當前位置:育文網(wǎng)>初中>初中數(shù)學> 初中數(shù)學知識點

初中數(shù)學知識點

時間:2024-07-19 11:59:29 初中數(shù)學 我要投稿

(經(jīng)典)初中數(shù)學知識點

  在日常的學習中,大家都背過不少知識點,肯定對知識點非常熟悉吧!知識點在教育實踐中,是指對某一個知識的泛稱。為了幫助大家掌握重要知識點,以下是小編為大家收集的初中數(shù)學知識點,歡迎閱讀,希望大家能夠喜歡。

(經(jīng)典)初中數(shù)學知識點

初中數(shù)學知識點1

  基于質數(shù)定義的基礎之上而建立的問題有很多世界級的難題,如哥德巴赫猜想等。

  質數(shù)

  質數(shù)又稱素數(shù)。指在一個大于1的自然數(shù)中,除了1和此整數(shù)自身外,不能被其他自然數(shù)整除的數(shù)。

  素數(shù)在數(shù)論中有著很重要的`地位。比1大但不是素數(shù)的數(shù)稱為合數(shù)。1和0既非素數(shù)也非合數(shù)。質數(shù)是與合數(shù)相對立的兩個概念,二者構成了數(shù)論當中最基礎的定義之一。

  算術基本定理證明每個大于1的正整數(shù)都可以寫成素數(shù)的乘積,并且這種乘積的形式是唯一的。這個定理的重要一點是,將1排斥在素數(shù)集合以外。如果1被認為是素數(shù),那么這些嚴格的闡述就不得不加上一些限制條件。

  概念

  只有1和它本身兩個約數(shù)的自然數(shù),叫質數(shù)(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的約數(shù)只有1和它本身2這兩個約數(shù),所以2就是質數(shù)。與之相對立的是合數(shù):“除了1和它本身兩個約數(shù)外,還有其它約數(shù)的數(shù),叫合數(shù)!比纾4÷1=4,4÷2=2,4÷4=1,很顯然,4的約數(shù)除了1和它本身4這兩個約數(shù)以外,還有約數(shù)2,所以4是合數(shù)。)

  100以內的質數(shù)有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100內共有25個質數(shù)。

  注:1既不是質數(shù)也不是合數(shù)。因為它的約數(shù)有且只有1這一個約數(shù)。

初中數(shù)學知識點2

  一、基本知識

  一、數(shù)與代數(shù)

  A、數(shù)與式:

  1、有理數(shù):

 、僬麛(shù)→正整數(shù),0,負整數(shù);

  ②分數(shù)→正分數(shù),負分數(shù)

  數(shù)軸:

 、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。

  ②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。

 、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側,并且與原點距離相等。

  ④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

  絕對值:

 、僭跀(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。

  ②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0、兩個負數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:帶上符號進行正常運算。

  加法:

 、偻栂嗉,取相同的符號,把絕對值相加。

 、诋愄栂嗉,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:

 、賰蓴(shù)相乘,同號得正,異號得負,絕對值相乘。

 、谌魏螖(shù)與0相乘得0、

 、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。

  除法:

 、俪砸粋數(shù)等于乘以一個數(shù)的倒數(shù)。

 、0不能作除數(shù)。

  乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數(shù)

  無理數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù),例如:π=…

  平方根:

 、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術平方根。

 、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。

  ③一個正數(shù)有2個平方根;0的平方根為0;負數(shù)沒有平方根。

 、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:

 、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。

 、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。

  ③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):

 、賹崝(shù)分有理數(shù)和無理數(shù)。

  ②在實數(shù)范圍內,相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內的相反數(shù),倒數(shù),絕對值的意義完全一樣;

  ③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。

  3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:

 、偎帜赶嗤,并且相同字母的指數(shù)也相同的項,叫做同類項;②把同類項合并成一項就叫做合并同類項。

 、墼诤喜⑼愴棔r,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:

 、贁(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

 、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

  ③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:

  A^M+A^N=A^(M+N)

  (A^M)^N=A^(MN

 。ˋ/B)^N=A^N/B^N

  除法一樣。

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

  ②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

 、鄱囗検脚c多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式:A^2—B^2=(A+B)(A—B);

  完全平方公式:(A+B)^2=A^2+2AB+B^2;(A—B)^2=A^2—2AB+B^2、

  整式的除法:

  ①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

 、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:

 、僬紸除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0、

 、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:

 、偻帜阜质较嗉訙p,分母不變,把分子相加減。

 、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。

  分式方程:

 、俜帜钢泻形粗獢(shù)的方程叫分式方程。

 、谑狗匠痰姆帜笧0的解稱為原方程的增根。

  B、方程與不等式

  1、方程與方程組

  一元一次方程:

  ①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1、

  二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的'方程叫做二元一次方程。

  二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

  適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。

  二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

  解二元一次方程組的方法:代入消元法;加減消元法。

  一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程:ax^2+bx+c=0;

  1)一元二次方程的二次函數(shù)的關系

  大家已經(jīng)學過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當Y=0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖像與X軸的交點。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點式(—b/2a,4ac—b^2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

 。1)配方法

  利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解

 。2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

 。3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={—b+√[b^2—4ac)]}/2a,X2={—b—√[b^2—4ac)]}/2a

  3)解一元二次方程的步驟:

 。1)配方法的步驟:

  先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式

 。2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

 。3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c

  4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a

  也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

  5)一元二次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2—4ac,這里可以分為3種情況:

  I當△>0時,一元二次方程有2個不相等的實數(shù)根;

  II當△=0時,一元二次方程有2個相同的實數(shù)根;

  III當△B,則A+C>B+C;

  在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;

  例如:如果A>B,則A—C>B—C;

  在不等式中,如果乘以同一個正數(shù),不等式符號不改向;

  例如:如果A>B,則A*C>B*C(C>0);

  在不等式中,如果乘以同一個負數(shù),不等號改向;

  例如:如果A>B,則A*C

  如果不等式乘以0,那么不等號改為等號;

  所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;

  3、函數(shù)

  變量:因變量Y,自變量X。

  在用圖像表示變量之間的關系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

  一次函數(shù):

 、偃魞蓚變量X,Y間的關系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

 、诋擝=0時,稱Y是X的正比例函數(shù)。

  一次函數(shù)的圖像:

 、侔岩粋函數(shù)的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖像。

 、谡壤瘮(shù)Y=KX的圖像是經(jīng)過原點的一條直線。

 、墼谝淮魏瘮(shù)中,當K〈0,B〈O時,則經(jīng)234象限;

  當K〈0,B〉0時,則經(jīng)124象限;

  當K〉0,B〈0時,則經(jīng)134象限;

  當K〉0,B〉0時,則經(jīng)123象限。

 、墚擪〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

  二空間與圖形

  A、圖形的認識

  1、點,線,面

  點,線,面:

 、賵D形是由點,線,面構成的。

 、诿媾c面相交得線,線與線相交得點。

  ③點動成線,線動成面,面動成體。

  展開與折疊:

 、僭诶庵,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。

  ②N棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  弧、扇形:

 、儆梢粭l弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個扇形。

  2、角

  線:

  ①線段有兩個端點。

 、趯⒕段向一個方向無限延長就形成了射線。射線只有一個端點。

  ③將線段的兩端無限延長就形成了直線。直線沒有端點。

 、芙(jīng)過兩點有且只有一條直線。

  比較長短:

 、賰牲c之間的所有連線中,線段最短。兩點之間直線最短。

 、趦牲c之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:

  ①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

  ②一度的1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

  角的比較:

 、俳且部梢钥闯墒怯梢粭l射線繞著他的端點旋轉而成的。

 、谝粭l射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角,180、始邊繼續(xù)旋轉,當他又和始邊重合時,所成的角叫做周角,360、

  ③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:

 、偻黄矫鎯龋幌嘟坏膬蓷l直線叫做平行線。

 、诮(jīng)過直線外一點,有且只有一條直線與這條直線平行。

  ③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:

 、偃绻麅蓷l直線相交成直角,那么這兩條直線互相垂直。

 、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。

 、燮矫鎯龋^一點有且只有一條直線與已知直線垂直。

  垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質定理:在垂直平分線上的點到該線段兩端點的距離相等;

  判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;

  角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角的角平分線就是到角兩邊距離相等的點的集合。

  性質定理:角平分線上的點到該角兩邊的距離相等;

  判定定理:到角的兩邊距離相等的點在該角的角平分線上;

  正方形:一組鄰邊相等的矩形是正方形

  性質:正方形具有平行四邊形、菱形、矩形的一切性質

  判定:

  1、對角線相等的菱形

  2、鄰邊相等的矩形

  二、基本定理

  1、過兩點有且只有一條直線

  2、兩點之間線段最短

  3、同角或等角的補角相等——補角=180—角度。

  4、同角或等角的余角相等——余角=90—角度。

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內錯角相等,兩直線平行

  11、同旁內角互補,兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內錯角相等

  14、兩直線平行,同旁內角互補

  15、定理:三角形兩邊的和大于第三邊

  16、推論:三角形兩邊的差小于第三邊

  17、三角形內角和定理:三角形三個內角的和等于180°

  18、推論1:直角三角形的兩個銳角互余

  19、推論2:三角形的一個外角等于和它不相鄰的兩個內角的和

  20、推論3:三角形的一個外角大于任何一個和它不相鄰的內角

  21、全等三角形的對應邊、對應角相等

  22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等

  23、角邊角公理(ASA):有兩角和它們的夾邊對應相等的兩個三角形全等

  24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等

  25、邊邊邊公理(SSS):有三邊對應相等的兩個三角形全等

  26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等

  27、定理1:在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊

  31、推論2:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

  32、推論3:等邊三角形的各角都相等,并且每一個角都等于60°

  33、等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  34、等腰三角形的性質定理:等腰三角形的兩個底角相等(即等邊對等角)

  35、推論1:三個角都相等的三角形是等邊三角形

  36、推論:有一個角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線等于斜邊上的一半

  39、定理:線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42、定理1:關于某條直線對稱的兩個圖形是全等形

  43、定理:如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

  44、定理3:兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

  45、逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱

  46、勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形

  48、定理:四邊形的內角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內角和定理:n邊形的內角的和等于(n—2)×180°

  51、推論:任意多邊的外角和等于360°

  52、平行四邊形性質定理1:平行四邊形的對角相等

  53、平行四邊形性質定理2:行四邊形的對邊相等

  54、推論:夾在兩條平行線間的平行線段相等

  55、平行四邊形性質定理3:平行四邊形的對角線互相平分

  56、平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2:兩組對邊分別相等的四邊形是平行四邊形

  58、平行四邊形判定定理3:對角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4:一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質定理1:矩形的四個角都是直角

  61、矩形性質定理2:矩形的對角線相等

  62、矩形判定定理1:有三個角是直角的四邊形是矩形

  63、矩形判定定理2:對角線相等的平行四邊形是矩形

  64、菱形性質定理1:菱形的四條邊都相等

  65、菱形性質定理2:菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1:四邊都相等的四邊形是菱形

  68、菱形判定定理2:對角線互相垂直的平行四邊形是菱形

  69、正方形性質定理1:正方形的四個角都是直角,四條邊都相等

  70、正方形性質定理2:正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71、定理1:關于中心對稱的兩個圖形是全等的

  72、定理2:關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  73、逆定理:如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱

  74、等腰梯形性質定理:等腰梯形在同一底上的兩個角相等

  75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形

  77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

  80、推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  81、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2,S=L×h

  83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc,ad=bc,那么a:b=c:d

  84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例

  87、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

  88、定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

  90、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

  91、相似三角形判定定理1:兩角對應相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  93、判定定理2:兩邊對應成比例且夾角相等,兩三角形相似(SAS)

  94、判定定理3:三邊對應成比例,兩三角形相似(SSS)

  95、定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似(HL)

  96、性質定理1:相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比

  97、性質定理2:相似三角形周長的比等于相似比

  98、性質定理3:相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90—a),cos(a)=sin(90—a)(a<90)

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90—a),cot(a)=tan(90—a)

  101、圓是定點的距離等于定長的點的集合

  102、圓的內部可以看作是圓心的距離小于半徑的點的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點的集合

  104、同圓或等圓的半徑相等

  105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理:不在同一直線上的三點確定一個圓。

  110、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111、推論1

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧(直徑)

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112、推論2

  圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論

  在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116、定理

  一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1

  同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118、推論2

  半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3

  如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

  120、定理

  圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

  121、①直線L和⊙O相交0<=d<r

 、谥本L和⊙O相切d=r

 、壑本L和⊙O相離d>r

  122、切線的判定定理

  經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質定理

  圓的切線垂直于經(jīng)過切點的半徑

  124、推論1

  經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  125、推論2

  經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  126、切線長定理

  從圓外一點引圓的兩條切線相交與一點,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理

  弦切角等于它所夾的弧對的圓周角?

  129、推論

  如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  130、相交弦定理

  圓內的兩條相交弦,被交點分成的兩條線段長的積相等

  131、推論

  如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  132、切割線定理

  從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?

  133、推論

  從圓外一點引圓的兩條割線,這一點到每條

  割線與圓的交點的兩條線段長的積相等

  134、如果兩個圓相切,那么切點一定在連心線上

  135、①兩圓外離d>R+r

 、趦蓤A外切d=R+r

  ③兩圓相交R—r<d<R+r(R>r)

 、軆蓤A內切d=R—r(R>r)

  ⑤兩圓內含d<R—r(R>r)

  136、定理

  相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理

  把圓平均分成n(n≥3):

 、乓来芜B結各分點所得的多邊形是這個圓的內接正n邊形

 、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138、定理

  任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

  139、正n邊形的每個內角都等于(n—2)×180°/n

  140、定理

  正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  141、正n邊形的面積Sn=pn*rn/2,p表示正n邊形的周長

  142、正三角形面積√3a^2/4,a表示邊長

  143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4

  144、弧長計算公式:L=n兀R/180——》L=nR

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內公切線長=d—(R—r),外公切線長=d—(R+r)

初中數(shù)學知識點3

  代數(shù)部分:有理數(shù)、無理數(shù)、實數(shù)整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))

  幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。

  1、實數(shù)的分類

  有理數(shù):整數(shù)(包括:正整數(shù)、0、負整數(shù))和分數(shù)(包括:有限小數(shù)和無限環(huán)循小數(shù))都是有理數(shù)。如:—3,0.231,0.737373......

