初中數(shù)學知識點(合集15篇)
在平日的學習中,很多人都經(jīng)常追著老師們要知識點吧,知識點就是掌握某個問題/知識的學習要點。相信很多人都在為知識點發(fā)愁,下面是小編幫大家整理的初中數(shù)學知識點,歡迎閱讀,希望大家能夠喜歡。
初中數(shù)學知識點1
整式及其運算:
【考點歸納】
1.代數(shù)式:用運算符號(加、減、乘、除、乘方、開方)把()或表示()連接而成的式子叫做代數(shù)式.
2.代數(shù)式的值:用()代替代數(shù)式里的字母,按照代數(shù)式里的運算關(guān)系,計算后所得的()叫做代數(shù)式的值.
3.整式
(1)單項式:由數(shù)與字母的()組成的代數(shù)式叫做單項式(單獨一個數(shù)或()也是單項式).單項式中的()叫做這個單項式的系數(shù);單項式中的`所有字母的()叫做這個單項式的次數(shù).
(2)多項式:幾個單項式的()叫做多項式.在多項式中,每個單項式叫()做多項式的(),其中次數(shù)最高的項的()叫做這個多項式的次數(shù).不含字母的項叫做.
(3)整式:()與()統(tǒng)稱整式.
4.同類項:在一個多項式中,所含()相同并且相同字母的()也分別相等的項叫做同類項.合并同類項的法則是()。
20xx人教版七年級數(shù)學有理數(shù)知識點
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負數(shù);
a≥0a是正數(shù)或0a是非負數(shù);a≤0a是負數(shù)或0a是非正數(shù).
2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.
7.整式的除法
⑴單項式除以單項式的法則:把()、()分別相除后,作為商的因式;對于只在被除武里含有的字母,則連同它的指數(shù)一起作為商的一個因式.
⑵多項式除以單項式的法則:先把這個多項式的每一項分別除以(),再把所得的商().
初中數(shù)學知識點2
橢圓知識:平面內(nèi)與兩定點F1、F2的距離的和等于常數(shù)2a(2a>|F1F2|)的動點P的軌跡叫做橢圓。
橢圓的第一定義
即:│PF1│+│PF2│=2a
其中兩定點F1、F2叫做橢圓的焦點,兩焦點的距離│F1F2│=2c<2a叫做橢圓的焦距。P 為橢圓的動點。
長軸為 2a; 短軸為 2b。
橢圓的第二定義
平面內(nèi)到定點F的距離與到定直線的距離之比為常數(shù)e(即橢圓的離心率,e=c/a)的點的集合(定點F不在定直線上,該常數(shù)為小于1的正數(shù)) 其中定點F為橢圓的焦點,定直線稱為橢圓的準線(該定直線的方程是x=±a^2/c[焦點在X軸上];或者y=±a^2/c[焦點在Y軸上])。
橢圓的其他定義
根據(jù)橢圓的一條重要性質(zhì),也就是橢圓上的'點與橢圓短軸兩端點連線的斜率之積是定值 定值為e^2-1 可以得出:平面內(nèi)與兩定點的連線的斜率之積是常數(shù)k的動點的軌跡是橢圓,此時k應滿足一定的條件,也就是排除斜率不存在的情況,還有K應滿足<0且不等于-1。
簡單幾何性質(zhì)
1、范圍
2、對稱性:關(guān)于X軸對稱,Y軸對稱,關(guān)于原點中心對稱。
3、頂點:(當中心為原點時)(a,0)(-a,0)(0,b)(0,-b)
4、離心率:e=c/a
5、離心率范圍 0
知識歸納:離心率越大橢圓就越扁,越小則越接近于圓。
初中數(shù)學知識點總結(jié):平面直角坐標系
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
初中數(shù)學知識點:平面直角坐標系的構(gòu)成
平面直角坐標系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
初中數(shù)學知識點:點的坐標的性質(zhì)
點的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
初中數(shù)學知識點:因式分解
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
④結(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮撎柗爬ㄌ柾
⑦括號內(nèi)同類項合并。
初中數(shù)學知識點3
初中數(shù)學數(shù)軸知識點
①通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸。
、跀(shù)軸三要素:原點、正方向、單位長度。
、蹟(shù)軸上的點和有理數(shù)的關(guān)系:所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點,不都是表示有理數(shù)。
④只有符號不同的兩個數(shù)叫做互為相反數(shù)(和為零)。(例:2的相反數(shù)是-2,如:2+(-2)=0;0的相反數(shù)是0)
、輸(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記作|a|。從幾何意義上講,數(shù)的絕對值是兩點間的距離(無方向性,有兩個點)。
、迶(shù)軸上兩點間的距離=|M?N|
、拚龜(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。
⑦兩個負數(shù),絕對值大的反而小。
⑧|a|≥0(即非負性);絕對值等于一個正數(shù)的值有兩個(兩個互為相反數(shù))如:|a|=5,a=5或a=-5
初中的.數(shù)學知識點
(一)整式
1.整式:整式為單項式和多項式的統(tǒng)稱。
2.整式加減
