種,具備著所有棱錐的性質(zhì)和定理。
正棱錐
如果一個(gè)棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面的中心,這樣的棱錐叫正棱錐。
正棱錐的性質(zhì)
(1)正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高);
(2)正棱錐的'高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形;
(3)正棱錐的側(cè)棱與底面所成的角都相等;正棱錐的側(cè)面與底面所成的二面角都相等;
(4)正棱錐的側(cè)面積:如果正棱錐的底面周長為c,斜高為h’,那么它的側(cè)面積是 s=1/2ch‘。
特別地,側(cè)棱與底面邊長相等的正三棱錐叫做正四面體。
初中數(shù)學(xué)知識(shí)點(diǎn)3
1.平方差公式:平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
2.完全平方:完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。
3.一元一次不等式解題的一般步驟:去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類項(xiàng)、合并好,再把系數(shù)來除掉,兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。
4. 一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。
5.一元二次不等式、一元一次絕對(duì)值不等式的解集:大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
6.分式混合運(yùn)算法則:分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡,因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;變號(hào)必須兩處,結(jié)果要求最簡。
7.分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗(yàn)根,原(根)留、增(根)舍別含糊。
8.最簡根式的條件:最簡根式三條件,號(hào)內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點(diǎn)。
9.特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。
10.象限角的平分線:象限角的平分線,坐標(biāo)特征有特點(diǎn),一、三橫縱都相等,二、四橫縱確相反。
11.平行某軸的直線:平行某軸的直線,點(diǎn)的坐標(biāo)有講究,直線平行X軸,縱坐標(biāo)相等橫不同;直線平行于Y軸,點(diǎn)的橫坐標(biāo)仍照舊。
12.對(duì)稱點(diǎn)坐標(biāo):對(duì)稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對(duì)稱y相反, Y軸對(duì)稱,x前面添負(fù)號(hào);原點(diǎn)對(duì)稱記,橫縱坐標(biāo)變符號(hào)。
13.自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。
14.函數(shù)圖像的移動(dòng)規(guī)律: 若把一次函數(shù)解析式寫成y=k(x+0)+b、二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號(hào),上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了”。
15.巧記三角函數(shù)定義:初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實(shí)際是三角形邊的比值,可以把兩個(gè)字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對(duì)魚磷(余鄰)直刀切。正:正弦或正切,對(duì):對(duì)邊即正是對(duì);余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。
初三數(shù)學(xué)上冊(cè)期末知識(shí)點(diǎn)歸納
單項(xiàng)式與多項(xiàng)式
僅含有一些數(shù)和字母的乘法(包括乘方)運(yùn)算的式子叫做單項(xiàng)式單獨(dú)的一個(gè)數(shù)或字母也是單項(xiàng)式。
單項(xiàng)式中的數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式(或字母因數(shù))的數(shù)字系數(shù),簡稱系數(shù)。
當(dāng)一個(gè)單項(xiàng)式的系數(shù)是1或-1時(shí),“1”通常省略不寫。
一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。
如果在幾個(gè)單項(xiàng)式中,不管它們的系數(shù)是不是相同,只要他們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么,這幾個(gè)單項(xiàng)式就叫做同類單項(xiàng)式,簡稱同類項(xiàng)所有的常數(shù)都是同類項(xiàng)。
1、多項(xiàng)式
有有限個(gè)單項(xiàng)式的代數(shù)和組成的式子,叫做多項(xiàng)式。
多項(xiàng)式里每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的'項(xiàng),叫做常數(shù)項(xiàng)。
單項(xiàng)式可以看作是多項(xiàng)式的特例
把同類單項(xiàng)式的系數(shù)相加或相減,而單項(xiàng)式中的字母的乘方指數(shù)不變。
在多項(xiàng)式中,所含的不同未知數(shù)的個(gè)數(shù),稱做這個(gè)多項(xiàng)式的元數(shù)經(jīng)過合并同類項(xiàng)后,多項(xiàng)式所含單項(xiàng)式的個(gè)數(shù),稱為這個(gè)多項(xiàng)式的項(xiàng)數(shù)所含個(gè)單項(xiàng)式中次項(xiàng)的次數(shù),就稱為這個(gè)多項(xiàng)式的次數(shù)。
2、多項(xiàng)式的值
任何一個(gè)多項(xiàng)式,就是一個(gè)用加、減、乘、乘方運(yùn)算把已知數(shù)和未知數(shù)連接起來的式子。
3、多項(xiàng)式的恒等
對(duì)于兩個(gè)一元多項(xiàng)式f(x)、g(x)來說,當(dāng)未知數(shù)x同取任一個(gè)數(shù)值a時(shí),如果它們所得的值都是相等的,即f(a)=g(a),那么,這兩個(gè)多項(xiàng)式就稱為是恒等的記為f(x)==g(x),或簡記為f(x)=g(x)。
性質(zhì)1如果f(x)==g(x),那么,對(duì)于任一個(gè)數(shù)值a,都有f(a)=g(a)。
性質(zhì)2如果f(x)==g(x),那么,這兩個(gè)多項(xiàng)式的個(gè)同類項(xiàng)系數(shù)就一定對(duì)應(yīng)相等。
4、一元多項(xiàng)式的根
一般地,能夠使多項(xiàng)式f(x)的值等于0的未知數(shù)x的值,叫做多項(xiàng)式f(x)的根。
多項(xiàng)式的加、減法,乘法
1、多項(xiàng)式的加、減法
2、多項(xiàng)式的乘法
單項(xiàng)式相乘,用它們系數(shù)作為積的系數(shù),對(duì)于相同的字母因式,則連同它的指數(shù)作為積的一個(gè)因式。
3、多項(xiàng)式的乘法
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式等每一項(xiàng)乘以另一個(gè)多項(xiàng)式的各項(xiàng),再把所得的積相加。
常用乘法公式
公式I平方差公式
(a+b)(a-b)=a^2-b^2
兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差。
關(guān)于數(shù)學(xué)常見誤區(qū)有哪些
1、被動(dòng)學(xué)習(xí)
許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒有掌握學(xué)習(xí)主動(dòng)權(quán).表現(xiàn)在不定計(jì)劃,坐等上課,課前沒有預(yù)習(xí),對(duì)老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。
2、學(xué)不得法
老師上課一般都要講清知識(shí)的來龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒能專心聽課,對(duì)要點(diǎn)沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、不重視基礎(chǔ)
一些“自我感覺良好”的同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對(duì)難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。
4、進(jìn)一步學(xué)習(xí)條件不具備