  無理數(shù):無限不環(huán)循小數(shù)叫做無理數(shù)如:π,—,0.1010010001......(兩個1之間依次多1個0)。

  實數(shù):有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。

  2、無理數(shù)

  在理解無理數(shù)時,要抓住"無限不循環(huán)"這一時之,它包含兩層意思:一是無限小數(shù);二是不循環(huán)。二者缺一不可。歸納起來有四類:

  (1)開方開不盡的數(shù),如等;

 。2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;

  (3)有特定結構的數(shù),如0.1010010001......等;

 。4)某些三角函數(shù),如sin60o等。

  注意:判斷一個實數(shù)的屬性(如有理數(shù)、無理數(shù)),應遵循:一化簡,二辨析,三判斷。要注意:"神似"或"形似"都不能作為判斷的標準。

  3、非負數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x≥0)

  常見的非負數(shù)有:

  性質:若干個非負數(shù)的和為0,則每個非負擔數(shù)均為0。

  4、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。

  解題時要真正掌握數(shù)形結合的思想,理解實數(shù)與數(shù)軸的點是一一對應的,并能靈活運用。

 、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的.方向為正方向,就得到數(shù)軸("三要素")。

 、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。

 、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。

  作用:A、直觀地比較實數(shù)的大。籅、明確體現(xiàn)絕對值意義;C、建立點與實數(shù)的一一對應關系。

  5、相反數(shù)

  實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應的點關于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。

  即:(1)實數(shù)的相反數(shù)是。

初中數(shù)學知識點4

  一次函數(shù)與一元一次方程的關系

  一元一次方程ax+b=0(a,b為常數(shù),且a≠0)可看作一次函數(shù)y=ax+b的函數(shù)值是0的一種特例,其解是直線y=ax+b與x軸交點的橫坐標,所以解一元一次方程ax+b=0可以轉化為當一次函數(shù)y=ax+b的值為0時,求相應自變量x的'值,因此可以利用圖像來解一元一次方程。

  求直線y=kx+b與x軸交點時,可令y=0,得到一元一次方程kx+b=0,解方程得x=-,則- 就是直線y=kx+b與x軸交點的橫坐標。

  反過來解一元一次方程也可以看作是求直線y=kx+b與x軸交點的橫坐標的值。

  待定系數(shù)法

  先設出函數(shù)解析式,在根據(jù)條件確定解析式中的未知的系數(shù),從而寫出這個式子的方法,叫待定系數(shù)法。

  用待定系數(shù)法確定解析式的步驟:

 、僭O函數(shù)表達式為:y=kx 或 y=kx+b

  ②將已知點的坐標代入函數(shù)表達式,得到方程(組)

  ③解方程或組,求出待定的系數(shù)的值。

 、馨训闹荡厮O表達式,從而寫出需要的解析式。

  注意; 正比例函數(shù)y=kx只要有一個條件就可以。而一次函數(shù)y=kx+b需要有兩個條件。

  性質

 、賵D像形:是一條直線。稱為直線y=kx+b

  ②象限性:

  當k>0、b>0時,直線經(jīng)過第一、二、三象限,不過四象限。

  當k>0、b<0時,直線經(jīng)過第一、三、四象限。不過二象限

  當k<0 b="">0時,直線經(jīng)過第一、二,四象限。不過三象限

  當k<0 、b<0時,直線經(jīng)過第二,三、四象限。不過一象限

 、墼鰷p性:當k>0時,直線從左向右上升,隨著x的增大(減小) y也增大(減小)

  當k<0時,直線從左向右下降。隨著x的增大(減小) y反而而減小(增大)

  ④連續(xù)性:由于自變量取值是全體實數(shù),所以圖像具有連續(xù)性。(沒有最大或最小值)

 、萁鼐嘈;

  當b>0時,直線與y軸交于y軸正半軸(交點位于軸上方)

  當b<0時,直線與y軸交于y軸負半軸(交點位于軸下方)

 、迌A斜性:︱k︱越大,直線越靠向y軸,與x軸正方向的夾角度數(shù)越大,越陡。

 、咂揭菩; 直線y=kx+b

  當b>0時,是由直線y=kx 向上平移得到的。

  當b<0時,是由直線y=kx 向下平移得到的。

  一次函數(shù)與正比例函數(shù)關系

  正比例函數(shù)包含于一次函數(shù),即正比例函數(shù)是一次函數(shù);正比例函數(shù)是一次函數(shù)當b=0時的特殊情況。

  一次函數(shù)定義

  一般地,形如y=kx+b(k、b是常數(shù),k≠0)的函數(shù),叫一次函數(shù)。

  (存在條件: ①兩個變量x、y,②k、b是常數(shù)且k≠0,③自變量x的次數(shù)是1,④自變量x的是整式形式)

初中數(shù)學知識點5

  1.通過猜想,驗證,計算得到的定理:

  (1)全等三角形的判定定理:

  (2)與等腰三角形的相關結論:

  ①等腰三角形兩底角相等(等邊對等角)

 、诘妊切雾斀堑钠椒志,底邊上的中線,底邊上的高互相重合(三線合一)

 、塾袃蓚角相等的三角形是等腰三角形(等角對等邊)

  (3)與等邊三角形相關的結論:

  ①有一個角是60°得等腰三角形是等邊三角形

 、谌齻角都相等的三角形是等邊三角形

  ③三條邊都相等的三角形是等邊三角形

  (4)與直角三角形相關的結論:

 、俟垂啥ɡ恚涸谥苯侨切沃,兩直角邊的平方和等于斜邊的平方

  ②勾股定理逆定理:在一個三角形中兩直角邊的平方和等于斜邊的平方,那么這個三角形一定是直角三角形

 、跦L定理:斜邊和一條直角邊對應相等的兩個三角形全等

  ④在三角形中30°角所對的直角邊等于斜邊的一半

  2.兩條特殊線

  (1)線段的垂直平分線

 、倬段的垂直平分線上的點到線段兩邊的距離相等互為逆定理{

 、诘揭粭l線段兩個端點距離相等的點在這條線段的垂直平分線上

 、廴切蔚娜龡l垂直平分線交于一點,并且這一點到這三個頂點的距離相等

  (2)角平分線

 、俳瞧椒志上的點到這個角的兩邊距離相等互為逆定理{

  ②在一個角的內部,并且到這個角的兩邊距離相等的的.點,在這個角的角平分線上

  3.命題的逆命題及真假

 、僭趦蓚命題中,如果一個命題的條件與結論是另一個命題的結論與條件,我們就說這兩個命題互為逆命題,其中一個是另一個的逆命題

 、谌绻粋定理的逆命題是真命題,那么他也是一個定理,我們稱這兩個定理為互逆定理

 、鄯凑ǎ簭姆穸}的結論入手,并把對命題結論的否定作為推理的已知條件,進行正確的邏輯推理,使之得到與已知條件,定理相矛盾,矛盾的原因是假設不成立,所以肯定了命題的結論,使命題獲得了證明

  第二章一元二次方程

  1.一元二次方程:只含有一個未知數(shù)X的整式方程,并且可以化成aX?+bX+C=0(a≠0)形式稱它為一元二次方程

  aX?+bX+C=0(a≠0)→一般形式

  aX?叫二次項bX叫一次項C叫常數(shù)項a叫二次項系數(shù)b叫一次項系數(shù)