整式的加減運算時,如果遇到括號先去掉括號,再合并同類項。
(1)去括號:幾個整式相加減,如果有括號就先去括號,然后再合并同類項。
如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)的符號與原來相同。
如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)的符號與原來相反。
(2)合并同類項:
合并同類項后,所得項的系數(shù)是合并前各項系數(shù)的和,且字母部分不變。
3.單項式:由數(shù)或字母的積組成的代數(shù)式叫做單項式,單獨的一個數(shù)或一個字母也叫做單項式。
4.多項式:由若干個單項式相加組成的代數(shù)式叫做多項式。
5.同底數(shù)冪是指底數(shù)相同的冪。
6.同底數(shù)冪的乘法:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加
7.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘。
8.積的乘方:積的乘方,先把積中的每一個因數(shù)分別乘方,再把所得的冪相乘。
9.單項式與單項式相乘
單項式與單項式相乘,把它們的系數(shù)、同底數(shù)冪分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式。
10.單項式與多項式相乘
單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
11.多項式與多項式相乘
多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。
12.同底數(shù)冪的除法:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。
13.單項式除以單項式:單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式中含有的字母,則連同它的指數(shù)一起作為商的一個因式。
14.多項式除以單項式:多項式除以單項式,先把多項式的每一項分別除以這個單項式,再把所得的商相加。
(二)相交線與平行線
(1)相交線
在同一平面內(nèi),兩條直線的位置關(guān)系有相交和平行兩種。如果兩條直線只有一個公共點時,稱這兩條直線相交。
(2)垂線
當兩條直線相交所成的四個角中,有一個角是直角時,即兩條直線互相垂直,其中一條直線叫做另一直線的垂線,交點叫垂足。
(3)同位角
兩條直線a,b被第三條直線c所截(或說a,b相交c),在截線c的同旁,被截兩直線a,b的同一側(cè)的角,我們把這樣的兩個角稱為同位角。
(4)內(nèi)錯角
兩條直線被第三條直線所截,兩個角分別在截線的兩側(cè),且夾在兩條被截直線之間,具有這樣位置關(guān)系的一對角叫做內(nèi)錯角。
(5)同旁內(nèi)角
兩條直線被第三條直線所截,在截線同旁,且在被截線之內(nèi)的兩角,叫做同旁內(nèi)角。
(6)平行線
幾何中,在同一平面內(nèi),永不相交(也永不重合)的兩條直線叫做平行線。
平行線的性質(zhì):①兩直線平行,同位角相等;②兩直線平行,內(nèi)錯角相等;③兩直線平行,同旁內(nèi)角互補。
(7)平移
平移,是指在同一平面內(nèi),將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運動叫做圖形的平移運動,簡稱平移。
(三)概率
1.一般地,在大量重復試驗中,如果事件A發(fā)生的頻率n/m會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p就叫做事件A的概率。
2.隨機事件:在一定的條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機事件。
3.互斥事件:不可能同時發(fā)生的兩個事件叫做互斥事件。
4.對立事件:即必有一個發(fā)生的互斥事件叫做對立事件。
5.必然事件:那些無需通過實驗就能夠預先確定它們在每一次實驗中都一定會發(fā)生的事件稱為必然事件。
6.不可能事件:那些在每一次實驗中都一定不會發(fā)生的事件稱為不可能事件。
初中數(shù)學知識點總結(jié)
1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.
2.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).
3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數(shù)化為1 ……(檢驗方程的解).
4.列一元一次方程解應用題:
(1)讀題分析法:…………多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.
(2)畫圖分析法: …………多用于“行程問題”
利用圖形分析數(shù)學問題是數(shù)形結(jié)合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).
11.列方程解應用題的常用公式:
(1)行程問題:距離=速度·時間;
(2)工程問題:工作量=工效·工時;
(3)比率問題:部分=全體·比率;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(5)商品價格問題:售價=定價·折·,利潤=售價-成本,;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,
S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h.
