- 相關(guān)推薦
蘇科版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
在我們平凡的學(xué)生生涯里,不管我們學(xué)什么,都需要掌握一些知識(shí)點(diǎn),知識(shí)點(diǎn)就是“讓別人看完能理解”或者“通過(guò)練習(xí)我能掌握”的內(nèi)容。相信很多人都在為知識(shí)點(diǎn)發(fā)愁,以下是小編幫大家整理的蘇科版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家。
蘇科版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1
1、重心的定義:平面圖形中,幾何圖形的重心是當(dāng)支撐或懸掛時(shí)圖形能在水平面處于平衡狀態(tài),此時(shí)的支撐點(diǎn)或者懸掛點(diǎn)叫做平衡點(diǎn),也叫做重心。
2、幾種幾何圖形的重心:
、 線段的重心就是線段的中點(diǎn);
、 平行四邊形及特殊平行四邊形的重心是它的兩條對(duì)角線的交點(diǎn);
、 三角形的三條中線交于一點(diǎn),這一點(diǎn)就是三角形的重心;
、 任意多邊形都有重心,以多邊形的任意兩個(gè)頂點(diǎn)作為懸掛點(diǎn),把多邊形懸掛時(shí),過(guò)這兩點(diǎn)鉛垂線的交點(diǎn)就是這個(gè)多邊形的重心。
提示:⑴ 無(wú)論幾何圖形的形狀如何,重心都有且只有一個(gè);
⑵ 從物理學(xué)角度看,幾何圖形在懸掛或支撐時(shí),位于重心兩邊的力矩相同。
3、常見圖形重心的性質(zhì):
⑴ 線段的重心把線段分為兩等份;
、 平行四邊形的重心把對(duì)角線分為兩等份;
、 三角形的重心把中線分為1:2兩部分(重心到頂點(diǎn)距離占2份,重心到對(duì)邊中點(diǎn)距離占1份)。
上面對(duì)重心知識(shí)點(diǎn)的鞏固學(xué)習(xí),同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復(fù)習(xí)學(xué)習(xí)數(shù)學(xué)知識(shí)。
蘇科版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 2
1.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形;同圓或等圓的半徑相等。
2.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。
3.定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。
4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合。
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合;圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。
6.不在同一直線上的三點(diǎn)確定一個(gè)圓。
7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧。
推論1:
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧;
②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧;
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
8.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
9.定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。
10.經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心。
11.切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線。
12.切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑。
13.經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
14.切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。
15.圓的外切四邊形的兩組對(duì)邊的和相等外角等于內(nèi)對(duì)角。
16.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上。
17.
、賰蓤A外離d>R+r
②兩圓外切d=R+r
、蹆蓤A相交d>R-r)
、軆蓤A內(nèi)切d=R-r(R>r)
⑤兩圓內(nèi)含d=r)
18.定理把圓分成n(n≥3):
、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。
19.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓。
20.弧長(zhǎng)計(jì)算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。
21.內(nèi)公切線長(zhǎng)= d-(R-r)外公切線長(zhǎng)= d-(R+r)。
22.定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。
23.推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。
24.推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。
蘇科版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 3
平面直角坐標(biāo)系:
在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
蘇科版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 4
1、有理數(shù):
①整數(shù)→正整數(shù)/0/負(fù)整數(shù)
、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:
、佼嬕粭l水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较颍偷玫綌?shù)軸。
②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。
、軘(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對(duì)值:
、僭跀(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。
②正數(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:加法:
、偻(hào)相加,取相同的符號(hào),把絕對(duì)值相加。
、诋愄(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
③一個(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:
、賰蓴(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。
②任何數(shù)與0相乘得0。
③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:
、俪砸粋(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。
、0不能作除數(shù)。
乘方:求n個(gè)相同因數(shù)a的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,a叫底數(shù),n叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。
2、實(shí)數(shù) 無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)
平方根:
、偃绻粋(gè)正數(shù)x的平方等于a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。
、谌绻粋(gè)數(shù)x的平方等于a,那么這個(gè)數(shù)x就叫做a的平方根。
、垡粋(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。
、芮笠粋(gè)數(shù)a的平方根運(yùn)算,叫做開平方,其中a叫做被開方數(shù)。
立方根:
、偃绻粋(gè)數(shù)x的立方等于a,那么這個(gè)數(shù)x就叫做a的立方根。
、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋(gè)數(shù)a的立方根的運(yùn)算叫開立方,其中a叫做被開方數(shù)。
實(shí)數(shù):
①實(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。
②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。
、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
3、代數(shù)式
代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):
、偎帜赶嗤,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。
、诎淹愴(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。
、墼诤喜⑼愴(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:
、贁(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
、谝粋(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。