  2.一元二次方程解法:

  (1)配方法:(X±a)?=b(b≥0)注:二次項系數(shù)必須化為1

  (2)公式法:aX?+bX+C=0(a≠0)確定a,b,c的值,計算b?-4ac≥0

  若b?-4ac>0則有兩個不相等的實根,若b?-4ac=0則有兩個相等的實根,若b?-4ac<0則無解

  若b?-4ac≥0則用公式X=-b±√b?-4ac/2a注:必須化為一般形式

  (3)分解因式法

 、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0

  平方差公式:a?-b?=0→(a+b)(a-b)=0

  ②運用公式法:{

  完全平方公式:a?±2ab+b?=0→(a±b)?=0

 、凼窒喑朔

  例題:X?-2X-3=0

  1/111

  ×}X?的系數(shù)為1則可以寫成{常數(shù)項系數(shù)為3則可寫成{

  1/-31-3

  --------

  -3+1=-2交叉相乘在相加求值,值必須等于一次項系數(shù)

  (X+1)(X-3)=o

初中數(shù)學知識點6

  銳角三角函數(shù)定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

  正弦(sin):對邊比斜邊,即sinA=a/c;

  余弦(cos):鄰邊比斜邊,即cosA=b/c;

  正切(tan):對邊比鄰邊,即tanA=a/b;

  余切(cot):鄰邊比對邊,即cotA=b/a;

  正割(sec):斜邊比鄰邊,即secA=c/b;

  余割(csc):斜邊比對邊,即cscA=c/a。

  三角函數(shù)關系

  1、互余角的關系

  sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。

  2、平方關系

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  3、積的關系

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  4、倒數(shù)關系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  兩角和差公式

  sin(A+B)= sinAcosB+cosAsinB

  sin(A—B)= sinAcosB—cosAsinB

  cos(A+B)= cosAcosB—sinAsinB

  cos(A—B)= cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1—tanAtanB)

  tan(A—B)=(tanA—tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB—1)/(cotB+cotA)

  cot(A—B)=(cotAcotB+1)/(cotB—cotA)

  1、不在同一直線上的三點確定一個圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。

  3、圓是以圓心為對稱中心的中心對稱圖形。

  4、圓是定點的距離等于定長的點的集合

  5、圓的內部可以看作是圓心的距離小于半徑的點的集合。

  6、圓的外部可以看作是圓心的距離大于半徑的點的集合。

  7、同圓或等圓的半徑相等。

  8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。

  10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的`弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  11、定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角。

  13、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  14、切線的性質定理圓的切線垂直于經(jīng)過切點的半徑。

  15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點。

初中數(shù)學知識點7

  三角形兩邊:

  定理三角形兩邊的和大于第三邊。

  推論三角形兩邊的差小于第三邊。

  三角形中位線定理:

  三角形的中位線平行于第三邊,并且等于它的一半。

  三角形的重心:

  三角形的重心到頂點的距離是它到對邊中點距離的2倍。

  在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線,三角形的三條中線交于一點,這一點叫做“三角形的.重心”。

  與三角形有關的角:

  1、三角形的內角和定理:三角形的內角和為180°,與三角形的形狀無關。

  2、直角三角形兩個銳角的關系:直角三角形的兩個銳角互余(相加為90°)。有兩個角互余的三角形是直角三角形。

  3、三角形外角的性質:三角形的一個外角等于與它不相鄰的兩個內角之和;三角形的一個外角大于與它不相鄰的任何一個內角;三角形三個外角和為360°。

  全等三角形的性質和判定:

  全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉、對折也會構成全等三角形。

  (邊邊邊),即三邊對應相等的兩個三角形全等。

 。ㄟ吔沁叄,即三角形的其中兩條邊對應相等,且兩條邊的夾角也對應相等的兩個三角形全等。

 。ń沁吔牵,即三角形的其中兩個角對應相等,且兩個角夾的的邊也對應相等的兩個三角形全等。

 。ń墙沁叄,即三角形的其中兩個角對應相等,且對應相等的角所對應的邊也對應相等的兩個三角形全等。

 。ㄐ边、直角邊),即在直角三角形中一條斜邊和一條直角邊對應相等的兩個直角三角形全等。

  等邊三角形的判定:

  1、三邊相等的三角形是等邊三角形(定義)。

  2、三個內角都相等的三角形是等邊三角形。

  3、有一個角是60度的等腰三角形是等邊三角形。

  4、有兩個角等于60度的三角形是等邊三角形。

初中數(shù)學知識點8

  整式的加減

  2、1整式

  1、單項式:由數(shù)字和字母乘積組成的式子。系數(shù),單項式的次數(shù)、單項式指的是數(shù)或字母的積的代數(shù)式、單獨一個數(shù)或一個字母也是單項式、因此,判斷代數(shù)式是否是單項式,關鍵要看代數(shù)式中數(shù)與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式、

  2、單項式的系數(shù):是指單項式中的數(shù)字因數(shù);

  3、單項數(shù)的次數(shù):是指單項式中所有字母的指數(shù)的和、

  4、多項式:幾個單項式的和。判斷代數(shù)式是否是多項式,關鍵要看代數(shù)式中的每一項是否是單項式、每個單項式稱項,常數(shù)項,多項式的次數(shù)就是多項式中次數(shù)的次數(shù)。多項式的次數(shù)是指多項式里次數(shù)項的次數(shù),這里是次數(shù)項,其次數(shù)是6;多項式的項是指在多項式中,每一個單項式、特別注意多項式的項包括它前面的性質符號、

  5、它們都是用字母表示數(shù)或列式表示數(shù)量關系。注意單項式和多項式的每一項都包括它前面的符號。

  6、單項式和多項式統(tǒng)稱為整式。

  2、2整式的.加減

  1、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項。與字母前面的系數(shù)(≠0)無關。

  2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數(shù)相同,二者缺一不可、同類項與系數(shù)大小、字母的排列順序無關

  3、合并同類項:把多項式中的同類項合并成一項。可以運用交換律,結合律和分配律。

  4、合并同類項法則:合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變;

  5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。

  6、整式加減的一般步驟:

  一去、二找、三合

  (1)如果遇到括號按去括號法則先去括號、(2)結合同類項、(3)合并同類項葫蘆島

  初中數(shù)學知識點歸納

  三角和的公式

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  倍角公式

  tan2A = 2tanA/(1-tan2 A)

  Sin2A=2SinA?CosA

  Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

  三倍角公式

  sin3A = 3sinA-4(sinA)3;

  cos3A = 4(cosA)3 -3cosA

  tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

  三角函數(shù)特殊值

  α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

  α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

  a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

  α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

  α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

  α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

  α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

  α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

  α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

  α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

  α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  三角函數(shù)記憶順口溜

  1三角函數(shù)記憶口訣

  “奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。

  以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號為負,所以右邊為-sinα。

  2符號判斷口訣

  全,S,T,C,正。這五個字口訣的意思就是說:第一象限內任何一個角的四種三角函數(shù)值都是“+”;第二象限內只有正弦是“+”,其余全部是“-”;第三象限內只有正切是“+”,其余全部是“-”;第四象限內只有余弦是“+”,其余全部是“-”。

