當前位置:育文網>初中>初中數(shù)學> 初中數(shù)學的知識點

初中數(shù)學的知識點

時間:2022-05-18 23:28:30 初中數(shù)學

初中數(shù)學的知識點(15篇)

  在日常的學習中,大家都沒少背知識點吧?知識點也可以通俗的理解為重要的內容。相信很多人都在為知識點發(fā)愁,下面是小編幫大家整理的初中數(shù)學的知識點,希望能夠幫助到大家。

初中數(shù)學的知識點(15篇)

初中數(shù)學的知識點1

  換元法在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應用。

  解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。

  換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結論聯(lián)系起來;蛘咦?yōu)槭煜さ男问剑褟碗s的計算和推證簡化。

  它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式。

  分類

  換元的'方法有:局部換元、三角換元、均值換元等。

  換元的種類有:等參量換元、非等量換元

  換元法是二元一次方程的另一種方法,就是說把一個方程用其他未知數(shù)表示,再帶入另一個方程中。

初中數(shù)學的知識點2

  橢圓知識:平面內與兩定點F1、F2的距離的和等于常數(shù)2a(2a>|F1F2|)的動點P的軌跡叫做橢圓。

  橢圓的第一定義

  即:│PF1│+│PF2│=2a

  其中兩定點F1、F2叫做橢圓的焦點,兩焦點的距離│F1F2│=2c<2a叫做橢圓的焦距。P 為橢圓的動點。

  長軸為 2a; 短軸為 2b。

  橢圓的第二定義

  平面內到定點F的距離與到定直線的距離之比為常數(shù)e(即橢圓的離心率,e=c/a)的點的集合(定點F不在定直線上,該常數(shù)為小于1的正數(shù)) 其中定點F為橢圓的焦點,定直線稱為橢圓的準線(該定直線的方程是x=±a^2/c[焦點在X軸上];或者y=±a^2/c[焦點在Y軸上])。

  橢圓的其他定義

  根據(jù)橢圓的一條重要性質,也就是橢圓上的點與橢圓短軸兩端點連線的斜率之積是定值 定值為e^2-1 可以得出:平面內與兩定點的連線的斜率之積是常數(shù)k的動點的軌跡是橢圓,此時k應滿足一定的條件,也就是排除斜率不存在的情況,還有K應滿足<0且不等于-1。

  簡單幾何性質

  1、范圍

  2、對稱性:關于X軸對稱,Y軸對稱,關于原點中心對稱。

  3、頂點:(當中心為原點時)(a,0)(-a,0)(0,b)(0,-b)

  4、離心率:e=c/a

  5、離心率范圍 0

  知識歸納:離心率越大橢圓就越扁,越小則越接近于圓。

  初中數(shù)學知識點總結:平面直角坐標系

  平面直角坐標系

  平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  初中數(shù)學知識點:平面直角坐標系的構成

  平面直角坐標系的構成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

  初中數(shù)學知識點:點的坐標的性質

  點的坐標的性質

  建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

  對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點C的坐標。

  一個點在不同的象限或坐標軸上,點的坐標不一樣。

  希望上面對點的坐標的性質知識講解學習,同學們都能很好的`掌握,相信同學們會在考試中取得優(yōu)異成績的。

  初中數(shù)學知識點:因式分解的一般步驟

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數(shù)范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

  初中數(shù)學知識點:因式分解

  因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④

  因式分解與整式乘法的關系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟

 、俅_定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

  ①不準丟字母

 、诓粶蕘G常數(shù)項注意查項數(shù)

 、垭p重括號化成單括號

 、芙Y果按數(shù)單字母單項式多項式順序排列

 、菹嗤蚴綄懗蓛绲男问

 、奘醉椮撎柗爬ㄌ柾

  ⑦括號內同類項合并。

初中數(shù)學的知識點3

  顧名思義。中位線就是圖形的中點的連線,包括三角形中位線和梯形中位線兩種。

  中位線

  中位線概念

  (1)三角形中位線定義:連接三角形兩邊中點的線段叫做三角形的中位線。

  (2)梯形中位線定義:連結梯形兩腰中點的線段叫做梯形的'中位線。

  注意:

