當前位置:育文網(wǎng)>初中>初中數(shù)學> 初中數(shù)學知識點總結優(yōu)秀

初中數(shù)學知識點總結優(yōu)秀

時間:2024-11-02 10:02:03 初中數(shù)學

【優(yōu)秀】初中數(shù)學知識點總結優(yōu)秀

  總結是指社會團體、企業(yè)單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規(guī)律性認識的一種書面材料,它可以使我們更有效率,讓我們一起來學習寫總結吧。總結你想好怎么寫了嗎?下面是小編精心整理的初中數(shù)學知識點總結優(yōu)秀,歡迎閱讀與收藏。

【優(yōu)秀】初中數(shù)學知識點總結優(yōu)秀

初中數(shù)學知識點總結優(yōu)秀1

  第一章一元一次不等式和一元一次不等式組

  一、不等關系

  1、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式。

  2、要區(qū)別方程與不等式:方程表示的是相等的關系;不等式表示的是不相等的關系。

  3、準確"翻譯"不等式,正確理解"非負數(shù)"、"不小于"等數(shù)學術語。

  非負數(shù)<===>大于等于0(≥0)<===>0和正數(shù)<===>不小于0

  非正數(shù)<===>小于等于0(≤0)<===>0和負數(shù)<===>不大于0

  二、不等式的基本性質

  1、掌握不等式的基本性質,并會靈活運用:

 。1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:

  如果a>b,那么a+c>b+c,a-c>b-c.

 。2)不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變,即

  如果a>b,并且c>0,那么ac>bc,。

 。3)不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變,即:

  如果a>b,并且c<0,那么ac

  2、比較大小:(a、b分別表示兩個實數(shù)或整式)

  一般地:

  如果a>b,那么a-b是正數(shù);反過來,如果a-b是正數(shù),那么a>b;

  如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;

  如果a

  即:

  a>b<===>a-b>0

  a=b<===>a-b=0

  aa-b<0

  (由此可見,要比較兩個實數(shù)的大小,只要考察它們的'差就可以了。

  三、不等式的解集:

  1、能使不等式成立的未知數(shù)的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式。

  2、不等式的解可以有無數(shù)多個,一般是在某個范圍內的所有數(shù),與方程的解不同。

  3、不等式的解集在數(shù)軸上的表示:

  用數(shù)軸表示不等式的解集時,要確定邊界和方向:

 、龠吔:有等號的是實心圓圈,無等號的是空心圓圈;

 、诜较:大向右,小向左

  四、一元一次不等式:

  1、只含有一個未知數(shù),且含未知數(shù)的式子是整式,未知數(shù)的次數(shù)是1.像這樣的不等式叫做一元一次不等式。

  2、解一元一次不等式的過程與解一元一次方程類似,特別要注意,當不等式兩邊都乘以一個負數(shù)時,不等號要改變方向。

  3、解一元一次不等式的步驟:

 、偃シ帜;

 、谌ダㄌ;

 、垡祈棧

 、芎喜⑼愴棧

 、菹禂(shù)化為1(不等號的改變問題)

  4、一元一次不等式基本情形為ax>b(或ax

 、佼攁>0時,解為;

 、诋攁=0時,且b<0,則x取一切實數(shù);

  當a=0時,且b≥0,則無解;

 、郛攁<0時,解為;

初中數(shù)學知識點總結優(yōu)秀2

  1、知識網(wǎng)絡結構

  2、知識要點

 。1)在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。

 。2)在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。

 。3)兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是

  鄰補角。鄰補角的性質:鄰補角互補。如圖1所示,與互為鄰補角,與互為鄰補角。+=180°;+=180°;+=180°;+=180°。

  3、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的`性質:對頂角相等。如圖1所示,與互為對頂角。=;=。

  4、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,其中一條叫做另一條的垂線。如圖2所示,當=90°時,⊥。

  垂線的性質:

  性質1:過一點有且只有一條直線與已知直線垂直。

  性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

  性質3:如圖2所示,當a⊥b時,====90°。

  點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。

  5、同位角、內錯角、同旁內角基本特征:

  在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣的兩個角叫同位角。圖3中,共有對同位角:與是同位角;與是同位角;與是同位角;與是同位角。

  在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側,這樣的兩個角叫內錯角。圖3中,共有對內錯角:與是內錯角;與是內錯角。

  在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內角。圖3中,共有對同旁內角:與是同旁內角;與是同旁內角。

初中數(shù)學知識點總結優(yōu)秀3

  1.有理數(shù):

 。1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負數(shù);—a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);

 。2)有理數(shù)的分類:① ②

  2.數(shù)軸:

  數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。

  3.相反數(shù):

 。1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

 。2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。

  4.絕對值:

 。1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

  (2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

  5、有理數(shù)比大。

 。1)正數(shù)的絕對值越大,這個數(shù)越大;

 。2)正數(shù)永遠比0大,負數(shù)永遠比0小;

  (3)正數(shù)大于一切負數(shù);

 。4)兩個負數(shù)比大小,絕對值大的反而小

 。5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的.數(shù)大;

  (6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。

  6.互為倒數(shù):

  乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負倒數(shù)。

  7.有理數(shù)加法法則:

  (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

 。2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

 。3)一個數(shù)與0相加,仍得這個數(shù)。

初中數(shù)學知識點總結優(yōu)秀4

  一、平行四邊形的定義、性質及判定

  1、兩組對邊平行的四邊形是平行四邊形。

  2、性質:

 。1)平行四邊形的對邊相等且平行

  (2)平行四邊形的對角相等,鄰角互補

 。3)平行四邊形的對角線互相平分

  3、判定:

 。1)兩組對邊分別平行的四邊形是平行四邊形

 。2)兩組對邊分別相等的四邊形是平行四邊形

  (3)一組對邊平行且相等的四邊形是平行四邊形

 。4)兩組對角分別相等的四邊形是平行四邊形

 。5)對角線互相平分的四邊形是平行四邊形

  4、對稱性:平行四邊形是中心對稱圖形

  二、矩形的定義、性質及判定

  1、定義:有一個角是直角的平行四邊形叫做矩形

  2、性質:矩形的四個角都是直角,矩形的對角線相等

  3、判定:

 。1)有一個角是直角的平行四邊形叫做矩形

 。2)有三個角是直角的.四邊形是矩形

 。3)兩條對角線相等的平行四邊形是矩形

  4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。

  三、菱形的定義、性質及判定

  1、定義:有一組鄰邊相等的平行四邊形叫做菱形

 。1)菱形的四條邊都相等

  (2)菱形的對角線互相垂直,并且每一條對角線平分一組對角

  (3)菱形被兩條對角線分成四個全等的直角三角形

 。4)菱形的面積等于兩條對角線長的積的一半

  2、s菱=爭6(n、6分別為對角線長)

  3、判定:

 。1)有一組鄰邊相等的平行四邊形叫做菱形

 。2)四條邊都相等的四邊形是菱形

 。3)對角線互相垂直的平行四邊形是菱形

  4、對稱性:菱形是軸對稱圖形也是中心對稱圖形

初中數(shù)學知識點總結優(yōu)秀5

  1、正數(shù)和負數(shù)的有關概念

 。1)正數(shù):比0大的數(shù)叫做正數(shù);

  負數(shù):比0小的數(shù)叫做負數(shù);

  0既不是正數(shù),也不是負數(shù)。

  (2)正數(shù)和負數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類

  3、有關數(shù)軸

 。1)數(shù)軸的三要素:原點、正方向、單位長度。數(shù)軸是一條直線。

 。2)所有有理數(shù)都可以用數(shù)軸上的點來表示,但數(shù)軸上的點不一定都是有理數(shù)。

 。3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點在原點的右側,表示負數(shù)的點在原點的左側。

 。2)相反數(shù):符號不同、絕對值相等的兩個數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負數(shù),負數(shù)的相反數(shù)是正數(shù)。

 。3)絕對值最小的數(shù)是0;絕對值是本身的數(shù)是非負數(shù)。

  4、任何數(shù)的絕對值是非負數(shù)。

  最小的正整數(shù)是1,最大的負整數(shù)是-1。

  5、利用絕對值比較大小

  兩個正數(shù)比較:絕對值大的那個數(shù)大;

  兩個負數(shù)比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數(shù)加法

  (1)符號相同的兩數(shù)相加:和的符號與兩個加數(shù)的符號一致,和的絕對值等于兩個加數(shù)絕對值之和。

 。2)符號相反的兩數(shù)相加:當兩個加數(shù)絕對值不等時,和的符號與絕對值較大的加數(shù)的符號相同,和的絕對值等于加數(shù)中較大的絕對值減去較小的絕對值;當兩個加數(shù)絕對值相等時,兩個加數(shù)互為相反數(shù),和為零。

 。3)一個數(shù)同零相加,仍得這個數(shù)。

  加法的交換律:a+b=b+a

  加法的結合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  8、在把有理數(shù)加減混合運算統(tǒng)一為最簡的`形式,負數(shù)前面的加號可以省略不寫。

  例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12-25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和!