高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識(shí)的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識(shí)與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。
如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問題等?陀^上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。
如何整理數(shù)學(xué)學(xué)科課堂筆記
一、內(nèi)容提綱。老師講課大多有提綱,并且講課時(shí)老師會(huì)將一堂課的線索脈絡(luò)、重點(diǎn)難點(diǎn)等,簡明清晰地呈現(xiàn)在黑板上。同時(shí),教師會(huì)使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復(fù)習(xí)回顧,整體把握知識(shí)框架,對(duì)所學(xué)知識(shí)做到胸有成竹、清晰完整。
二、疑難問題。將課堂上未聽懂的問題及時(shí)記下來,便于課后請(qǐng)教同學(xué)或老師,把問題弄懂弄通。教師在組織課堂教學(xué)時(shí),受到時(shí)空的限制,不可能做到顧及每一位同學(xué)。相應(yīng)的,一些問題對(duì)部分學(xué)生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識(shí)的斷層、方法的缺陷。
三、思路方法。對(duì)老師在課堂上介紹的解題方法和分析思路也應(yīng)及時(shí)記下,課后加以消化,若有疑惑,先作獨(dú)立分析,因?yàn)橛锌赡苁亲约豪斫忮e(cuò)誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時(shí)與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對(duì)于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對(duì)提高解題水平大有益處。在這基礎(chǔ)上,若能主動(dòng)鉆研,另辟蹊徑,則更難能可貴。
四、歸納總結(jié)。注意記下老師的課后總結(jié),這對(duì)于濃縮一堂課的內(nèi)容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會(huì)貫通課堂內(nèi)容都很有作用。同時(shí),很多有經(jīng)驗(yàn)的老師在課后小結(jié)時(shí),一方面是承上歸納所學(xué)內(nèi)容,另一方面又是啟下布置預(yù)習(xí)任務(wù)或點(diǎn)明后面所要學(xué)的內(nèi)容,做好筆記可以把握學(xué)習(xí)的主動(dòng)權(quán),提前作準(zhǔn)備,做到目標(biāo)任務(wù)明確。
五、錯(cuò)誤反思。學(xué)習(xí)過程中不可避免地會(huì)犯這樣或那樣的錯(cuò)誤,記下自己所犯的錯(cuò)誤,并用紅筆醒目地加以標(biāo)注,以警示自己,同時(shí)也應(yīng)注明錯(cuò)誤成因,正確思路及方法,在反思中成熟,在反思中提高。
數(shù)學(xué)常用解題技巧有哪些
第一,應(yīng)堅(jiān)持由易到難的做題順序。近年來高考數(shù)學(xué)試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱為866結(jié)構(gòu)。在實(shí)體設(shè)置的結(jié)構(gòu)中有三個(gè)小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點(diǎn)的考生就先做前7個(gè)選擇,前5個(gè)填空、前5個(gè)大題,稱為是755結(jié)構(gòu);A(chǔ)差的就是644,先把自己能做的、會(huì)做的拿到手。這是第一點(diǎn)。
第二,審題是關(guān)鍵。把題給看清楚了再動(dòng)筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個(gè)完整的解題策略,在開始寫的時(shí)候,這個(gè)時(shí)候是很快就可以完成的。
第三,屬于非智力因素導(dǎo)致想不起來。本來是很簡單的題比如說是做到第三題、第四題的時(shí)候不是難題,但想不起來了,卡住了,這時(shí)候怎么辦?雖然是簡單題卻不會(huì)做怎么辦?應(yīng)先跳過去,不是這道題不會(huì)做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場(chǎng)上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會(huì)頓悟,豁然開朗。
第四,做選擇題的時(shí)候應(yīng)運(yùn)用最好的解題方法。因?yàn)檫x擇題和填空題都是看結(jié)果不看過程,因此在這個(gè)過程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行?忌S玫姆椒ㄊ侵苯臃ǎ瑥囊阎拈_始也不看它的四個(gè)選項(xiàng),從頭到尾寫完了之后一看答案就寫上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時(shí)候給它賦一個(gè)值,代進(jìn)去這時(shí)候速度會(huì)比較快,正確地找出結(jié)果來。再就是數(shù)形結(jié)合法。最后實(shí)在不行了,就將四個(gè)選項(xiàng)代入驗(yàn)證,看看哪個(gè)符合就是哪個(gè)了。填空題用上述的直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時(shí)候要特別注意解題步驟,規(guī)范答題可以減少失分。簡單地說,規(guī)范答題就是從上一步的原因到下一步的結(jié)論,這是一個(gè)必然的過程,讓誰寫、誰看都是這樣的。因?yàn)槭裁此允裁词且粋(gè)必然的過程,這是規(guī)范答題。
初中數(shù)學(xué)知識(shí)點(diǎn)4
一、三種視圖的內(nèi)在聯(lián)系:
我們從不同的方向觀察同一個(gè)物體時(shí),可能看到不同的圖形。其中,把從正面看到的圖叫做主視圖,從左面看到的圖叫做左視圖,從上面看到的圖叫做俯視圖。
因此,在畫三種視圖時(shí),主、俯視圖要長對(duì)正,主、左視圖要高平齊,俯、左視圖要寬相等。
二、三種視圖的位置關(guān)系:
一般地,首先確定主視圖的.位置,畫出主視圖,然后在主視圖的正下方畫出俯視圖,在主視圖的正右方畫出左視圖。
三、三種視圖的畫法:
首先觀察物體,畫出視圖的外輪廓線,然后將視圖補(bǔ)充完整,其中看得見部分的輪廓線通常畫成實(shí)線,看不見部分的輪廓線通常畫成虛線。
四、常見幾何體的三視圖:
正方體的三視圖都是正方形;圓柱體的三視圖中有個(gè)長方形,另一個(gè)是圓;圓錐體的三視圖中有兩個(gè)是等腰三角形,另一個(gè)是帶有圓心的圓;球的三視圖都是圓。
常見考法
。1)由實(shí)物幾何體確定三視圖;(2)由視圖,確定小立方塊個(gè)數(shù);(3)由三視圖,還原出幾何體。
誤區(qū)提醒
不能正確地畫出物體的三視圖。
初中數(shù)學(xué)知識(shí)點(diǎn)5
關(guān)于初中數(shù)學(xué)幾何知識(shí)點(diǎn)歸納
1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
4、多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。
5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。
6、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。
7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
8、公式與性質(zhì)
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
9、多邊形外角和定理:
(1)n邊形外角和等于n·180°-(n-2)·180°=360°
(2)邊形的每個(gè)內(nèi)角與它相鄰的外角是鄰補(bǔ)角,所以n邊形內(nèi)角和加外角和等于n·180°
10、多邊形對(duì)角線的條數(shù):
(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對(duì)角線,把多邊形分詞(n-2)個(gè)三角形
(2)n邊形共有n(n-3)/2條對(duì)角線
圓知識(shí)點(diǎn)、概念總結(jié)
1、不在同一直線上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7、同圓或等圓的半徑相等
8、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
12、①直線L和⊙O相交d
、谥本L和⊙O相切d=r
、壑本L和⊙O相離d>r
13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑
15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
16、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