  (1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連結一頂點和它對邊的中點,而三角形中位線是連結三角形兩邊中點的線段。

  (2)梯形的中位線是連結兩腰中點的線段而不是連結兩底中點的線段。

  (3)兩個中位線定義間的聯(lián)系:可以把三角形看成是上底為零時的梯形,這時梯形的中位線就變成三角形的中位線。

初中數(shù)學的知識點4

  一、初中數(shù)學形象化,便于學生理解,并且聯(lián)系生活實際比較多。對于這些知識點,只要用心一些,很是比較容易把握的,運用起來也會比較自如。而高中數(shù)學相對來說則比較抽象,學生經常不能很好的把所學知識理解透徹,甚至進入理解誤區(qū),如此,便造成運用定理和公式不熟練或運用錯誤的現(xiàn)象。針對這些情況,建議家長由專業(yè)教師引導一下,深入淺出,為高中數(shù)學后續(xù)課程的學習打下堅實的基礎;

  二、初中數(shù)學淺顯化,學生只要認真思考,理解其所表達的意思。而高中很多知識點則較為隱晦,學生體會不到所表達的`意思。比如:初中所學的二次函數(shù),比較多的偏向于感性認識,學生們往往能較好地掌握,但是進入高中之后,高中數(shù)學對二次函數(shù)提出了新的更高的要求,比較偏向于理性思維時,某些學生便會適應不過來。

  三、初中數(shù)學知識容量相對較小?傮w而言,初中數(shù)學知識點較少,學生能夠通過三年的系統(tǒng)學習,比較好地掌握。高中數(shù)學則知識點眾多,而每個章節(jié)所包含的小知識點則更是繁雜,學生們則往往難以適應。

  綜上,建議學生與家長以謹慎、認真的態(tài)度去對待初三升高中這一蛻變的階段,因為這是我們邁進高中的第一步,只有第一步走踏實了,我們才能走過高中,踏進高考的大門!

初中數(shù)學的知識點5

  圓的知識:平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。

  圓心:

  (1)如定義(1)中,該定點為圓心

  (2)如定義(2)中,繞的那一端的端點為圓心。

  (3)圓任意兩條對稱軸的交點為圓心。

  (4) 垂直于圓內任意一條弦且兩個端點在圓上的線段的二分點為圓心。

  注:圓心一般用字母O表示

  直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

  半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。

  圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的.直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。

  圓的半徑或直徑決定圓的大小,圓心決定圓的位置。

  圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。

  圓的周長與直徑的比值叫做圓周率。

  圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計算時,通常取它的近似值,π≈3.14。

  直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。

  圓的面積公式:圓所占平面的大小叫做圓的面積。πr,用字母S表示。

  一條弧所對的圓周角是圓心角的二分之一。

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

  在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。

初中數(shù)學的知識點6

  數(shù)據(jù)的分析—初中數(shù)學知識點集錦(中)

  初二是一個產生劇烈變化的時期,更是一個危險的時期,也是一個爬坡的時期,是一個分水嶺。這個“分水嶺”并不是僅僅體現(xiàn)在初二的期末考試中,最重要的它會更加清楚的體現(xiàn)在你的初三復習中,體現(xiàn)在最終的中考當中。

  有個遠大的目標,有個合適的計劃--嚴格管理時間,科學安排時間。大部分初三學生的'時間真的是擠出來的,幸運的是我們距離初三還有一個學期和一個暑假的時間,把握住這段時間,我們的初三將會無比的輕松。

  偏科相當?shù)目膳?/strong>,我雖然只教數(shù)學可是深有體會。有個人大附的男生幾乎每個壓軸題都能第一個做出來,做完之后就在那“默寫”某某個課文。一問才知道,偏科,語文總在90邊緣徘徊。偏科的危害就不用我說了,可是同學們可能不知道,到初三再想補“瘸腿”是多么的可怕--原因很簡單,每科都在復習!