  9、有理數(shù)的乘法

  兩個數(shù)相乘,同號得正,異號得負,再把絕對值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號第二步:絕對值相乘

  10、乘積的符號的確定

  幾個有理數(shù)相乘,因數(shù)都不為0時,積的符號由負因數(shù)的個數(shù)確定:當負因數(shù)有奇數(shù)個時,積為負;

  當負因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。

  11、倒數(shù):乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。

  正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù)。(互為倒數(shù)的兩個數(shù)符號一定相同)

  倒數(shù)是本身的只有1和-1。

初中數(shù)學知識點總結優(yōu)秀6

  第一章實數(shù)

  一、重要概念

  1、數(shù)的分類及概念

  數(shù)系表:

  說明:“分類”的原則:1)相稱(不重、不漏)

  2)有標準

  2、非負數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x≥0)

  常見的非負數(shù)有:

  性質:若干個非負數(shù)的和為0,則每個非負擔數(shù)均為0。

  3、倒數(shù):①定義及表示法

  ②性質:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1時,1/a<1;D.積為1。

  4、相反數(shù):①定義及表示法

 、谛再|:A.a≠0時,a≠-a;B.a與-a在數(shù)軸上的位置;C.和為0,商為-1。

  5、數(shù)軸:①定義(“三要素”)

  ②作用:A.直觀地比較實數(shù)的大。籅.明確體現(xiàn)絕對值意義;C.建立點與實數(shù)的一一對應關系。

  6、奇數(shù)、偶數(shù)、質數(shù)、合數(shù)(正整數(shù)—自然數(shù))

  定義及表示:

  奇數(shù):2n-1

  偶數(shù):2n(n為自然數(shù))

  7、絕對值:①定義(兩種):

  代數(shù)定義:

  幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應的點到原點的距離。

  ②│a│≥0,符號“││”是“非負數(shù)”的標志;③數(shù)a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現(xiàn),其關鍵一步是去掉“││”符號。

  二、實數(shù)的運算

  1、運算法則(加、減、乘、除、乘方、開方)

  2、運算定律(五個—加法[乘法]交換律、結合律;[乘法對加法的]

  分配律)

  3、運算順序:A.高級運算到低級運算;B.(同級運算)從“左”

  到“右”(如5÷ ×5);C.(有括號時)由“小”到“中”到“大”。

  三、應用舉例(略)

  附:典型例題

  1、已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│

  =b-a.

  2、已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。

  初三數(shù)學知識點第二章代數(shù)式

  重點代數(shù)式的.有關概念及性質,代數(shù)式的運算

  ☆內容提要☆

  一、重要概念

  分類:

  1、代數(shù)式與有理式

  用運算符號把數(shù)或表示數(shù)的字母連結而成的式子,叫做代數(shù)式。單獨

  的一個數(shù)或字母也是代數(shù)式。

  整式和分式統(tǒng)稱為有理式。

  2、整式和分式

  含有加、減、乘、除、乘方運算的代數(shù)式叫做有理式。

  沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。

  有除法運算并且除式中含有字母的有理式叫做分式。

  3、單項式與多項式

  沒有加減運算的整式叫做單項式。(數(shù)字與字母的積—包括單獨的一個數(shù)或字母)

  幾個單項式的和,叫做多項式。

  說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運算,把單項式、多項式區(qū)分開。②進行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。如,=x, =│x│等。

  4、系數(shù)與指數(shù)

  區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看

  5、同類項及其合并

  條件:①字母相同;②相同字母的指數(shù)相同

  合并依據(jù):乘法分配律

  6、根式

  表示方根的代數(shù)式叫做根式。

  含有關于字母開方運算的代數(shù)式叫做無理式。

  注意:①從外形上判斷;②區(qū)別:、是根式,但不是無理式(是無理數(shù))。

  7、算術平方根

 、耪龜(shù)a的正的平方根([a≥0—與“平方根”的區(qū)別]);

 、扑阈g平方根與絕對值

 、俾(lián)系:都是非負數(shù),=│a│

 、趨^(qū)別:│a│中,a為一切實數(shù);中,a為非負數(shù)。

  8、同類二次根式、最簡二次根式、分母有理化

  化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。

  滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。

  把分母中的根號劃去叫做分母有理化。

【初中數(shù)學知識點總結優(yōu)秀】相關文章:

【優(yōu)秀】初中數(shù)學知識點總結10-20

初中數(shù)學知識點總結【優(yōu)秀】06-23

(優(yōu)秀)初中數(shù)學知識點總結06-22

初中數(shù)學知識點總結優(yōu)秀09-21

初中數(shù)學知識點總結(優(yōu)秀)06-17

初中數(shù)學總結知識點08-26

數(shù)學初中知識點總結[優(yōu)秀15篇]07-16

數(shù)學初中知識點總結優(yōu)秀[15篇]07-17

初中數(shù)學知識點總結15篇[優(yōu)秀]02-28