初中數(shù)學知識點4
一、數(shù)與式
易錯點1:有理數(shù)、無理數(shù)以及實數(shù)的有關(guān)概念理解錯誤;相反數(shù)、倒數(shù)、絕對值的意義概念混淆,以及絕對值與數(shù)的分類。每年選擇必考。
易錯點2:實數(shù)的運算,要掌握好與實數(shù)有關(guān)的概念、性質(zhì),靈活地運用各種運算律,關(guān)鍵是把好符號關(guān);在較復雜的運算中,不注意運算順序或者不合理使用運算律,從而使運算出現(xiàn)錯誤。
易錯點3:平方根、算術(shù)平方根、立方根的區(qū)別。填空題必考。
易錯點4:求分式值為零時,易忽略分母不能為零。
易錯點5:分式運算時要注意運算法則和符號的變化。當分式的分子、分母是多項式時要先因式分解,因式分解要分解到不能再分解為止。注意計算方法,不能去分母,把分式化為最簡分式。填空題必考。
易錯點6:非負數(shù)的性質(zhì):幾個非負數(shù)的和為0,每個式子都為0;整體代入法;完全平方式。
易錯點7:計算第一題必考。五個基本數(shù)的計算:0指數(shù),三角函數(shù),絕對值,負指數(shù),二次根式的化簡。
易錯點8:科學記數(shù)法。精確度,有效數(shù)字。
易錯點9:代入求值要使式子有意義。各種數(shù)式的計算方法要掌握,一定要注意計算順序。
二、方程(組)與不等式(組)
易錯點1:各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。
易錯點2:運用等式性質(zhì)時,兩邊同除以一個數(shù)必須要注意不能為0的情況,還要關(guān)注解方程與方程組的基本思想。(消元降次)主要陷阱是消除了一個帶未知數(shù)的公因式要回頭檢驗!
易錯點3:運用不等式的性質(zhì)3時,容易忘記改不變號的方向而導致結(jié)果出錯。
易錯點4:關(guān)于一元二次方程的取值范圍的題目,易忽視二次項系數(shù)不為0導致出錯。
易錯點5:關(guān)于一元一次不等式組有解無解的條件,易忽視相等的情況。
易錯點6:解分式方程時首要步驟是去分母,易忘記根檢驗,導致運算結(jié)果出錯。
易錯點7:不等式(組)的解的問題要先確定解集,確定解集的方法運用數(shù)軸。
易錯點8:利用函數(shù)圖象求不等式的解集和方程的解。
三、函數(shù)
易錯點1:各個待定系數(shù)表示的意義。
易錯點2:熟練掌握各種函數(shù)解析式的求法,有幾個的待定系數(shù)就要幾個點值。
易錯點3:利用圖象求不等式的解集和方程(組)的解,利用圖象性質(zhì)確定增減性。
易錯點4:兩個變量利用函數(shù)模型解實際問題,注意區(qū)別方程、函數(shù)、不等式模型解決不等領(lǐng)域的問題。
易錯點5:利用函數(shù)圖象進行分類(平行四邊形、相似、直角、等腰三角形)以及分類的求解方法。
易錯點6:與坐標軸交點坐標一定要會求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。
易錯點7:數(shù)形結(jié)合思想方法的運用,還應注意結(jié)合圖象性質(zhì)解題。函數(shù)圖象與圖形結(jié)合學會從復雜圖形分解為簡單圖形的方法,圖形為圖象提供數(shù)據(jù)或者圖象為圖形提供數(shù)據(jù)。
易錯點8:自變量的取值范圍有:二次根式的被開方數(shù)是非負數(shù),分式的分母不為0,0指數(shù)底數(shù)不為0,其它都是全體實數(shù)。
四、三角形
易錯點1:三角形的概念以及三角形的角平分線、中線、高線的特征與區(qū)別。
易錯點2:三角形三邊之間的不等關(guān)系,注意其中的“任何兩邊”。求最短距離的方法。
易錯點3:三角形的內(nèi)角和,三角形的分類與三角形內(nèi)外角性質(zhì),特別關(guān)注外角性質(zhì)中的“不相鄰”。
易錯點4:全等三角形及其性質(zhì),三角形全等判定。著重學會論證三角形全等,三角形相似與全等的綜合運用,以及線段相等是全等的特征。線段的倍分是相似的特征,以及相似與三角函數(shù)的結(jié)合。邊邊角兩個三角形不一定全等。
易錯點5:兩個角相等和平行是相似的基本構(gòu)成要素,以及相似三角形對應高之比等于相似比,對應線段成比例,面積之比等于相似比的平方。
易錯點6:等腰(等邊)三角形的定義以及等腰(等邊)三角形的判定與性質(zhì),運用等腰(等邊)三角形的判定與性質(zhì)解決有關(guān)計算與證明問題,這里需注意分類討論思想的滲入。
易錯點7:運用勾股定理及其逆定理計算線段的長,證明線段的數(shù)量關(guān)系。解決與面積有關(guān)的問題,以及簡單的實際問題。
易錯點8:將直角三角形、平面直角坐標系、函數(shù)、開放性問題、探索性問題結(jié)合在一起綜合運用,探究各種解題方法。
易錯點9:中點、中線、中位線,一半定理的歸納以及各自的性質(zhì)。
易錯點10:直角三角形判定方法:三角形面積的確定與底上的高(特別是鈍角三角形)易錯點11:三角函數(shù)的定義中對應線段的比經(jīng)常出錯,以及特殊角的三角函數(shù)值。
五、四邊形
易錯點1:平行四邊形的性質(zhì)和判定,如何靈活、恰當?shù)貞谩H切蔚姆(wěn)定性與四邊形不穩(wěn)定性。
易錯點2:平行四邊形注意與三角形面積求法的.區(qū)分。平行四邊形與特殊平行四邊形之間的轉(zhuǎn)化關(guān)系。
易錯點3:運用平行四邊形是中心對稱圖形,過對稱中心的直線把它分成面積相等的兩部分。對角線將四邊形分成面積相等的四部分。
易錯點4:平行四邊形中運用全等三角形和相似三角形的知識解題,突出轉(zhuǎn)化思想的滲透。
易錯點5:矩形、菱形、正方形的概念、性質(zhì)、判定及它們之間的關(guān)系,主要考查邊長、對角線長、面積等的計算。矩形與正方形的折疊。