初中數(shù)學的知識點7

  角度制知識:用度(°)、分(′)、秒(″)來測量角的大小的制度叫做角度制。

  角度制

  角度制:規(guī)定周角的360分之一為1度的'角,用度作為單位來度量角的單位制叫做角度制。

  角度制中單位的換算。

  角度制中,1°=60′,1′=60″,1′=(1/60)°,1″=(1/60)′。

  角度制就是運用60進制的例子。

  角度制中角度的運算。

  兩個角相加時,°與°相加,′與′相加,″與″相加,其中如果滿60則進1。

  兩個角相減時,°與°相減,′與′相減,″與″相減,其中如果不夠則從上一個單位退1當作60。

  測量角的大小的另外一個方法,角度制與弧度制的換算。

  主要把握180°=π rad這個關系式。

  例如:1度=π /180 弧度30度轉換成弧度值:弧度=30*π /180終邊相同的角的表示β=α+k360°k屬于整數(shù)。

  知識歸納:除了角度制可以測量角的大小,還有一種——弧度制也可以測量角的大小。

初中數(shù)學的知識點8

  其實角的大小與邊的長短沒有關系,角的大小決定于角的兩條邊張開的程度。

  角的靜態(tài)定義

  具有公共端點的兩條射線組成的圖形叫做角(angle)。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

  角的動態(tài)定義

  一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊

  角的符號

  角的符號:∠

  角的種類

  在動態(tài)定義中,取決于旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

  銳角:大于0°,小于90°的角叫做銳角。

  直角:等于90°的角叫做直角。

  鈍角:大于90°而小于180°的角叫做鈍角。

  平角:等于180°的角叫做平角。

  優(yōu)角:大于180°小于360°叫優(yōu)角。

  劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。

  角周角:等于360°的角叫做周角。

  負角:按照順時針方向旋轉而成的角叫做負角。

  正角:逆時針旋轉的角為正角。

  0角:等于零度的角。

  特殊角

  余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的.補角相等。

  對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角;閷斀堑膬蓚角相等。

  鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關系的兩個角,互為鄰補角。

  內錯角:互相平行的兩條直線直線,被第三條直線所截,如果兩個角都在兩條直線的

  內側,并且在第三條直線的兩側,那么這樣的一對角叫做內錯角(alternate interior angle )。如:∠1和∠6,∠2和∠5

  同旁內角:兩個角都在截線的同一側,且在兩條被截線之間,具有這樣位置關系的一對角互為同旁內角。如:∠1和∠5,∠2和∠6

  同位角:兩個角都在截線的同旁,又分別處在被截的兩條直線同側,具有這樣位置關系的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7

  外錯角:兩條直線被第三條直線所截,構成了八個角。如果兩個角都在兩條被截線的外側,并且在截線的兩側,那么這樣的一對角叫做外錯角。例如:∠4與∠7,∠3與∠8。

  同旁外角:兩個角都在截線的同一側,且在兩條被截線之外,具有這樣位置關系的一對角互為同旁外角。如:∠4和∠8,∠3和∠7

  終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:

  A{bb=k_360+a,k∈Z}表示角度制;

  B{bb=2kπ+a,k∈Z}表示弧度制

初中數(shù)學的知識點9

  初中數(shù)學數(shù)軸知識點

  ①通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸。

 、跀(shù)軸三要素:原點、正方向、單位長度。

  ③數(shù)軸上的點和有理數(shù)的關系:所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點,不都是表示有理數(shù)。

  ④只有符號不同的兩個數(shù)叫做互為相反數(shù)(和為零)。(例:2的相反數(shù)是-2,如:2+(-2)=0;0的相反數(shù)是0)