17、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的'切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對(duì)邊的和相等,外角等于內(nèi)對(duì)角
19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20、①兩圓外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R-rr)
、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)
21、定理:相交兩圓的連心線垂直平分兩圓的公共弦
22、定理:把圓分成n(n≥3):
(1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
(2)經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
24、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長
27、正三角形面積√3a/4a表示邊長
28、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29、弧長計(jì)算公式:L=n兀R/180
30、扇形面積公式:S扇形=n兀R^2/360=LR/2
31、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)
32、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
33、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
34、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
35、弧長公式l=a__ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2__l__r
數(shù)學(xué)常用解題技巧有哪些
第一,應(yīng)堅(jiān)持由易到難的做題順序。近年來高考數(shù)學(xué)試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱為866結(jié)構(gòu)。在實(shí)體設(shè)置的結(jié)構(gòu)中有三個(gè)小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點(diǎn)的考生就先做前7個(gè)選擇,前5個(gè)填空、前5個(gè)大題,稱為是755結(jié)構(gòu)。基礎(chǔ)差的就是644,先把自己能做的、會(huì)做的拿到手。這是第一點(diǎn)。
第二,審題是關(guān)鍵。把題給看清楚了再動(dòng)筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個(gè)完整的解題策略,在開始寫的時(shí)候,這個(gè)時(shí)候是很快就可以完成的。
第三,屬于非智力因素導(dǎo)致想不起來。本來是很簡單的題比如說是做到第三題、第四題的時(shí)候不是難題,但想不起來了,卡住了,這時(shí)候怎么辦?雖然是簡單題卻不會(huì)做怎么辦?應(yīng)先跳過去,不是這道題不會(huì)做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場(chǎng)上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會(huì)頓悟,豁然開朗。
第四,做選擇題的時(shí)候應(yīng)運(yùn)用最好的解題方法。因?yàn)檫x擇題和填空題都是看結(jié)果不看過程,因此在這個(gè)過程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行?忌S玫姆椒ㄊ侵苯臃,從已知的開始也不看它的四個(gè)選項(xiàng),從頭到尾寫完了之后一看答案就寫上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時(shí)候給它賦一個(gè)值,代進(jìn)去這時(shí)候速度會(huì)比較快,正確地找出結(jié)果來。再就是數(shù)形結(jié)合法。最后實(shí)在不行了,就將四個(gè)選項(xiàng)代入驗(yàn)證,看看哪個(gè)符合就是哪個(gè)了。填空題用上述的直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時(shí)候要特別注意解題步驟,規(guī)范答題可以減少失分。簡單地說,規(guī)范答題就是從上一步的原因到下一步的結(jié)論,這是一個(gè)必然的過程,讓誰寫、誰看都是這樣的。因?yàn)槭裁此允裁词且粋(gè)必然的過程,這是規(guī)范答題。
學(xué)霸分享的數(shù)學(xué)復(fù)習(xí)技巧
1、把答案蓋住看例題
例題不能帶著答案去看,不然會(huì)認(rèn)為自己就是這么,其實(shí)自己并沒有理解透徹。
所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。
經(jīng)過上面的訓(xùn)練,自己的思維空間擴(kuò)展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說明此題的“題眼”及巧妙之處,收獲會(huì)更大。
2、研究每題都考什么
數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個(gè)簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。
3、錯(cuò)一次反思一次
每次業(yè)及考試或多或少會(huì)發(fā)生些錯(cuò)誤,這并不可怕,要緊的是避免類似的錯(cuò)誤再次重現(xiàn)。因此平時(shí)注意把錯(cuò)題記下來。
學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么以后人生中最重要的高考也就能避免犯錯(cuò)了.
4、分析試卷總結(jié)經(jīng)驗(yàn)
每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類。
數(shù)學(xué)解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過配方解決數(shù)學(xué)問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。
2、因式分解法
因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。
3、換元法
替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變?cè)S眯碌膮?shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡單,更容易解決。
4、判別式法與韋達(dá)定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質(zhì),還作為一個(gè)問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。
韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解決數(shù)學(xué)問題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問題,這種問題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解決問題時(shí),我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問題,這種解決問題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問題。
數(shù)學(xué)經(jīng)常遇到的問題解答
1、要提高數(shù)學(xué)成績首先要做什么?
這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績,首先就應(yīng)該從基礎(chǔ)知識(shí)學(xué)起。不少同學(xué)覺得基礎(chǔ)知識(shí)過于簡單,看兩遍基本上就都會(huì)了。這種“自我感覺良好”其實(shí)是一種錯(cuò)覺,而真正考試時(shí)又覺得無從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績先要把基礎(chǔ)夯實(shí)。
2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)?
對(duì)于基礎(chǔ)差的同學(xué)來說,課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識(shí)學(xué)透有兩個(gè)好處,第一,強(qiáng)化基礎(chǔ);第二,提高得分能力。
3、是否要采用題海戰(zhàn)術(shù)?
方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實(shí)也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗(yàn),這樣才能取得理想成績。
4、做題總是粗心怎么辦?