  也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應象限三角函數(shù)為正值的名稱?谠E中未提及的都是負值。

  “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應的三角函數(shù)為正值。

  3三角函數(shù)順口溜

  三角函數(shù)是函數(shù),象限符號坐標注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。

  同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

  中心記上數(shù)字一,連結頂點三角形。向下三角平方和,倒數(shù)關系是對角,頂點任意一函數(shù),等于后面兩根除。誘導公式就是好,負化正后大化小,變成銳角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

  計算證明角先行,注意結構函數(shù)名,保持基本量不變,繁難向著簡易變。

  逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

  萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

  一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

  三角函數(shù)反函數(shù),實質就是求角度,先求三角函數(shù)值,再判角取值范圍;

  利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。

  初中數(shù)學知識點大全

  誘導公式的本質

  所謂三角函數(shù)誘導公式,就是將角n(/2)的三角函數(shù)轉化為角的三角函數(shù)。

  常用的誘導公式

  公式一: 設為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 設為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關系:

  sin( )=-sin

  cos( )=-cos

  tan( )=tan

  cot( )=cot

  公式三: 任意角與 -的三角函數(shù)值之間的關系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關系:

  sin( )=sin

  cos( )=-cos

  tan( )=-tan

  cot( )=-cot

初中數(shù)學知識點9

  一、角的定義

  “靜態(tài)”概念:有公共端點的兩條射線組成的圖形叫做角。

  “動態(tài)”概念:角可以看作是一條射線繞其端點從一個位置旋轉到另一個位置所形成的圖形。

  如果一個角的兩邊成一條直線,那么這個角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。

  二、角的換算:1周角=2平角=4直角=360°;

  1平角=2直角=180°;

  1直角=90°;

  1度=60分=3600秒(即:1°=60′=3600″);

  1分=60秒(即:1′=60″).

  三、余角、補角的'概念和性質:

  概念:如果兩個角的和是一個平角,那么這兩個角叫做互為補角。

  如果兩個角的和是一個直角,那么這兩個角叫做互為余角。

  說明:互補、互余是指兩個角的數(shù)量關系,沒有位置關系。

  性質:同角(或等角)的余角相等;

  同角(或等角)的補角相等。

  四、角的比較方法:

  角的大小比較,有兩種方法:

  (1)度量法(利用量角器);

  (2)疊合法(利用圓規(guī)和直尺)。

  五、角平分線:從一個角的頂點引出的一條射線。把這個角分成相等的兩部分,這條射線叫做這個角的平分線。

  常見考法

  (1)考查與時鐘有關的問題;(2)角的計算與度量。

  誤區(qū)提醒

  角的度、分、秒單位的換算是60進制,而不是10進制,換算時易受10進制影響而出錯。

  初中數(shù)學知識點梳理

  1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。

  2.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。

  3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數(shù)化為1 ……(檢驗方程的解)。

  4.列一元一次方程解應用題:

  (1)讀題分析法:多用于“和,差,倍,分問題”

  仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關系填入代數(shù)式,得到方程。

  (2)畫圖分析法:多用于“行程問題”

  利用圖形分析數(shù)學問題是數(shù)形結合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關系(可把未知數(shù)看做已知量),填入有關的代數(shù)式是獲得方程的基礎。

  11.列方程解應用題的常用公式:

  (1)行程問題:距離=速度·時間;

  (2)工程問題:工作量=工效·工時;

  (3)比率問題:部分=全體·比率;

  (4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

  (5)商品價格問題:售價=定價·折·,利潤=售價—成本,;

  (6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。

  本章內容是代數(shù)學的核心,也是所有代數(shù)方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數(shù)學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數(shù)學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數(shù)學思想方法。

初中數(shù)學知識點10

  棱柱是多面體中最簡單的一種,我們常見的一些物體,例如三棱鏡、方磚以及螺桿的頭部,它們都呈棱柱的形狀。

  棱柱:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個多邊形的公共邊都互相平行,由這些面所圍成的多面體叫做棱柱。棱柱用表示底面各頂點的字母來表示。

  棱柱的底面:棱柱中兩個互相平行的面,叫做棱柱的底面。

  棱柱的側面:棱柱中除兩個底面以外的其余各個面都叫做棱柱的側面。

  棱柱的側棱:棱柱中兩個側面的公共邊叫做棱柱的側棱。

  棱柱的形成方式:棱柱是由一個由直線構成的平面沿著不平行于此平面的直線整體平移而形成的。

  棱柱的頂點:在棱柱中,側面與底面的`公共頂點叫做棱柱的頂點。

  棱柱的對角線:棱柱中不在表面同一平面上的兩個頂點的連線叫做棱柱的對角線。

  棱柱的高:棱柱的兩個底面的距離叫做棱柱的高。

  棱柱的對角面:棱柱中過不相鄰的兩條側棱的截面叫做棱柱的對角面。

  棱柱有很多,三棱柱、四棱柱、五棱柱、還有直棱柱、斜棱柱。

初中數(shù)學知識點11

  1、實數(shù)的分類

  有理數(shù):整數(shù)(包括:正整數(shù)、0、負整數(shù))和分數(shù)(包括:有限小數(shù)和無限環(huán)循小數(shù))都是有理數(shù)。如:-3,0.231,0.737373...

  無理數(shù):無限不環(huán)循小數(shù)叫做無理數(shù)如:π,-,0.1010010001...(兩個1之間依次多1個0)。

  實數(shù):有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。

  2、無理數(shù)

  在理解無理數(shù)時,要抓住"無限不循環(huán)"這一時之,它包含兩層意思:一是無限小數(shù);二是不循環(huán).二者缺一不可.歸納起來有四類:

  (1)開方開不盡的數(shù),如等;

  (2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;

  (3)有特定結構的數(shù),如0.1010010001...等;

  (4)某些三角函數(shù),如sin60o等。

  注意:判斷一個實數(shù)的屬性(如有理數(shù)、無理數(shù)),應遵循:一化簡,二辨析,三判斷.要注意:"神似"或"形似"都不能作為判斷的標準.

  3、非負數(shù)

  正實數(shù)與零的統(tǒng)稱。(表為:x≥0)

  性質:若干個非負數(shù)的和為0,則每個非負擔數(shù)均為0。

  4、數(shù)軸

  規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。

  解題時要真正掌握數(shù)形結合的思想,理解實數(shù)與數(shù)軸的點是一一對應的,并能靈活運用。

  ①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸("三要素")。

 、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。

 、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。

  作用:

  A.直觀地比較實數(shù)的大小;

  B.明確體現(xiàn)絕對值意義;

  C.建立點與實數(shù)的一一對應關系。

  5、相反數(shù)

  實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應的點關于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=-b,反之亦成立。

  即:

  (1)實數(shù)的相反數(shù)是。

  (2)和互為相反數(shù)。

  6、整式與分式

  整式:

 、贁(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

 、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

 、垡粋多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:AM+AN=A(M+N)

  (AM)N=AMN

  (A/B)N=AN/BN除法一樣。

  整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

  ②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

 、鄱囗検脚c多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:

 、賳雾検较喑严禂(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

  ②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:

  ①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:

 、偻帜阜质较嗉訙p,分母不變,把分子相加減。

 、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。

  分式方程:

  ①分母中含有未知數(shù)的方程叫分式方程。

  ②使方程的分母為0的解稱為原方程的增根。

  7、方程與方程組

  一元一次方程:

 、僭谝粋方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

  ②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。

  二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。

  二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

  適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。

  二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

  解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程。

  1)一元二次方程的二次函數(shù)的關系

  大家已經(jīng)學過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了。

  2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解。

  (1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解。

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解。

  (3)公式法

  這方法也可以是在解一元二次方程的`萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a。

  3)解一元二次方程的步驟:

  (1)配方法的步驟:

  先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式。

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式。

  (3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c。

  4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a。

  也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用。

  5)一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diaota”,而△=b2-4ac,這里可以分為3種情況:

  I當△>0時,一元二次方程有2個不相等的實數(shù)根;

  II當△=0時,一元二次方程有2個相同的實數(shù)根;

  III當△<0時,一元二次方程沒有實數(shù)根(在這里,學到高中就會知道,這里有2個虛數(shù)根)。

  數(shù)學復習方法學霸分享

  1.重點練習幾種類型的題目

  不要鉆偏題、怪題、過難題的牛角尖,根據(jù)平時做套卷時的感受,多練習以下幾個類型的題目。

  (1)初看沒有思路,但分析后能順利做出的。通過對這類問題的練習,能夠使我們對題目的考點和重點更熟悉,提高建立思路的速度和切入點的準確度,讓我們能在考試中留出更多時間來處理后面難度高、閱讀量大的綜合題。

  (2)自己經(jīng)常出錯的中檔題。中檔題在中考中每年的考查內容都差不多,題目位置也相對固定,屬于解決了一個板塊就能得到相應版塊分數(shù)的類型。在中檔題的某個題型經(jīng)常出錯說明對這部分內容的基本概念和常用方法理解不到位。通過練習,多總結這類題目的解題思路和技巧,把不穩(wěn)定的得分變成到手的分數(shù)。中檔題難度一般不會太高,所以對于自己薄弱的中檔題進行突擊練習一般都會有很好的效果。

  (3)基礎相對薄弱的同學也應該做一些常考的題目類型。比如圓的切線的判定以及與圓相關的線段計算、一次函數(shù)和反比例函數(shù)的綜合、二元一次方程整數(shù)根問題等,通過練習,進一步提高我們解決這些問題的熟練度

  2.學會看錯題的正確方式

  大部分學生都有錯題本,在復習時看錯題本,鞏固自己的錯誤是不錯的復習方式,但在看錯題時一定要杜絕連題目帶答案一起順著看下來的方式。盡量能夠將答案擋住,自己再嘗試做一遍,如果做的過程中遇到問題再去看答案,并做好標注,過兩天再試做一遍,爭取能在期末考試前將之前的錯題整體過兩到三遍、加深印象。

  3.認真研究每道題目的考點

  做題時,我們心中要對相應題目所對應的考點有所了解,比如填空題中如果出現(xiàn)幾何問題,主要是對圖形基本性質和面積的考察,而很少考到全等三角形的證明(尺規(guī)作圖寫依據(jù)除外),所以我們在填空題中看到幾何問題,就不用從全等方面找突破口,而是更多地注重圖形的基本性質。比如平行四邊形對角線互相平分、等腰三角形三線合一等。

  4.盡量避免只看不算

  很多同學在復習時不喜歡動筆,覺得自己看明白了就行,但俗話說“眼過千遍不如手過一遍”,不去實際操作只是看一遍題目,對題目解法和思路的印象其實是很低的。而且在計算過程中還能鍛煉我們的計算能力,提高解題速度和準確性。許多同學在寫證明題時很不熟練,邏輯不順暢,也是由于平時對書寫的不重視,應該趁著期末考試前的時間,多練練書寫。

  學好數(shù)學要重視“四個依據(jù)”是什么

  讀好一本教科書——它是教學、考試的主要依據(jù);

  記好一本筆記 ——它是教師多年經(jīng)驗的結晶;

  做好一本習題集——它是知識的拓寬;

  記好一本心得筆記——它是你自己的知識。

  提高數(shù)學學習的七大能力是什么

  1.運算能力,否則每次考試大題第一題你就開始錯!

  2.空間想象能力,否則幾何題會讓你痛不欲生!

  3.邏輯思維能力,否則以后的證明題和推導題會讓你生不如死!

  4.將實際問題抽象為數(shù)學問題的能力,不然應用題會讓你雖死猶生!

  5.形數(shù)結合互相轉化的能力。這考試每次考試的壓軸題哦!

  6.觀察、實驗、比較、猜想、歸納問題的能力。不然每次選擇或者填空題的最后一題找規(guī)律會讓你內流滿面!

  7.研究、探討問題的能力和創(chuàng)新能力。不然每次的附加題咱們就不用看了!

  怎么養(yǎng)成良好的數(shù)學學習習慣

  制定計劃,成為習慣

  無論是學習哪一科,明確的目標計劃都是最基本的方法,也是要被大家說爛了的提高成績的基本。

  數(shù)學也是一樣,雖然公式多,定義多,圖形多,但完全不影響制定數(shù)學的學習計劃。學習是一個長久性的打算,因此在制定數(shù)學學習內容的過程中可以盡量的詳細一點。

  比如說每天做多少道題,掌握多少個公式,記住幾個定義等等。這樣才是學好高中數(shù)學應該做的步驟。

  其次就是每天按照自己給自己的規(guī)定去做,不要想著偷懶,今天不愛做就留給明天,想著明天多做點補回來。

  這種想法是非常錯誤的,今天的任務就要今天完成,想著自己為了提高數(shù)學成績,無論如何都要努力。

  預習與復習相結合

  預習幫助大家在數(shù)學課上對知識有一個大概的了解,也對老師要講的內容有個先知,不至于驚訝驚訝老師接下來要講什么。

  而復習就是對這一堂課的數(shù)學學習進行一個驗收和反饋,檢驗自己是否學會數(shù)學老師講的內容;反饋自己的學習成效,及時找到自己數(shù)學學習的問題以便及時解決。

  這樣在學習新的數(shù)學知識的時候就不會帶著之前留下來的疑問了。這對于學好高中數(shù)學,提高數(shù)學成績非常有幫助。

  高質量的完成作業(yè)

  作業(yè)是一個很好查缺補漏的過程,因此同學們想要學好數(shù)學,就一定要認真完成作業(yè)。不要依賴不會就空著等數(shù)學老師上課講這樣的想法,這樣只會退步。

  數(shù)學學習就是要不斷的動腦解決問題,所以作業(yè)要完成,還要高質量的去完成,這樣才能不斷提高自己的能力。

  不要空太多的題不寫,就只等著老師公布正確答案和解題過程,這樣一來,需要自己消化的數(shù)學問題就因為自己的懶惰變得越來越多,以至于影響之后的學習效率。

初中數(shù)學知識點12

  第一章 有理數(shù)

  1.1 正數(shù)與負數(shù)

  正數(shù):大于0的數(shù)叫正數(shù)。(根據(jù)需要,有時在正數(shù)前面也加上“+”)