  ⑤數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記作|a|。從幾何意義上講,數(shù)的絕對值是兩點間的距離(無方向性,有兩個點)。

  ⑥數(shù)軸上兩點間的距離=|M?N|

 、拚龜(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。

  ⑦兩個負數(shù),絕對值大的反而小。

 、鄚a|≥0(即非負性);絕對值等于一個正數(shù)的值有兩個(兩個互為相反數(shù))如:|a|=5,a=5或a=-5

  初中的數(shù)學知識點

  (一)整式

  1.整式:整式為單項式和多項式的統(tǒng)稱。

  2.整式加減

  整式的加減運算時,如果遇到括號先去掉括號,再合并同類項。

  (1)去括號:幾個整式相加減,如果有括號就先去括號,然后再合并同類項。

  如果括號外的因數(shù)是正數(shù),去括號后原括號內的`符號與原來相同。

  如果括號外的因數(shù)是負數(shù),去括號后原括號內的符號與原來相反。

  (2)合并同類項:

  合并同類項后,所得項的系數(shù)是合并前各項系數(shù)的和,且字母部分不變。

  3.單項式:由數(shù)或字母的積組成的代數(shù)式叫做單項式,單獨的一個數(shù)或一個字母也叫做單項式。

  4.多項式:由若干個單項式相加組成的代數(shù)式叫做多項式。

  5.同底數(shù)冪是指底數(shù)相同的冪。

  6.同底數(shù)冪的乘法:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加

  7.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘。

  8.積的乘方:積的乘方,先把積中的每一個因數(shù)分別乘方,再把所得的冪相乘。

  9.單項式與單項式相乘

  單項式與單項式相乘,把它們的系數(shù)、同底數(shù)冪分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式。

  10.單項式與多項式相乘

  單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

  11.多項式與多項式相乘

  多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

  12.同底數(shù)冪的除法:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。

  13.單項式除以單項式:單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式中含有的字母,則連同它的指數(shù)一起作為商的一個因式。

  14.多項式除以單項式:多項式除以單項式,先把多項式的每一項分別除以這個單項式,再把所得的商相加。

  (二)相交線與平行線

  (1)相交線

  在同一平面內,兩條直線的位置關系有相交和平行兩種。如果兩條直線只有一個公共點時,稱這兩條直線相交。

  (2)垂線

  當兩條直線相交所成的四個角中,有一個角是直角時,即兩條直線互相垂直,其中一條直線叫做另一直線的垂線,交點叫垂足。

  (3)同位角

  兩條直線a,b被第三條直線c所截(或說a,b相交c),在截線c的同旁,被截兩直線a,b的同一側的角,我們把這樣的兩個角稱為同位角。

  (4)內錯角

  兩條直線被第三條直線所截,兩個角分別在截線的兩側,且夾在兩條被截直線之間,具有這樣位置關系的一對角叫做內錯角。

  (5)同旁內角

  兩條直線被第三條直線所截,在截線同旁,且在被截線之內的兩角,叫做同旁內角。

  (6)平行線

  幾何中,在同一平面內,永不相交(也永不重合)的兩條直線叫做平行線。

  平行線的性質:①兩直線平行,同位角相等;②兩直線平行,內錯角相等;③兩直線平行,同旁內角互補。

  (7)平移

  平移,是指在同一平面內,將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運動叫做圖形的平移運動,簡稱平移。

  (三)概率

  1.一般地,在大量重復試驗中,如果事件A發(fā)生的頻率n/m會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p就叫做事件A的概率。

  2.隨機事件:在一定的條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機事件。

  3.互斥事件:不可能同時發(fā)生的兩個事件叫做互斥事件。

  4.對立事件:即必有一個發(fā)生的互斥事件叫做對立事件。

  5.必然事件:那些無需通過實驗就能夠預先確定它們在每一次實驗中都一定會發(fā)生的事件稱為必然事件。

  6.不可能事件:那些在每一次實驗中都一定不會發(fā)生的事件稱為不可能事件。

  初中數(shù)學知識點總結

  1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.