很多學(xué)生成績不好,會(huì)說自己是因?yàn)榇中膶?dǎo)致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識(shí)不牢、沒有清晰的解題思路、計(jì)算能力不強(qiáng)。因此在平時(shí)的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點(diǎn),所以,要告訴自己,高中數(shù)學(xué)沒有“粗心”只有“不用心”。
初中數(shù)學(xué)知識(shí)點(diǎn)6
一次函數(shù)的圖象與性質(zhì)的口訣:
一次函數(shù)是直線,圖象經(jīng)過三象限;
正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;
兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,k為正來右上斜,x增減y增減;
k為負(fù)來左下展,變化規(guī)律正相反;
k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。
拓展閱讀:一次函數(shù)的解題方法
理解一次函數(shù)和其它知識(shí)的聯(lián)系
一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時(shí),等號(hào)的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個(gè)變量,而代數(shù)式可以是多個(gè)變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。
掌握一次函數(shù)的解析式的特征
一次函數(shù)解析式的結(jié)構(gòu)特征:kx+b是關(guān)于x的一次二項(xiàng)式,其中常數(shù)b可以是任意實(shí)數(shù),一次項(xiàng)系數(shù)k必須是非零數(shù),k≠0,因?yàn)楫?dāng)k = 0時(shí),y = b(b是常數(shù)),由于沒有一次項(xiàng),這樣的函數(shù)不是一次函數(shù);而當(dāng)b = 0,k≠0,y = kx既是正比例函數(shù),也是一次函數(shù)。
應(yīng)用一次函數(shù)解決實(shí)際問題
1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關(guān)聯(lián)的量,且其中一種量因另一種量的變化而變化;
2、找出具有相關(guān)聯(lián)的兩種量的等量關(guān)系之后,明確哪種量是另一種量的函數(shù);
3、在實(shí)際問題中,一般存在著三種量,如距離、時(shí)間、速度等等,在這三種量中,當(dāng)且僅當(dāng)其中一種量時(shí)間(或速度)不變時(shí),距離與速度(或時(shí)間)才成正比例,也就是說,距離(s)是時(shí)間(t)或速度( )的正比例函數(shù);
4、求一次函數(shù)與正比例函數(shù)的關(guān)系式,一般采取待定系數(shù)法。
數(shù)形結(jié)合
方程,不等式,不等式組,方程組我們都可以用一次函數(shù)的觀點(diǎn)來理解。一元一次不等式實(shí)際上就看兩條直線上下方的關(guān)系,求出端點(diǎn)后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來認(rèn)識(shí),直線交點(diǎn)的橫坐標(biāo)就是方程的解,至于二元一次方程組就是對(duì)應(yīng)2條直線,方程組的解就是直線的交點(diǎn),結(jié)合圖形可以認(rèn)識(shí)兩直線的位置關(guān)系也可以把握交點(diǎn)個(gè)數(shù)。
如果一個(gè)交點(diǎn)時(shí)候兩條直線的k不同,如果無窮個(gè)交點(diǎn)就是k,b都一樣,如果平行無交點(diǎn)就是k相同,b不一樣。至于函數(shù)平移的問題可以化歸為對(duì)應(yīng)點(diǎn)平移。k反正不變?nèi)缓笥么ㄏ禂?shù)法得到平移后的方程。這就是化一般為特殊的解題方法。
數(shù)學(xué)解題方法分別有哪些
1、配方法
所謂的.公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過配方解決數(shù)學(xué)問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。
2、因式分解法
因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。
3、換元法
替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變?cè)。用新的參?shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡單,更容易解決。
4、判別式法與韋達(dá)定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質(zhì),還作為一個(gè)問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。
韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解決數(shù)學(xué)問題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問題,這種問題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解決問題時(shí),我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問題,這種解決問題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問題。
數(shù)學(xué)經(jīng)常遇到的問題解答
1、要提高數(shù)學(xué)成績首先要做什么?
這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績,首先就應(yīng)該從基礎(chǔ)知識(shí)學(xué)起。不少同學(xué)覺得基礎(chǔ)知識(shí)過于簡單,看兩遍基本上就都會(huì)了。這種“自我感覺良好”其實(shí)是一種錯(cuò)覺,而真正考試時(shí)又覺得無從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績先要把基礎(chǔ)夯實(shí)。
2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)?
對(duì)于基礎(chǔ)差的同學(xué)來說,課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識(shí)學(xué)透有兩個(gè)好處,第一,強(qiáng)化基礎(chǔ);第二,提高得分能力。
3、是否要采用題海戰(zhàn)術(shù)?
方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實(shí)也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗(yàn),這樣才能取得理想成績。
4、做題總是粗心怎么辦?