  負數(shù):在以前學過的0以外的數(shù)前面加上負號“—”的數(shù)叫負數(shù)。與正數(shù)具有相反意義。

  0既不是正數(shù)也不是負數(shù)。0是正數(shù)和負數(shù)的分界,是唯一的中性數(shù)。

  1.2 有理數(shù)

  1、有理數(shù):整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。

  2、數(shù)軸 :通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸;所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點,不都是表示有理數(shù)。

  3、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。

  4、絕對值:數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記作|a|。正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。

  1.3 有理數(shù)的加減法

  有理數(shù)加法法則:

  1、同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  2、絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。互為相反數(shù)的兩個數(shù)相加得0。

  3、一個數(shù)同0相加,仍得這個數(shù)

  4、加法交換律:a+b=b+a

  5、加法結合律:a+b+c=a+(b+c)=(a+c)+b

  有理數(shù)減法法則:

  減去一個數(shù),等于加這個數(shù)的相反數(shù)。

  1.4 有理數(shù)的乘除法

  1、有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;

  乘法交換律:a*b=b*a

  結合律:a*b*c=a*(b*c)

  分配律:a(b+c)=ab+ac

  2、有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù);

  兩數(shù)相除,同號得正,異號得負,并把絕對值相除;

  0除以任何一個不等于0的數(shù),都得0。

  1.5 有理數(shù)的乘方

  1、求n個相同因數(shù)的積的運算,叫乘方,乘方的結果叫冪。在a的n次方中,a叫做底數(shù),n叫做指數(shù)。負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。

  2、有理數(shù)的混合運算法則:先乘方,再乘除,最后加減;同級運算,從左到右進行;如有括號,先做括號內的.運算,按小括號、中括號、大括號依次進行。

  3、把一個大于10的數(shù)表示成a×10的n次方的形式,使用的就是科學計數(shù)法,注意a的范圍為1≤a<10。

  第二章 整式的加減

  2.1 整式

  1、單項式:由數(shù)字和字母乘積組成的式子。判斷代數(shù)式是否是單項式,關鍵要看代數(shù)式中數(shù)與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式。

  2、多項式:幾個單項式的和。判斷代數(shù)式是否是多項式,關鍵要看代數(shù)式中的每一項是否是單項式。每個單項式稱項,常數(shù)項,多項式的次數(shù)就是多項式中次數(shù)最高的次數(shù)。

  3、單項式和多項式統(tǒng)稱為整式。

  2.2整式的加減

  1、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項。與字母前面的系數(shù)(≠0)無關。

  2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數(shù)相同,二者缺一不可.同類項與系數(shù)大小、字母的排列順序無關

  3、合并同類項:把多項式中的同類項合并成一項?梢赃\用交換律,結合律和分配律。

  4、合并同類項法則:合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變;

  5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。

  6、整式加減的一般步驟:

  一去、二找、三合

 。1)如果遇到括號按去括號法則先去括號. (2)結合同類項. (3)合并同類項

  第三章 一元一次方程

  3.1 一元一次方程

  1、方程是含有未知數(shù)的等式。

  2、方程都只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。

  3、等式的性質:

  1)等式兩邊同時加(或減)同一個數(shù)(或式子),結果仍相等;

  2)等式兩邊同時乘同一個數(shù),或除以同一個不為0的數(shù),結果仍相等。

  3.2 、3.3解一元一次方程

  在實際解方程的過程中,以下步驟不一定完全用上,有些步驟還需重復使用。

 、偃シ帜福涸诜匠虄蛇叾汲艘愿鞣帜傅淖钚」稊(shù),不要漏乘不含分母的項;分子是一個整體,去分母后應加上括號;去分母與分母化整是兩個概念,不能混淆;

 、谌ダㄌ枺鹤駨南热バ±ㄌ,再去中括號,最后去大括號;不要漏乘括號的項;不要弄錯符號;

 、垡祈棧喊押形粗獢(shù)的項移到方程的一邊,其他項都移到方程的另一邊(移項要變符號) 移項要變號;

 、芎喜⑼愴棧翰灰獊G項,解方程是同解變形,每一步都是一個方程,不能像計算或化簡題那樣寫能連等的形式;

 、菹禂(shù)化為1:字母及其指數(shù)不變系數(shù)化成1,在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解。不要分子、分母搞顛倒。

  3.4 實際問題與一元一次方程

  1、一元一次方程解決實際問題的一般步驟

 、賹忣},特別注意關鍵的字和詞的意義,弄清相關數(shù)量關系;

  ②設出未知數(shù)(注意單位);

 、鄹鶕(jù)相等關系列出方程;

 、芙膺@個方程;

 、輽z驗并寫出答案(括單位名稱)。

 、埔恍┕潭P椭械牡攘筷P系及典型例題參照一元一次方程應用題專練學案。

  2、 列方程解應用題的檢驗包括兩個方面:

 、艡z驗求得的結果是不是方程的解;

 、剖且袛喾匠痰慕馐欠穹项}目中的實際意義.

  3、應用(常見等量關系)

  行程問題:s=v×t

  工程問題:工作總量=工作效率×時間

  盈虧問題:利潤=售價-成本

  利率=利潤÷成本×100%

  售價=標價×折扣數(shù)×10%

  儲蓄利潤問題:利息=本金×利率×時間

  本息和=本金+利息

初中數(shù)學知識點13

  1.二次根式概念:式子a(a≥0)叫做二次根式。

  2.最簡二次根式:必須同時滿足下列條件:

  3.同類二次根式:

  二次根式化成最簡二次根式后,若被開方數(shù)相同,則這幾個二次根式就是同類二次根式。4.二次根式的_質:

  a(a0)22(1)(a)=a(a≥0);(2)aa

  0(a=0);

  5.二次根式的運算:

  a(a0)

  (1)因式的外移和內移:如果被開方數(shù)中有的因式能夠開得盡方,那么,就可以用它的算術根代替而移到根號外面;如果被開方數(shù)是代數(shù)和的形式,那么先解因式,變形為積的形式,再移因式到根號外面,反之也可以將根號外面的正因式平方后移到根號里面.

  (2)二次根式的加減法:先把二次根式化成最簡二次根式再合并同類二次根式.

  (3)二次根式的乘除法:二次根式相乘(除),將被開方數(shù)相乘(除),所得的積(商)仍作積(商)的被開方數(shù)并將運算結果化為最簡二次根式

  單項式和多項式統(tǒng)稱為整式。

  1.單項式:

  1)數(shù)與字母的乘積這樣的代數(shù)式叫做單項式。

  單獨的一個數(shù)或字母(可以是兩個數(shù)字或字母相乘)也是單項式。

  2)單項式的系數(shù):單項式中的數(shù)字因數(shù)及_質符號叫做單項式的系數(shù)。

  3)單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

  2.多項式:

  1)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數(shù)項。一個多項式有幾項就叫做幾項式。

  2)多項式的次數(shù):多項式中,次數(shù)最高的項的次數(shù),就是這個多項式的次數(shù)。

  3.多項式的排列:

  1).把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

  2).把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

  由于單項式的項,包括它前面的_質符號,因此在排列時,仍需把每一項的_質符號看作是這一項的一部分,一起移動

  初中數(shù)學一元二次方程常見考法

  1.考查一元二次方程的根與系數(shù)的關系(韋達定理):這類題目有著解題規(guī)律性強的特點,題目設置會很靈活,所以一直很吸引命題者。主要考查①根與系數(shù)的推導,有關規(guī)律的探究②已知兩根或一根構造一元二次方程,這類題目一般比較開放;