易錯點6:四邊形中的翻折、平移、旋轉(zhuǎn)、剪拼等動手操作性問題,掌握其中的不變與旋轉(zhuǎn)一些性質(zhì)。
易錯點7:梯形問題中,主要做輔助線的方法。
六、圓
易錯點1:對弧、弦、圓周角等概念理解不深刻,特別是弦所對的圓周角有兩種情況要特別注意,兩條弦之間的距離也要考慮兩種情況。
易錯點2:對垂徑定理的理解不夠,不會正確添加輔助線運用直角三角形進行解題。
易錯點3:對切線的定義及性質(zhì)理解不深,不能準確的利用切線的性質(zhì)進行解題,以及對切線的判定方法兩種方法使用不熟練。
易錯點4:考查圓與圓的位置關(guān)系時,相切有內(nèi)切和外切兩種情況,包括相交也存在兩圓圓心在公共弦同側(cè)和異側(cè)兩種情況,很容易忽視其中的一種情況。
易錯點5:與圓有關(guān)的位置關(guān)系把握好d與R、R+r和R-r之間的關(guān)系,以及應用上述的方法求解。
易錯點6:圓周角定理是重點,同。ǖ然。┧鶎Φ膱A周角相等,直徑所對的圓周角是直角。直角的圓周角所對的弦是直徑,一條弧所對的圓周角等于它所對的圓心角的一半。
易錯點7:一定要牢記的公式:三角形、平行四邊形、菱形、矩形、正方形、梯形、圓的面積公式,圓周長公式,弧長,扇形面積,圓錐的側(cè)面積和全面積,以及弧長與底面周長,母線長與扇形的半徑之間的轉(zhuǎn)化關(guān)系。
七、對稱圖形
易錯點1:軸對稱、軸對稱圖形,中心對稱、中心對稱圖形概念和性質(zhì)把握不準。
易錯點2:圖形的軸對稱或旋轉(zhuǎn)問題,要充分運用其性質(zhì)解題,即運用圖形的“不變性”,在軸對稱和旋轉(zhuǎn)中角的大小不變,線段的長短不變。
易錯點3:將軸對稱與全等混淆,關(guān)于直線對稱與關(guān)于軸對稱混淆。
八、統(tǒng)計與概率
易錯點1:中位數(shù)、眾數(shù)、平均數(shù)的有關(guān)概念理解不透徹,錯求中位數(shù)、眾數(shù)、平均數(shù)。
易錯點2:在從統(tǒng)計圖獲取信息時,一定要先判斷統(tǒng)計圖的準確性。不規(guī)則的統(tǒng)計圖往往使人產(chǎn)生錯覺,得到不準確的信息。
易錯點3:對普查與抽樣調(diào)查的概念及它們的適用范圍不清楚,造成錯誤。
易錯點4:極差、方差的概念理解不清晰,從而不能正確求出一組數(shù)據(jù)的極差、方差。
易錯點5:概率與頻率的意義理解不清晰,不能正確求出事件的概率。
易錯點6:平均數(shù)、加權(quán)平均數(shù)、方差公式,扇形統(tǒng)計圖的圓心角與頻率之間的關(guān)系,頻數(shù)、頻率、總數(shù)之間的關(guān)系。加權(quán)平均數(shù)的權(quán)可以是數(shù)據(jù)、比分、百分數(shù),還可以是概率(或頻率)
易錯點7:求概率的方法:
。1)簡單事件運用概率概念。(2)兩步及以上的簡單事件求概率的方法:利用樹狀或者列表表示各種可能的情況與事件的可能性的比值。(3)復雜事件求概率的方法運用頻率估算概率。
易錯點8:判斷是否公平的方法,運用概率是否相等,關(guān)注頻率與概率的整合。
初中數(shù)學知識點5
【知識點】:
1、零下溫度的表示方法,在溫度前面寫上“—”號,如“—2℃”“—12℃”通常讀作零下2攝氏度、零下12攝氏度。
2、能夠正確地比較兩個零下的溫度的.高低:0℃和零上的溫度高于零下的溫度;零下溫度的數(shù)字越大表示溫度越低。
正負數(shù)
生活中的負數(shù)
1、正數(shù):比0大的數(shù)字都是正數(shù),有的時候我們在正數(shù)前面添上“+”號,如+5、+20等等,讀作:正5、正20。
2、負數(shù):比0小的數(shù)字都是負數(shù),我們在負數(shù)前面提案上“—”號,如—2、—10等等,讀作:負2、負10。
3、明確0既不是正數(shù)也不是負數(shù)。
能用正數(shù)、負數(shù)表示實際問題,要確定以什么作為標準(即以什么作0點)
初中數(shù)學知識點6
圓周角知識點
1、定義:頂點在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)
2、定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。
3、推論:1)在同圓或等圓中,相等的圓周角所對的弧相等。
2)直徑(半圓)所對的圓周角是直角;900的圓周角所對的弦為直徑。(①常見輔助線:有直徑可構(gòu)成直角,有900圓周角可構(gòu)成直徑;②找圓心的方法:作兩個900圓周角所對兩弦交點)
4、圓內(nèi)接四邊形的性質(zhì)定理:圓內(nèi)接四邊形的對角互補。(任意一個外角等于它的內(nèi)對角)
補充:1、兩條平行弦所夾的弧相等。
2、圓的兩條弦1)在圓外相交時,所夾角等于它所對的兩條弧度數(shù)差的一半。2)在圓內(nèi)相交時,所夾的角等于它所夾兩條弧度數(shù)和的一半。
3、同弧所對的(在弧的同側(cè))圓內(nèi)部角其次是圓周角,最小的是圓外角。
平均數(shù)中位數(shù)與眾數(shù)知識點
1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.
2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.
3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.
有理數(shù)知識點
1.大于0的數(shù)叫做正數(shù)。
2.在正數(shù)前面加上負號“-”的數(shù)叫做負數(shù)。
3.整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)。