很多學(xué)生成績不好,會(huì)說自己是因?yàn)榇中膶?dǎo)致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識(shí)不牢、沒有清晰的解題思路、計(jì)算能力不強(qiáng)。因此在平時(shí)的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點(diǎn),所以,要告訴自己,高中數(shù)學(xué)沒有“粗心”只有“不用心”。
為什么要學(xué)習(xí)數(shù)學(xué)
作為一門普及度極廣的學(xué)科,數(shù)學(xué)在人類文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會(huì)對(duì)數(shù)學(xué)產(chǎn)生排斥,認(rèn)為它枯燥無味,但事實(shí)上,數(shù)學(xué)是所有學(xué)科的基石之一,對(duì)我們?nèi)粘I钜约拔磥淼穆殬I(yè)發(fā)展有著重大影響。下面我將詳細(xì)闡述學(xué)習(xí)數(shù)學(xué)的重要性。
首先,數(shù)學(xué)可以幫助我們提高邏輯思維能力。數(shù)學(xué)的學(xué)科性質(zhì)使我們?cè)趯W(xué)習(xí)的過程中時(shí)時(shí)刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機(jī)會(huì)。通過長期的學(xué)習(xí)和練習(xí),我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對(duì)我們?cè)诠ぷ骱蜕钪卸挤浅S袔椭,尤其是在解決復(fù)雜問題時(shí)更能得心應(yīng)手。
其次,數(shù)學(xué)在現(xiàn)代科技中起著至關(guān)重要的作用。在計(jì)算機(jī)科學(xué)、物理學(xué)、經(jīng)濟(jì)學(xué)、工程學(xué)等領(lǐng)域,數(shù)學(xué)可以幫助我們建立模型、分析數(shù)據(jù)、預(yù)測(cè)趨勢(shì),并且可以在實(shí)際應(yīng)用中優(yōu)化和改進(jìn)。例如,在人工智能領(lǐng)域,深度學(xué)習(xí)技術(shù)所涉及的數(shù)學(xué)概念包括線性代數(shù)、微積分和概率論等,如果沒有深厚的數(shù)學(xué)基礎(chǔ),很難理解和應(yīng)用這些技術(shù)。同時(shí),在工程學(xué)領(lǐng)域,許多機(jī)械、電子、化工等產(chǎn)品的設(shè)計(jì)和制造過程,也需要運(yùn)用到數(shù)學(xué)知識(shí),因此學(xué)習(xí)數(shù)學(xué)可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。
除此之外,數(shù)學(xué)也是一種普遍使用的語言,許多學(xué)科和領(lǐng)域都使用數(shù)學(xué)語言進(jìn)行表達(dá)和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數(shù)學(xué)語言來描述自然世界的規(guī)律和現(xiàn)象。在社會(huì)科學(xué)和商科領(lǐng)域,經(jīng)濟(jì)學(xué)和金融學(xué)運(yùn)用的數(shù)學(xué)概念,如微積分、線性代數(shù)和統(tǒng)計(jì)學(xué)等,使得我們能夠更好地理解經(jīng)濟(jì)和財(cái)務(wù)數(shù)據(jù),并進(jìn)行決策。因此,學(xué)習(xí)數(shù)學(xué)可以讓我們更好地理解、溝通和交流各個(gè)領(lǐng)域的知識(shí)。
最后,學(xué)習(xí)數(shù)學(xué)也可以為我們的職業(yè)發(fā)展帶來廣泛的機(jī)遇和發(fā)展空間。在許多領(lǐng)域,數(shù)學(xué)專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機(jī)會(huì),如金融界、數(shù)據(jù)科學(xué)、研究機(jī)構(gòu)、教育等。數(shù)學(xué)專業(yè)的人才,不只會(huì)提供理論支持,同時(shí)也能夠解決現(xiàn)實(shí)中具體的問題,使其在各自領(lǐng)域脫穎而出。
初中數(shù)學(xué)知識(shí)點(diǎn)7
二次函數(shù)基本知識(shí)點(diǎn)
I.定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II.二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x)(x-x)[僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a
拋物線的性質(zhì)
1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線
x=-b/2a。
對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P[-b/2a,(4ac-b^2;)/4a]。
當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。
|a|越大,則拋物線的'開口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。
二次函數(shù)的三種表達(dá)式
①一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
、陧旤c(diǎn)式[拋物線的頂點(diǎn)P(h,k)]:y=a(x-h)^2+k
、劢稽c(diǎn)式[僅限于與x軸有交點(diǎn)A(x1,0)和B(x2,0)的拋物線]:y=a(x-x1)(x-x2)
以上3種形式可進(jìn)行如下轉(zhuǎn)化:
①一般式和頂點(diǎn)式的關(guān)系
對(duì)于二次函數(shù)y=ax^2+bx+c,其頂點(diǎn)坐標(biāo)為(-b/2a,(4ac-b^2)/4a),即
h=-b/2a=(x1+x2)/2
k=(4ac-b^2)/4a
②一般式和交點(diǎn)式的關(guān)系
x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)
初中數(shù)學(xué)知識(shí)點(diǎn)8
菱形
1、菱形的定義 :有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質(zhì):⑴ 矩形具有平行四邊形的一切性質(zhì);
、 菱形的四條邊都相等;
⑶ 菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。
、 菱形是軸對(duì)稱圖形。
提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對(duì)角線互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,
可得對(duì)角線與邊之間的關(guān)系,即邊長的平方等于對(duì)角線一半的平方和。
3、菱形的判定方法:
、 定義:一組鄰邊相等的平行四邊形是菱形。
、 判斷方法1:對(duì)角線互相垂直的平行四邊形是菱形。
、 判斷方法2:四條邊相等的四邊形是菱形。
4、菱形面積的計(jì)算:
菱形面積 = 底×高 = 對(duì)角線長乘積的一半 S菱形=1/2×ab(a、b為兩條對(duì)角線)
歸納:對(duì)角線互相垂直的四邊形的面積等于對(duì)角線長乘積的一半。
希望上面對(duì)菱形知識(shí)點(diǎn)的總結(jié)學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們一定能很好的參加考試工作。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的.任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫成冪的形式
、奘醉(xiàng)負(fù)號(hào)放括號(hào)外
、呃ㄌ(hào)內(nèi)同類項(xiàng)合并。
通過上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)知識(shí)點(diǎn)9
首先你要有一個(gè)好的態(tài)度,有些人學(xué)習(xí)數(shù)學(xué),可能有的階段會(huì)喜歡學(xué)習(xí),但是某一階段,對(duì)數(shù)學(xué)就沒有什么興趣了,可能每個(gè)人都會(huì)有這樣一個(gè)階段,但是如果發(fā)現(xiàn)自己不喜歡學(xué)習(xí)數(shù)學(xué)了,一定要克制自己,在學(xué)習(xí)數(shù)學(xué)上,保持一個(gè)良好的學(xué)習(xí)態(tài)度,這是你學(xué)好數(shù)學(xué)的第一步。
充分的利用好上課的時(shí)間,上課時(shí)間你所掌握的知識(shí),會(huì)比你在課下學(xué)很長時(shí)間都有用,所以珍惜課堂老師所講的內(nèi)容,老師的某些話對(duì)我們以后做數(shù)學(xué)題都很有幫助,如果你上課走神,這些話沒有聽到,你在做題的時(shí)候,可能會(huì)走很多彎路,做題的效率也會(huì)降低,一旦有這樣的情況,可能你就會(huì)不喜歡數(shù)學(xué)了。
學(xué)習(xí)最重要的是思考,會(huì)思考數(shù)學(xué)才能學(xué)好,數(shù)學(xué)中的題都是需要我們?nèi)ヅe一反三的,沒做一道題,都要思考一下,圍繞著這道題的知識(shí)點(diǎn),還會(huì)有什么樣的.題型出現(xiàn),哪怕是遇到不會(huì)的題,也要勤加的思考,如果你把知識(shí)點(diǎn)自認(rèn)為學(xué)習(xí)透徹,那么就用做題檢驗(yàn)吧,數(shù)學(xué)中多做題是必須的,成績都是用題堆積出來的,很少會(huì)有人不做題數(shù)學(xué)成績很高的。
初中數(shù)學(xué)知識(shí)點(diǎn)10
基于質(zhì)數(shù)定義的基礎(chǔ)之上而建立的問題有很多世界級(jí)的難題,如哥德巴赫猜想等。
質(zhì)數(shù)
質(zhì)數(shù)又稱素?cái)?shù)。指在一個(gè)大于1的自然數(shù)中,除了1和此整數(shù)自身外,不能被其他自然數(shù)整除的數(shù)。
素?cái)?shù)在數(shù)論中有著很重要的`地位。比1大但不是素?cái)?shù)的數(shù)稱為合數(shù)。1和0既非素?cái)?shù)也非合數(shù)。質(zhì)數(shù)是與合數(shù)相對(duì)立的兩個(gè)概念,二者構(gòu)成了數(shù)論當(dāng)中最基礎(chǔ)的定義之一。