、垡粋(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。
冪的運(yùn)算:am+an=a(m+n)
(am)n=amn
(a/b)n=an/bn 除法一樣。
整式的乘法:
①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
、鄱囗(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
、賳雾(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。
、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。
方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。
分式:
①整式a除以整式b,如果除式b中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。
②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。
初中數(shù)學(xué)知識(shí)點(diǎn):直線的位置與常數(shù)的關(guān)系
、賙>0則直線的傾斜角為銳角
②k<0則直線的傾斜角為鈍角
、蹐D像越陡,|k|越大
、躡>0直線與y軸的交點(diǎn)在x軸的上方
、輇<0直線與y軸的交點(diǎn)在x軸的下方
蘇科版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 5
1、過(guò)兩點(diǎn)有且只有一條直線
2、兩點(diǎn)之間線段最短
3、同角或等角的補(bǔ)角相等
4、同角或等角的余角相等
5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直
6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7、平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯(cuò)角相等,兩直線平行
11、同旁內(nèi)角互補(bǔ),兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯(cuò)角相等
14、兩直線平行,同旁內(nèi)角互補(bǔ)
15、定理 三角形兩邊的和大于第三邊
16、推論 三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180
18、推論1 直角三角形的兩個(gè)銳角互余
19、推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20、推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
蘇科版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 6
銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin):對(duì)邊比斜邊,即sinA=a/c;
余弦(cos):鄰邊比斜邊,即cosA=b/c;
正切(tan):對(duì)邊比鄰邊,即tanA=a/b;
余切(cot):鄰邊比對(duì)邊,即cotA=b/a;
正割(sec):斜邊比鄰邊,即secA=c/b;
余割(csc):斜邊比對(duì)邊,即cscA=c/a。
三角函數(shù)關(guān)系
1、互余角的關(guān)系
sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。
2、平方關(guān)系
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
3、積的關(guān)系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
兩角和差公式
sin(A+B)= sinAcosB+cosAsinB
sin(A—B)= sinAcosB—cosAsinB
cos(A+B)= cosAcosB—sinAsinB
cos(A—B)= cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1—tanAtanB)
tan(A—B)=(tanA—tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB—1)/(cotB+cotA)
cot(A—B)=(cotAcotB+1)/(cotB—cotA)
1、不在同一直線上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧。
3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。
4、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合。
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。
7、同圓或等圓的半徑相等。
8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。
9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11、定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。
13、切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線。
14、切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑。
15、推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)。
蘇科版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 7
第一章:勾股定理
1.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a的平方加上b的平方等于c的平方。
2.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a的平方加上b的平方等于c的平方。
3.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么兩條直角邊長(zhǎng)的平方和等于斜邊長(zhǎng)的平方。
4.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a、b、c三者之間的關(guān)系是a的平方加上b的平方等于c的平方。
第二章:四邊形
1.平行四邊形:兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
2.菱形:有一組鄰邊相等的平行四邊形叫做菱形。
3.矩形:有一個(gè)角是直角的平行四邊形叫做矩形。
4.正方形:有一組鄰邊相等的矩形叫做正方形。
5.平行四邊形的性質(zhì):對(duì)邊平行且相等;對(duì)角相等,且互補(bǔ);對(duì)角線互相平分。
6.菱形的性質(zhì):四邊相等;對(duì)角線互相垂直,且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半。
7.矩形的性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線相等。
8.正方形的性質(zhì):四個(gè)角都是直角,四條邊都相等;對(duì)角線相等,且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形被兩條對(duì)角線分成四個(gè)全等的直角三角形;正方形是特殊的長(zhǎng)方形,所以正方形具有矩形的一切性質(zhì)。
第三章:一次函數(shù)
1.一次函數(shù):如果所給函數(shù)表達(dá)式是正比例函數(shù),那么它經(jīng)過(guò)原點(diǎn)(0,0);如果所給函數(shù)表達(dá)式是一次函數(shù)(斜截式),那么它經(jīng)過(guò)原點(diǎn)(0,0)。
2.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
3.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。
4.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。
5.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
6.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。
7.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
8.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。
9.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
10.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。
【蘇科版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
初中冀教版數(shù)學(xué)知識(shí)點(diǎn)08-02
北師大版初中數(shù)學(xué)知識(shí)點(diǎn)01-31
初中數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)03-01
初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)11-05
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)11-24
初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)12-05
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-14
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-15