4.人們通常用一條直線上的點表示數(shù),這條直線叫做數(shù)軸。
5.在直線上任取一個點表示數(shù)0,這個點叫做原點。
6.一般的,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。
7.由絕對值的定義可知:
一個正數(shù)的絕對值是它本身;
一個負數(shù)的絕對值是它的相反數(shù);
0的絕對值是0。
8.正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù)。
9.兩個負數(shù),絕對值大的反而小。
10.有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的'加數(shù)的負號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。
(3)一個數(shù)同0相加,仍得這個數(shù)。
11.有理數(shù)的加法中,兩個數(shù)相加,交換交換加數(shù)的位置,和不變。
12.有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
13.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
14.有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值向乘。任何數(shù)同0相乘,都得0。
15.有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。
16.一般的,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。
17.三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
18.一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
19.有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
20.兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。
初中數(shù)學知識點7
菱形
1、菱形的定義 :有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質(zhì):⑴ 矩形具有平行四邊形的一切性質(zhì);
、 菱形的四條邊都相等;
、 菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
、 菱形是軸對稱圖形。
提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯(lián)系,
可得對角線與邊之間的關(guān)系,即邊長的平方等于對角線一半的平方和。
3、菱形的判定方法:
⑴ 定義:一組鄰邊相等的平行四邊形是菱形。
、 判斷方法1:對角線互相垂直的平行四邊形是菱形。
⑶ 判斷方法2:四條邊相等的四邊形是菱形。
4、菱形面積的計算:
菱形面積 = 底×高 = 對角線長乘積的一半 S菱形=1/2×ab(a、b為兩條對角線)
歸納:對角線互相垂直的四邊形的面積等于對角線長乘積的一半。
希望上面對菱形知識點的總結(jié)學習,同學們都能很好的掌握,相信同學們一定能很好的參加考試工作。
初中數(shù)學知識點總結(jié):平面直角坐標系
下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構(gòu)成
對于平面直角坐標系的構(gòu)成內(nèi)容,下面我們一起來學習哦。
平面直角坐標系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構(gòu)成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。
初中數(shù)學知識點:點的坐標的性質(zhì)
下面是對數(shù)學中點的坐標的性質(zhì)知識學習,同學們認真看看哦。
點的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關(guān)于數(shù)學中因式分解的一般步驟內(nèi)容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的.多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內(nèi)容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
、诓粶蕘G常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
、芙Y(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
⑥首項負號放括號外
、呃ㄌ杻(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學習,相信同學們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學們的學習很好的幫助。
初中數(shù)學知識點8
不等式的判定知識點
1.常見的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
2.在不等式“a>b”或“a
3.不等號的開口所對的數(shù)較大,不等號的尖頭所對的數(shù)較小;
4.在列不等式時,一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負數(shù)、不大于、小于等。