算術(shù)基本定理證明每個(gè)大于1的正整數(shù)都可以寫成素?cái)?shù)的乘積,并且這種乘積的形式是唯一的。這個(gè)定理的重要一點(diǎn)是,將1排斥在素?cái)?shù)集合以外。如果1被認(rèn)為是素?cái)?shù),那么這些嚴(yán)格的闡述就不得不加上一些限制條件。
概念
只有1和它本身兩個(gè)約數(shù)的自然數(shù),叫質(zhì)數(shù)(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的約數(shù)只有1和它本身2這兩個(gè)約數(shù),所以2就是質(zhì)數(shù)。與之相對(duì)立的是合數(shù):“除了1和它本身兩個(gè)約數(shù)外,還有其它約數(shù)的數(shù),叫合數(shù)!比纾4÷1=4,4÷2=2,4÷4=1,很顯然,4的約數(shù)除了1和它本身4這兩個(gè)約數(shù)以外,還有約數(shù)2,所以4是合數(shù)。)
100以內(nèi)的質(zhì)數(shù)有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100內(nèi)共有25個(gè)質(zhì)數(shù)。
注:1既不是質(zhì)數(shù)也不是合數(shù)。因?yàn)樗募s數(shù)有且只有1這一個(gè)約數(shù)。
初中數(shù)學(xué)知識(shí)點(diǎn)11
1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質(zhì):⑴矩形具有平行四邊形的一切性質(zhì);
⑵菱形的四條邊都相等;
、橇庑蔚膬蓷l對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。
、攘庑问禽S對(duì)稱圖形。
提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對(duì)角線互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對(duì)角線與邊之間的關(guān)系,即邊長的平方等于對(duì)角線一半的平方和。
3、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
4、因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④因式分解與整式乘法的關(guān)系:m(a+b+c)
5、公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
6、公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的`積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。
8、平方根表示法:一個(gè)非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號(hào)a。a叫被開方數(shù)。
9、中被開方數(shù)的取值范圍:被開方數(shù)a≥0
10、平方根性質(zhì):①一個(gè)正數(shù)的平方根有兩個(gè),它們互為相反數(shù)。②0的平方根是它本身0。③負(fù)數(shù)沒有平方根開平方;求一個(gè)數(shù)的平方根的運(yùn)算,叫做開平方。
11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個(gè)數(shù)不同、取值范圍不同。
12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0
13、含根號(hào)式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負(fù)的平方根。
14、求正數(shù)a的算術(shù)平方根的方法;
完全平方數(shù)類型:①想誰的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。
求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。
初中數(shù)學(xué)知識(shí)點(diǎn)12
1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質(zhì):
、啪匦尉哂衅叫兴倪呅蔚囊磺行再|(zhì);
⑵菱形的四條邊都相等;
、橇庑蔚膬蓷l對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。
、攘庑问禽S對(duì)稱圖形。
提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對(duì)角線互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對(duì)角線與邊之間的關(guān)系,即邊長的'平方等于對(duì)角線一半的平方和。
3、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
4、因式分解要素:
、俳Y(jié)果必須是整式
②結(jié)果必須是積的形式
、劢Y(jié)果是等式
④因式分解與整式乘法的關(guān)系:m(a+b+c)
5、公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
6、公因式確定方法:
、傧禂(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。
、谙嗤帜溉∽畹痛蝺
③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
7、提取公因式步驟:
、俅_定公因式。
、诖_定商式
、酃蚴脚c商式寫成積的形式。
8、平方根表示法:一個(gè)非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號(hào)a。a叫被開方數(shù)。
9、中被開方數(shù)的取值范圍:被開方數(shù)a≥0
10、平方根性質(zhì):
、僖粋(gè)正數(shù)的平方根有兩個(gè),它們互為相反數(shù)。
、0的平方根是它本身0。
、圬(fù)數(shù)沒有平方根開平方;求一個(gè)數(shù)的平方根的運(yùn)算,叫做開平方。
11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個(gè)數(shù)不同、取值范圍不同。
12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0
13、含根號(hào)式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負(fù)的平方根。
14、求正數(shù)a的算術(shù)平方根的方法;
完全平方數(shù)類型:
①想誰的平方是數(shù)a。
、谒詀的平方根是多少。
、塾檬阶颖硎。
求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。
初中數(shù)學(xué)知識(shí)點(diǎn)13
銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin):對(duì)邊比斜邊,即sinA=a/c;
余弦(cos):鄰邊比斜邊,即cosA=b/c;
正切(tan):對(duì)邊比鄰邊,即tanA=a/b;
余切(cot):鄰邊比對(duì)邊,即cotA=b/a;
正割(sec):斜邊比鄰邊,即secA=c/b;
余割(csc):斜邊比對(duì)邊,即cscA=c/a。
三角函數(shù)關(guān)系
1、互余角的關(guān)系
sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。
2、平方關(guān)系
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
3、積的關(guān)系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
兩角和差公式
sin(A+B)= sinAcosB+cosAsinB
sin(A—B)= sinAcosB—cosAsinB
cos(A+B)= cosAcosB—sinAsinB
cos(A—B)= cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1—tanAtanB)
tan(A—B)=(tanA—tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB—1)/(cotB+cotA)
cot(A—B)=(cotAcotB+1)/(cotB—cotA)
1、不在同一直線上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧。
3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。
4、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合。
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的'集合。
7、同圓或等圓的半徑相等。
8、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓。
9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11、定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。
13、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。
14、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑。
15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)。
初中數(shù)學(xué)知識(shí)點(diǎn)14
1、過兩點(diǎn)有且只有一條直線
2、兩點(diǎn)之間線段最短
3、同角或等角的補(bǔ)角相等——補(bǔ)角=180-角度。
4、同角或等角的余角相等——余角=90-角度。
5、過一點(diǎn)有且只有一條直線和已知直線垂直
6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7、平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯(cuò)角相等,兩直線平行
11、同旁內(nèi)角互補(bǔ),兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯(cuò)角相等
14、兩直線平行,同旁內(nèi)角互補(bǔ)
15、定理
xxx兩邊的和大于第三邊
16、推論
xxx兩邊的差小于第三邊
17、xxx內(nèi)角和定理:
xxx三個(gè)內(nèi)角的和等于180°
18、推論1
直角xxx的兩個(gè)銳角互余
19、推論2
xxx的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20、推論3