  2.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).

  3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數(shù)化為1 ……(檢驗方程的解).

  4.列一元一次方程解應用題:

  (1)讀題分析法:…………多用于“和,差,倍,分問題”

  仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關系填入代數(shù)式,得到方程.

  (2)畫圖分析法: …………多用于“行程問題”

  利用圖形分析數(shù)學問題是數(shù)形結合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關系(可把未知數(shù)看做已知量),填入有關的代數(shù)式是獲得方程的基礎.

  11.列方程解應用題的常用公式:

  (1)行程問題:距離=速度·時間;

  (2)工程問題:工作量=工效·工時;

  (3)比率問題:部分=全體·比率;

  (4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

  (5)商品價格問題:售價=定價·折·,利潤=售價-成本,;

  (6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,

  S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h.

初中數(shù)學的知識點10

  最簡單的解釋就是,不等式是指用不等號可以將兩個解析式連接起來所成的式子。

  1.概念:在一個式子中的數(shù)的關系,不全是等號,含不等符號的式子,那它就是一個不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。

  2、分類:不等式分為嚴格不等式與非嚴格不等式。

  一般地,用純粹的大于號、小于號“>”“<”連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)

  “≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴格不等式,或稱廣義不等式。

  通常不等式中的數(shù)是實數(shù),字母也代表實數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號也可以為<,≥,> 中某一個),兩邊的.解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。

  我們大家在判定不等式時要記得,在一個式子中的數(shù)的關系,不全是等號,含不等符號的式子,那它就是一個不等式。

初中數(shù)學的知識點11

  【知識點】:

  1、零下溫度的表示方法,在溫度前面寫上“—”號,如“—2℃”“—12℃”通常讀作零下2攝氏度、零下12攝氏度。

  2、能夠正確地比較兩個零下的溫度的`高低:0℃和零上的溫度高于零下的溫度;零下溫度的數(shù)字越大表示溫度越低。

  正負數(shù)

  生活中的負數(shù)

  1、正數(shù):比0大的數(shù)字都是正數(shù),有的時候我們在正數(shù)前面添上“+”號,如+5、+20等等,讀作:正5、正20。

  2、負數(shù):比0小的數(shù)字都是負數(shù),我們在負數(shù)前面提案上“—”號,如—2、—10等等,讀作:負2、負10。

  3、明確0既不是正數(shù)也不是負數(shù)。

  能用正數(shù)、負數(shù)表示實際問題,要確定以什么作為標準(即以什么作0點)

初中數(shù)學的知識點12

  把一元二次方程化成ax2+bx+c的一般形式,然后把各項系數(shù)a, b, c的值代入求根公式就可得到方程的根。

  公式法

  公式:x=[-b±√(b2-4ac)]/2a

  當Δ=b2-4ac>0時,求根公式為x1=[-b+√(b2-4ac)]/2a,x2=[-b-√(b24ac)]/2a(兩個不相等的實數(shù)根)

  當Δ=b2-4ac=0時,求根公式為x1=x2=-b/2a(兩個相等的'實數(shù)根)

  當Δ=b2-4ac<0時,求根公式為x1=[-b+√(4ac-b2)i]/2a,x2=[-b-√(4ac-b2)i]/2a

  例3.用公式法解方程 2x2-8x=-5

  解:將方程化為一般形式:2x2-8x+5=0

  ∴a=2, b=-8,c=5

  b2-4ac=(-8)2-4×2×5=64-40=24>0

  ∴x= (4±√6)/2

  ∴原方程的解為x?=(4+√6)/2,x?=(4-√6)/2.