初中數(shù)學不等式的性質(zhì)知識點
不等式的性質(zhì)
①如果x>y,那么yy;(對稱性)
、谌绻鹸>y,y>z;那么x>z;(傳遞性)
、廴绻鹸>y,而z為任意實數(shù)或整式,那么x+z>y+z;(加法原則)
、苋绻鹸>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
、萑绻鹸>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
、奕绻鹸>y,m>n,那么x+m>y+n;(充分不必要條件)
、呷绻鹸>y>0,m>n>0,那么xm>yn;
、嗳绻鹸>y>0,那么x的n次冪>y的n次冪(n為正數(shù))[1]
初中數(shù)學不等式知識點歸納
1、概念:
在一個式子中的數(shù)的關(guān)系,不全是等號,含不等符號的式子,那它就是一個不等式、例如2x+2y≥2xy,sinx≤1,ex>0,2x<3,5x≠5等>x是超越不等式。
2、分類:
不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的'大于號、小于號“>”“<”連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)
“≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴格不等式,或稱廣義不等式。
通常不等式中的數(shù)是實數(shù),字母也代表實數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號也可以為<,≥,>中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。
我們大家在判定不等式時要記得,在一個式子中的數(shù)的關(guān)系,不全是等號,含不等符號的式子,那它就是一個不等式。
初三數(shù)學不等式證明知識點總結(jié)
1、比較法:包括比差和比商兩種方法。
2、綜合法
證明不等式時,從命題的已知條件出發(fā),利用公理、定理、法則等,逐步推導出要證明的命題的方法稱為綜合法,它是由因?qū)Ч姆椒ā?/p>
3、分析法
證明不等式時,從待證命題出發(fā),分析使其成立的充分條件,利用已知的一些基本原理,逐步探索,最后將命題成立的條件歸結(jié)為一個已經(jīng)證明過的`定理、簡單事實或題設的條件,這種證明的方法稱為分析法,它是執(zhí)果索因的方法。
4、放縮法
證明不等式時,有時根據(jù)需要把需證明的不等式的值適當放大或縮小,使其化繁為簡,化難為易,達到證明的目的,這種方法稱為放縮法。
5、數(shù)學歸納法
用數(shù)學歸納法證明不等式,要注意兩步一結(jié)論。
在證明第二步時,一般多用到比較法、放縮法和分析法。
6、反證法
證明不等式時,首先假設要證明的命題的反面成立,把它作為條件和其他條件結(jié)合在一起,利用已知定義、定理、公理等基本原理逐步推證出一個與命題的'條件或已證明的定理或公認的簡單事實相矛盾的結(jié)論,以此說明原假設的結(jié)論不成立,從而肯定原命題的結(jié)論成立的方法稱為反證法。
初中數(shù)學知識點9
直線、射線、線段
。1)直線、射線、線段的表示方法
、僦本:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB。
②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA。注意:用兩個字母表示時,端點的字母放在前邊。
③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。
。2)點與直線的位置關(guān)系:
、冱c經(jīng)過直線,說明點在直線上;
、邳c不經(jīng)過直線,說明點在直線外。
兩點間的距離
。1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。
。2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調(diào)最后的兩個字“長度”,也就是說,它是一個量,有大小,區(qū)別于線段,線段是圖形。線段的長度才是兩點的.距離。可以說畫線段,但不能說畫距離。
正方體
。1)對于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開圖理解的基礎(chǔ)上直接想象。
。2)從實物出發(fā),結(jié)合具體的問題,辨析幾何體的展開圖,通過結(jié)合立體圖形與平面圖形的轉(zhuǎn)化,建立空間觀念,是解決此類問題的關(guān)鍵。
。3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認真確定哪兩個面的對面。
初中數(shù)學知識點10
把一元二次方程化成ax2+bx+c的一般形式,然后把各項系數(shù)a, b, c的值代入求根公式就可得到方程的根。
公式法
公式:x=[-b±√(b2-4ac)]/2a
當Δ=b2-4ac>0時,求根公式為x1=[-b+√(b2-4ac)]/2a,x2=[-b-√(b24ac)]/2a(兩個不相等的實數(shù)根)
當Δ=b2-4ac=0時,求根公式為x1=x2=-b/2a(兩個相等的實數(shù)根)
當Δ=b2-4ac<0時,求根公式為x1=[-b+√(4ac-b2)i]/2a,x2=[-b-√(4ac-b2)i]/2a
例3.用公式法解方程 2x2-8x=-5
解:將方程化為一般形式:2x2-8x+5=0
∴a=2, b=-8,c=5
b2-4ac=(-8)2-4×2×5=64-40=24>0
∴x= (4±√6)/2
∴原方程的.解為x?=(4+√6)/2,x?=(4-√6)/2.