xxx的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21、全等xxx的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)xxx全等
23、角邊角公理(ASA):有兩角和它們的夾邊對(duì)應(yīng)相等的
兩個(gè)xxx全等
24、推論(AAS):有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)xxx全等
25、邊邊邊公理(SSS):有三邊對(duì)應(yīng)相等的兩個(gè)xxx全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角xxx全等
27、定理1
在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2
到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30、推論1
等腰xxx頂角的平分線平分底邊并且垂直于底邊
31、推論2
等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;
32、推論3
等邊xxx的各角都相等,并且每一個(gè)角都等于60°
33、等腰xxx的判定定理
如果一個(gè)xxx有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
34、等腰xxx的性質(zhì)定理
等腰xxx的兩個(gè)底角相等
(即等邊對(duì)等角)
35、推論1
三個(gè)角都相等的xxx是等邊xxx
36、推論
有一個(gè)角等于60°的等腰xxx是等邊xxx
37、在直角xxx中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
38、直角xxx斜邊上的中線等于斜邊上的一半
39、定理
線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40、逆定理
和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1
關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43、定理
如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44、定理3
兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長線相交,那么交點(diǎn)在對(duì)稱軸上
45、逆定理
如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46、勾股定理
直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的'逆定理
如果xxx的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個(gè)xxx是直角xxx
48、定理
四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理
n邊形的內(nèi)角的和等于(n-2)×180°
51、推論
任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1
平行四邊形的對(duì)角相等
53、平行四邊形性質(zhì)定理2
平行四邊形的對(duì)邊相等
54、推論
夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3
平行四邊形的對(duì)角線互相平分
56、平行四邊形判定定理1
兩組對(duì)角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2
兩組對(duì)邊分別相等的四邊
形是平行四邊形
58、平行四邊形判定定理3
對(duì)角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4
一組對(duì)邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1
矩形的四個(gè)角都是直角
61、矩形性質(zhì)定理2
矩形的對(duì)角線相等
62、矩形判定定理1
有三個(gè)角是直角的四邊形是矩形
63、矩形判定定理2
對(duì)角線相等的平行四邊形是矩形
64、菱形性質(zhì)定理1
菱形的四條邊都相等
65、菱形性質(zhì)定理2
菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1
四邊都相等的四邊形是菱形
68、菱形判定定理2
對(duì)角線互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1
正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2
正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
71、定理1
關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
72、定理2
關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分
73、逆定理
如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
74、等腰梯形性質(zhì)定理
等腰梯形在同一底上的兩個(gè)角相等
75、等腰梯形的兩條對(duì)角線相等
76、等腰梯形判定定理
在同一底上的兩個(gè)角相等的梯
形是等腰梯形
77、對(duì)角線相等的梯形是等腰梯形
78、平行線等分線段定理
如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1
經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80、推論2
經(jīng)過xxx一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
81、xxx中位線定理
xxx的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理
梯形的中位線平行于兩底,并且等于兩底和的一半
L=(a+b)÷2
S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc
如果
ad=bc,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理
三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
87、推論
平行于xxx一邊的直線截其他兩邊(或兩邊的延長線),所得的對(duì)應(yīng)線段成比例
88、定理
如果一條直線截xxx的兩邊(或兩邊的延長線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于xxx的第三邊
89、平行于xxx的一邊,并且和其他兩邊相交的直線,所截得的xxx的三邊與原xxx三邊對(duì)應(yīng)成比例
90、定理
平行于xxx一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的xxx與原xxx相似
91、相似xxx判定定理1
兩角對(duì)應(yīng)相等,兩xxx相似(ASA)
92、直角xxx被斜邊上的高分成的兩個(gè)直角xxx和原xxx相似
93、判定定理2
兩邊對(duì)應(yīng)成比例且夾角相等,兩xxx相似(SAS)
94、判定定理3
三邊對(duì)應(yīng)成比例,兩xxx相似(SSS)
95、定理
如果一個(gè)直角xxx的斜邊和一條直角邊與另一個(gè)直角xxx的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角xxx相似(HL)
96、性質(zhì)定理1
相似xxx對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
97、性質(zhì)定理2
相似xxx周長的比等于相似比
98、性質(zhì)定理3
相似xxx面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
101、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理
不在同一直線上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理
垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條。ㄖ睆剑
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
114、定理
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
116、定理
一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
117、推論1
同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
118、推論2
半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
119、推論3
如果xxx一邊上的中線等于這邊的一半,那么這個(gè)xxx是直角xxx
120、定理
圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
121、①直線L和⊙O相交
0
、谥本L和⊙O相切
d=r
③直線L和⊙O相離
d>r
122、切線的判定定理
經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質(zhì)定理
圓的切線垂直于經(jīng)過切點(diǎn)的半徑
124、推論1
經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
125、推論2
經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
126、切線長定理
從圓外一點(diǎn)引圓的兩條切線相交與一點(diǎn),它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對(duì)邊的和相等
128、弦切角定理
弦切角等于它所夾的弧對(duì)的圓周角?
129、推論
如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130、相交弦定理
圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑xxx的兩條線段的比例中項(xiàng)
132、切割線定理
從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)?