  大家不知道的是兩個復數(shù)根在初中數(shù)學的學習中理解為無實數(shù)根。

初中數(shù)學的知識點13

  基于質數(shù)定義的基礎之上而建立的問題有很多世界級的難題,如哥德巴赫猜想等。

  質數(shù)

  質數(shù)又稱素數(shù)。指在一個大于1的自然數(shù)中,除了1和此整數(shù)自身外,不能被其他自然數(shù)整除的數(shù)。

  素數(shù)在數(shù)論中有著很重要的地位。比1大但不是素數(shù)的數(shù)稱為合數(shù)。1和0既非素數(shù)也非合數(shù)。質數(shù)是與合數(shù)相對立的兩個概念,二者構成了數(shù)論當中最基礎的定義之一。

  算術基本定理證明每個大于1的正整數(shù)都可以寫成素數(shù)的.乘積,并且這種乘積的形式是唯一的。這個定理的重要一點是,將1排斥在素數(shù)集合以外。如果1被認為是素數(shù),那么這些嚴格的闡述就不得不加上一些限制條件。

  概念

  只有1和它本身兩個約數(shù)的自然數(shù),叫質數(shù)(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的約數(shù)只有1和它本身2這兩個約數(shù),所以2就是質數(shù)。與之相對立的是合數(shù):“除了1和它本身兩個約數(shù)外,還有其它約數(shù)的數(shù),叫合數(shù)!比纾4÷1=4,4÷2=2,4÷4=1,很顯然,4的約數(shù)除了1和它本身4這兩個約數(shù)以外,還有約數(shù)2,所以4是合數(shù)。)

  100以內的質數(shù)有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100內共有25個質數(shù)。

  注:1既不是質數(shù)也不是合數(shù)。因為它的約數(shù)有且只有1這一個約數(shù)。

初中數(shù)學的知識點14

  1、重心的定義:平面圖形中,幾何圖形的重心是當支撐或懸掛時圖形能在水平面處于平衡狀態(tài),此時的支撐點或者懸掛點叫做平衡點,也叫做重心。

  2、幾種幾何圖形的重心:

  ⑴ 線段的重心就是線段的中點;

  ⑵ 平行四邊形及特殊平行四邊形的重心是它的'兩條對角線的交點;

 、 三角形的三條中線交于一點,這一點就是三角形的重心;

 、 任意多邊形都有重心,以多邊形的任意兩個頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的交點就是這個多邊形的重心。

  提示:⑴ 無論幾何圖形的形狀如何,重心都有且只有一個;

 、 從物理學角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的力矩相同。

  3、常見圖形重心的性質:

 、 線段的重心把線段分為兩等份;

 、 平行四邊形的重心把對角線分為兩等份;

 、 三角形的重心把中線分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。

  上面對重心知識點的鞏固學習,同學們都能熟練的掌握了吧,希望同學們很好的復習學習數(shù)學知識。

初中數(shù)學的知識點15

  我們學習過的配方法其實可解全部的一元二次方程,但基本上的題型是容易配方的試題。

  配方法

  如:解方程:x2+2x-3=0

  解:把常數(shù)項移項得:x2+2x=3

  等式兩邊同時加1(構成完全平方式)得:x2+2x+1=4

  因式分解得:(x+1)2=4

  解得:x1=-3,x2=1

  用配方法解一元二次方程小口訣

  二次系數(shù)化為一

  常數(shù)要往右邊移

  一次系數(shù)一半方

  兩邊加上最相當

  解決一元二次方程的`方法有很多,是我們經常轉化運用的知識要領。

【初中數(shù)學的知識點】相關文章:

初中數(shù)學知識點06-07

初中數(shù)學旋轉的知識點05-29

初中數(shù)學的知識點大全06-06

初中數(shù)學概率知識點05-09

初中數(shù)學垂直知識點12-07

初中數(shù)學方差知識點10-28

初中數(shù)學余切的知識點04-07

初中數(shù)學內錯角的知識點04-07

初中數(shù)學知識點整理02-19

初中數(shù)學的知識點15篇11-01