大家不知道的是兩個復數(shù)根在初中數(shù)學的學習中理解為無實數(shù)根。
初中數(shù)學知識點11
數(shù)據(jù)的分析
將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。
一組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的.極差(range)。
方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定。
數(shù)據(jù)的收集與整理的步驟:1.收集數(shù)據(jù) 2.整理數(shù)據(jù) 3.描述數(shù)據(jù) 4.分析數(shù)據(jù) 5.撰寫調(diào)查報告
初中數(shù)學知識點12
三角形的知識點
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三角形的分類
3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
6、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7、高線、中線、角平分線的意義和做法
8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。
9、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°
推論1直角三角形的兩個銳角互余
推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和
推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半
10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
11、三角形外角的性質(zhì)
(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;
(2)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和;
(3)三角形的一個外角大于與它不相鄰的任一內(nèi)角;
(4)三角形的外角和是360°。
四邊形(含多邊形)知識點、概念總結(jié)
一、平行四邊形的定義、性質(zhì)及判定
1、兩組對邊平行的四邊形是平行四邊形。
2、性質(zhì):
(1)平行四邊形的對邊相等且平行
(2)平行四邊形的對角相等,鄰角互補
(3)平行四邊形的對角線互相平分
3、判定:
(1)兩組對邊分別平行的四邊形是平行四邊形
(2)兩組對邊分別相等的四邊形是平行四邊形
(3)一組對邊平行且相等的.四邊形是平行四邊形
(4)兩組對角分別相等的四邊形是平行四邊形
(5)對角線互相平分的四邊形是平行四邊形
4、對稱性:平行四邊形是中心對稱圖形
二、矩形的定義、性質(zhì)及判定
1、定義:有一個角是直角的平行四邊形叫做矩形
2、性質(zhì):矩形的四個角都是直角,矩形的對角線相等
3、判定:
(1)有一個角是直角的平行四邊形叫做矩形
(2)有三個角是直角的四邊形是矩形
(3)兩條對角線相等的平行四邊形是矩形
4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。
三、菱形的定義、性質(zhì)及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的對角線互相垂直,并且每一條對角線平分一組對角
(3)菱形被兩條對角線分成四個全等的直角三角形
(4)菱形的面積等于兩條對角線長的積的一半
2、s菱=爭6(n、6分別為對角線長)
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對角線互相垂直的平行四邊形是菱形
4、對稱性:菱形是軸對稱圖形也是中心對稱圖形
四、正方形定義、性質(zhì)及判定
1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形
2、性質(zhì):
(1)正方形四個角都是直角,四條邊都相等
(2)正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
(3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形
(4)正方形的對角線與邊的夾角是45°
(5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形
3、判定:
(1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個四邊形是菱形,再判定出有一個角是直角
4、對稱性:正方形是軸對稱圖形也是中心對稱圖形
五、梯形的定義、等腰梯形的性質(zhì)及判定
1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等
3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形
4、對稱性:等腰梯形是軸對稱圖形
六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。
七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。
八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。
九、多邊形
1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
4、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。
6、正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。
7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
8、公式與性質(zhì)
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
9、多邊形外角和定理:
(1)n邊形外角和等于n·180°-(n-2)·180°=360°
(2)邊形的每個內(nèi)角與它相鄰的外角是鄰補角,所以n邊形內(nèi)角和加外角和等于n·180°
10、多邊形對角線的條數(shù):
(1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形
(2)n邊形共有n(n-3)/2條對角線
圓知識點、概念總結(jié)
1、不在同一直線上的三點確定一個圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對稱中心的中心對稱圖形