133、推論
從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條
割線與圓的交點(diǎn)的兩條線段長的積相等
134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
135、①兩圓外離
d>R+r
②兩圓外切
d=R+r
、蹆蓤A相交
R-r<d<R+r(R>r)
④兩圓內(nèi)切
d=R-r(R>r)
、輧蓤A內(nèi)含
d<R-r(R>r)
136、定理
相交兩圓的連心線垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理
任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角xxx
141、正n邊形的面積Sn=pn*rn/2
p表示正n邊形的周長
142、正xxx面積√3a^2/4
a表示邊長
143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計(jì)算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內(nèi)公切線長=d-(R-r)
外公切線長=d-(R+r)
初中數(shù)學(xué)知識(shí)點(diǎn)15
1.二次根式概念:式子a(a≥0)叫做二次根式。
2.最簡二次根式:必須同時(shí)滿足下列條件:
3.同類二次根式:
二次根式化成最簡二次根式后,若被開方數(shù)相同,則這幾個(gè)二次根式就是同類二次根式。4.二次根式的_質(zhì):
a(a0)22(1)(a)=a(a≥0);(2)aa
0(a=0);
5.二次根式的運(yùn)算:
a(a0)
(1)因式的外移和內(nèi)移:如果被開方數(shù)中有的因式能夠開得盡方,那么,就可以用它的算術(shù)根代替而移到根號(hào)外面;如果被開方數(shù)是代數(shù)和的形式,那么先解因式,變形為積的形式,再移因式到根號(hào)外面,反之也可以將根號(hào)外面的正因式平方后移到根號(hào)里面.
(2)二次根式的加減法:先把二次根式化成最簡二次根式再合并同類二次根式.
(3)二次根式的乘除法:二次根式相乘(除),將被開方數(shù)相乘(除),所得的積(商)仍作積(商)的被開方數(shù)并將運(yùn)算結(jié)果化為最簡二次根式
單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
1.單項(xiàng)式:
1)數(shù)與字母的乘積這樣的代數(shù)式叫做單項(xiàng)式。
單獨(dú)的一個(gè)數(shù)或字母(可以是兩個(gè)數(shù)字或字母相乘)也是單項(xiàng)式。
2)單項(xiàng)式的系數(shù):單項(xiàng)式中的數(shù)字因數(shù)及_質(zhì)符號(hào)叫做單項(xiàng)式的系數(shù)。
3)單項(xiàng)式的次數(shù):一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。
2.多項(xiàng)式:
1)幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。在多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),其中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。一個(gè)多項(xiàng)式有幾項(xiàng)就叫做幾項(xiàng)式。
2)多項(xiàng)式的次數(shù):多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù),就是這個(gè)多項(xiàng)式的次數(shù)。
3.多項(xiàng)式的排列:
1).把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從大到小的順序排列起來,叫做把多項(xiàng)式按這個(gè)字母降冪排列。
2).把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從小到大的順序排列起來,叫做把多項(xiàng)式按這個(gè)字母升冪排列。
由于單項(xiàng)式的項(xiàng),包括它前面的_質(zhì)符號(hào),因此在排列時(shí),仍需把每一項(xiàng)的_質(zhì)符號(hào)看作是這一項(xiàng)的一部分,一起移動(dòng)
初中數(shù)學(xué)一元二次方程常見考法
1.考查一元二次方程的根與系數(shù)的關(guān)系(韋達(dá)定理):這類題目有著解題規(guī)律性強(qiáng)的特點(diǎn),題目設(shè)置會(huì)很靈活,所以一直很吸引命題者。主要考查①根與系數(shù)的推導(dǎo),有關(guān)規(guī)律的探究②已知兩根或一根構(gòu)造一元二次方程,這類題目一般比較開放;
2.在一元二次方程和幾何問題、函數(shù)問題的交匯處出題。(幾何問題:主要是將數(shù)字及數(shù)字間的關(guān)系隱藏在圖形中,用圖形表示出來,這樣的圖形主要有三角形、四邊形、圓等涉及到三角形三邊關(guān)系、三角形全等、面積計(jì)算、體積計(jì)算、勾股定理等);
3.列一元二次方程解決實(shí)際問題,以實(shí)際生活為背景,命題廣泛。(常見的題型是增長率問題,注:平均增長率公式。
初中數(shù)學(xué)整式的加減知識(shí)點(diǎn)
2.1整式
、賳雾(xiàng)式:表示數(shù)或字母積的式子
、趩雾(xiàng)式的.系數(shù):單項(xiàng)式中的數(shù)字因數(shù)
③單項(xiàng)式的次數(shù):一個(gè)單項(xiàng)式中,所有字母的指數(shù)和
、軒讉(gè)單項(xiàng)式的和叫做多項(xiàng)式。每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng)叫做常數(shù)項(xiàng)。
、荻囗(xiàng)式里次數(shù)最高項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。
、迒雾(xiàng)式與多項(xiàng)式統(tǒng)稱整式。
2.2 整式的'加減
、偻愴(xiàng):所含字母相同,而且相同字母的次數(shù)相同的單項(xiàng)式。
、诎讯囗(xiàng)式中的同類項(xiàng)合并成一項(xiàng),叫做合并同類項(xiàng)。
、酆喜⑼愴(xiàng)后,所得項(xiàng)的系數(shù)是合并前各同類項(xiàng)的系數(shù)的和,且字母部分不變。
、苋绻ㄌ(hào)外的因數(shù)是正數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相同。
、萑绻ㄌ(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相反。
、抟话愕兀瑤讉(gè)整式相加減,如果有括號(hào)就先去括號(hào),然后再合并同類項(xiàng)。
【初中數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章:
初中數(shù)學(xué)垂直知識(shí)點(diǎn)12-07
初中數(shù)學(xué)代數(shù)知識(shí)點(diǎn)01-13
初中數(shù)學(xué)角的知識(shí)點(diǎn)05-31
初中數(shù)學(xué)倒數(shù)的知識(shí)點(diǎn)08-01
初中數(shù)學(xué)知識(shí)點(diǎn)04-30
初中數(shù)學(xué)概率知識(shí)點(diǎn)06-14
初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)12-05
初中數(shù)學(xué)知識(shí)點(diǎn)歸納.07-30