  2.在一元二次方程和幾何問題、函數(shù)問題的交匯處出題。(幾何問題:主要是將數(shù)字及數(shù)字間的關系隱藏在圖形中,用圖形表示出來,這樣的圖形主要有三角形、四邊形、圓等涉及到三角形三邊關系、三角形全等、面積計算、體積計算、勾股定理等);

  3.列一元二次方程解決實際問題,以實際生活為背景,命題廣泛。(常見的題型是增長率問題,注:平均增長率公式。

  初中數(shù)學整式的'加減知識點

  2.1整式

  ①單項式:表示數(shù)或字母積的式子

 、趩雾検降南禂(shù):單項式中的數(shù)字因數(shù)

 、蹎雾検降拇螖(shù):一個單項式中,所有字母的指數(shù)和

 、軒讉單項式的和叫做多項式。每個單項式叫做多項式的項,不含字母的項叫做常數(shù)項。

 、荻囗検嚼锎螖(shù)最高項的次數(shù),叫做這個多項式的次數(shù)。

 、迒雾検脚c多項式統(tǒng)稱整式。

  2.2 整式的'加減

 、偻愴棧核帜赶嗤,而且相同字母的次數(shù)相同的單項式。

 、诎讯囗検街械耐愴椇喜⒊梢豁棧凶龊喜⑼愴。

  ③合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變。

  ④如果括號外的因數(shù)是正數(shù),去括號后原括號內各項的符號與原來的符號相同。

 、萑绻ㄌ柾獾囊驍(shù)是負數(shù),去括號后原括號內各項的符號與原來的符號相反。

 、抟话愕兀瑤讉整式相加減,如果有括號就先去括號,然后再合并同類項。

初中數(shù)學知識點14

  一、概率的意義與表示方法

  1、概率的意義

  一般地,在大量重復試驗中,如果事件A發(fā)生的頻率會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p就叫做事件A的概率。

  2、事件和概率的表示方法

  一般地,事件用英文大寫字母A,B,C,…,表示事件A的概率p,可記為P(A)=P。

  二、確定事件和隨機事件的概率之間的關系

  1、確定事件概率

  (1)當A是必然發(fā)生的事件時,P(A)=1

  (2)當A是不可能發(fā)生的事件時,P(A)=0

  2、確定事件和隨機事件的概率之間的關系

  三、古典概型

  1、古典概型的定義

  某個試驗若具有:

  ①在一次試驗中,可能出現(xiàn)的結構有有限多個;

  ②在一次試驗中,各種結果發(fā)生的可能性相等。我們把具有這兩個特點的試驗稱為古典概型。

  2、古典概型的概率的求法

  一般地,如果在一次試驗中,有n種可能的結果,并且它們發(fā)生的'可能性都相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率為

  四、列表法求概率

  1、列表法

  用列出表格的方法來分析和求解某些事件的概率的方法叫做列表法。

  2、列表法的應用場合

  當一次試驗要設計兩個因素,并且可能出現(xiàn)的結果數(shù)目較多時,為不重不漏地列出所有可能的結果,通常采用列表法。

  五、樹狀圖法求概率

  1、樹狀圖法

  就是通過列樹狀圖列出某事件的所有可能的結果,求出其概率的方法叫做樹狀圖法。

  2、運用樹狀圖法求概率的條件

  當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率。

  六、利用頻率估計概率

  1、利用頻率估計概率

  在同樣條件下,做大量的重復試驗,利用一個隨機事件發(fā)生的頻率逐漸穩(wěn)定到某個常數(shù),可以估計這個事件發(fā)生的概率。

  2、在統(tǒng)計學中,常用較為簡單的試驗方法代替實際操作中復雜的試驗來完成概率估計,這樣的試驗稱為模擬實驗。

  3、隨機數(shù)

  在隨機事件中,需要用大量重復試驗產(chǎn)生一串隨機的數(shù)據(jù)來開展統(tǒng)計工作。把這些隨機產(chǎn)生的數(shù)據(jù)稱為隨機數(shù)。

初中數(shù)學知識點15

  課題

  3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)

  教學目標

  1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質2、會用待定系數(shù)法確定函數(shù)的解析式

  教學重點

  掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質

  教學難點

  掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質

  教學方法

  講練結合法

  教學過程

  (I)知識要點(見下表:)

  第三章第29頁函數(shù)名稱解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(0,0)及(1,k)的.直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過點(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時,y,4aR值域R4acb2a0時,y,4aba0時,在-,上為增2a函數(shù),在,-單調性k0時,在,0,k0時為增函數(shù)0,上為減函數(shù)k0時,為增函數(shù)b上為減函數(shù)2ak0時為減函數(shù)k0時,在,0,k0時,為減函數(shù)0,上為增函數(shù)ba0時,在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時奇函數(shù)b=0時偶函數(shù)a0且x-ymin最值無無無b時,2a24acb4ab時,2a24acb4aa0且x-ymax

  第三章第30頁b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱軸x,頂點(,)

  2a2a4a2拋物線與x軸交點坐標(m,0),(n,0)(II)例題講解

  例1、求滿足下列條件的二次函數(shù)的解析式:(1)拋物線過點A(1,1),B(2,2),C(4,2)(2)拋物線的頂點為P(1,5)且過點Q(3,3)

 。3)拋物線對稱軸是x2,它在x軸上截出的線段AB長為2且拋物線過點(1,7)。2,

  解:(1)設yax2bxc(a0),將A、B、C三點坐標分別代入,可得方程組為

  abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設二次函數(shù)為ya(x1)25,將Q點坐標代入,即a(31)253,得

  a2,故y2(x1)252x24x3

 。3)∵拋物線對稱軸為x2;

  ∴拋物線與x軸的兩個交點A、B應關于x2對稱;∴由題設條件可得兩個交點坐標分別為A(2∴可設函數(shù)解析式為:ya(x2代入方程可得a1

  ∴所求二次函數(shù)為yx24x2,

  2,0)、B(222,0)

  2)(x22)a(x2)22a,將(1,7)

  5),例2:二次函數(shù)的圖像過點(0,8),(1,(4,0)

 。1)求函數(shù)圖像的頂點坐標、對稱軸、最值及單調區(qū)間(2)當x取何值時,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

  例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應的x值

  113x1(x)2,知函數(shù)的圖像開口向上,對稱軸為x

  224111]上是增函數(shù)。∴依題設條件可得f(x)在[1,]上是減函數(shù),在[,22131]時,函數(shù)取得最小值,且ymin∴當x[1,24131又∵11

【初中數(shù)學知識點】相關文章:

初中數(shù)學垂直知識點12-07

初中數(shù)學代數(shù)知識點01-13

初中數(shù)學角的知識點05-31

初中數(shù)學倒數(shù)的知識點08-01

初中數(shù)學知識點04-30

初中數(shù)學概率知識點06-14

初中數(shù)學圓的知識點總結12-05

初中數(shù)學知識點歸納.07-30

數(shù)學初中知識點總結06-10

浙江初中數(shù)學知識點06-11