4、圓是定點的距離等于定長的點的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
6、圓的外部可以看作是圓心的距離大于半徑的點的集合
7、同圓或等圓的半徑相等
8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
12、①直線L和⊙O相交d
②直線L和⊙O相切d=r
、壑本L和⊙O相離d>r
13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑
15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角
19、如果兩個圓相切,那么切點一定在連心線上
20、①兩圓外離d>R+r
、趦蓤A外切d=R+r
③兩圓相交R-rr)
、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)
21、定理:相交兩圓的連心線垂直平分兩圓的公共弦
22、定理:把圓分成n(n≥3):
(1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
(2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
24、正n邊形的每個內(nèi)角都等于(n-2)×180°/n
25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長
27、正三角形面積√3a/4a表示邊長
28、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29、弧長計算公式:L=n兀R/180
30、扇形面積公式:S扇形=n兀R^2/360=LR/2
31、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)
32、定理:一條弧所對的圓周角等于它所對的圓心角的一半
33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
35、弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
初中數(shù)學知識點13
全等三角形的判定:
、龠吔沁吂恚⊿AS)
②角邊角公理(ASA)
、劢墙沁叾ɡ恚ˋAS)
、苓呥呥吂恚⊿SS)
、菪边、直角邊公理(HL)
正方形定理公式
正方形的特征:
、僬叫蔚乃倪呄嗟;
、谡叫蔚乃膫角都是直角;
③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
、儆幸粋角是直角的菱形是正方形;
、谟幸唤M鄰邊相等的矩形是正方形。
平行四邊形
平行四邊形的性質(zhì):
、倨叫兴倪呅蔚膶呄嗟;
、谄叫兴倪呅蔚膶窍嗟;
③平行四邊形的對角線互相平分;
平行四邊形的判定:
、賰山M對角分別相等的四邊形是平行四邊形;
、趦山M對邊分別相等的四邊形是平行四邊形;
③對角線互相平分的四邊形是平行四邊形;
、芤唤M對邊平行且相等的四邊形是平行四邊形。
直角三角形的性質(zhì):
①直角三角形的兩個銳角互為余角;
、谥苯侨切涡边吷系闹芯等于斜邊的一半;
、壑苯侨切蔚膬芍苯沁叺钠椒胶偷扔谛边叺'平方(勾股定理);
④直角三角形中30度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
①有兩個角互余的三角形是直角三角形;
、谌绻切蔚娜呴La、b 、c有下面關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形(勾股定理的逆定理)。
等腰三角形的性質(zhì):
、俚妊切蔚膬蓚底角相等;
、诘妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合(三線合一)
三角形
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(內(nèi)心);
三角形的三邊的垂直平分線交于一點(外心);
三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;
初中數(shù)學知識點14
圓的知識:平面上一條線段,繞它的一端旋轉(zhuǎn)360°,留下的軌跡叫圓。
圓心:
(1)如定義(1)中,該定點為圓心
(2)如定義(2)中,繞的那一端的端點為圓心。
(3)圓任意兩條對稱軸的交點為圓心。
(4) 垂直于圓內(nèi)任意一條弦且兩個端點在圓上的線段的二分點為圓心。
注:圓心一般用字母O表示
直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。
圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。
圓的周長與直徑的比值叫做圓周率。
圓的周長除以直徑的`商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計算時,通常取它的近似值,π≈3.14。
直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。
圓的面積公式:圓所占平面的大小叫做圓的面積。πr,用字母S表示。
一條弧所對的圓周角是圓心角的二分之一。
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。
初中數(shù)學知識點15
知識要領(lǐng):非負數(shù),顧名思義,就是不是負數(shù)的數(shù),也就是零和正實數(shù)。例如:0、3.4、9/10、π(圓周率)。
非負數(shù)
非負數(shù)大于或等于0。
非負數(shù)中含有有理數(shù)和無理數(shù)。
非負數(shù)的和或積仍是非負數(shù)。
非負數(shù)的和為零,則每個非負數(shù)必等于零。
非負數(shù)的.積為零,則至少有一個非負數(shù)為零。
非負數(shù)的絕對值等于本身。
常見的非負數(shù)
實數(shù)的絕對值、實數(shù)的偶次冪、算術(shù)根等都是常見的非負數(shù)。
常見表現(xiàn)形式
非負數(shù)的準確數(shù)學表達是a≥0、│a│、a^2n是常見的非負數(shù)。
知識歸納:任何一個非負數(shù)乘以-1都會得到一個非正數(shù)。
【初中數(shù)學知識點】相關(guān)文章:
初中數(shù)學蘇教版知識點08-22
初中數(shù)學代數(shù)知識點01-13
初中數(shù)學倒數(shù)的知識點08-01
初中數(shù)學角的知識點05-31
初中數(shù)學知識點04-30
初中數(shù)學概率知識點06-14
初中數(shù)學角的知識點10-29
初中數(shù)學總結(jié)知識點08-26
(精選)初中數(shù)學知識點07-19