當前位置:育文網(wǎng)>高中>高中數(shù)學(xué)> 高中數(shù)學(xué)必修一知識點總結(jié)

高中數(shù)學(xué)必修一知識點總結(jié)

時間:2024-05-31 15:45:08 高中數(shù)學(xué) 我要投稿

高中數(shù)學(xué)必修一知識點總結(jié)

  總結(jié)是對某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗或情況進行分析研究的書面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統(tǒng)的、本質(zhì)的理性認識上來,讓我們好好寫一份總結(jié)吧。如何把總結(jié)做到重點突出呢?以下是小編幫大家整理的高中數(shù)學(xué)必修一知識點總結(jié),歡迎大家借鑒與參考,希望對大家有所幫助。

高中數(shù)學(xué)必修一知識點總結(jié)

高中數(shù)學(xué)必修一知識點總結(jié)1

  1.函數(shù)知識:基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識為背景的函數(shù)問題;以向量知識為背景的函數(shù)問題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。

  2.向量知識:向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運算律;考查平面向量的坐標運算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問題。

  3.不等式知識:突出工具性,淡化獨立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來,考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識為背景,在知識網(wǎng)絡(luò)的交匯處命題,綜合性強,能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起?疾閷W(xué)生的等價轉(zhuǎn)化能力和分類討論能力;以當前經(jīng)濟、社會生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點,主要考查學(xué)生閱讀理解能力以及分析問題、解決問題的能力。

  4.立體幾何知識:2016年已經(jīng)變得簡單,2017年難度依然不大,基本的三視圖的考查難點不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的'體積計算等問題,都是重點考查內(nèi)容。

  5.解析幾何知識:小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標下的解析幾何知識,解答題主要考查直線和圓的知識,直線與圓錐曲線的知識,涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點,定值,范圍的考查,考試的難度降低。

  6.導(dǎo)數(shù)知識:導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強,能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點整體偏低。

  7.開放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點,理科13,文科14題。

高中數(shù)學(xué)必修一知識點總結(jié)2

  一集合

  1、集合的含義:集合為一些確定的、不同的對象的全體。2、集合的中元素的三個特性:確定性、互異性、無序性。3、集合的表示:

 。1)用大寫字母表示集合:A,B…(2)集合的表示方法:

  a、列舉法:將集合中的元素一一列舉出來{a,b,c}b、描述法:集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合,xRx23c、維恩圖:用一條封閉曲線的內(nèi)部表示.

  4、集合的分類:

 。1)有限集:含有有限個元素的集合(2)無限集:含有無限個元素的集合(3)空集:不含任何元素的集合5、元素與集合的關(guān)系:aA;aA注意:常用數(shù)集及其記法:

  非負整數(shù)集:(即自然數(shù)集)N正整數(shù)集:Nx或N+整數(shù)集:Z有理數(shù)集:Q實數(shù)集:R

  6、集合間的基本關(guān)系(1)“包含”關(guān)系子集

  定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含

  關(guān)系,稱集合A是集合B的子集。記作:AB(或BA)

  注意:AB有兩種可能(1)A是B的一部分;

  (2)A與B是同一集合。

  B或BA反之:集合A不包含于集合B,或集合B不包含集合A,記作A(2)“包含”關(guān)系真子集

  如果集合AB,但存在元素xB且xA,則集合A是集合B的真子集,記作AB(或BA)

  (3“相等”關(guān)系:A=B“元素相同則兩集合相等”,如果AB同時BA那么A=B

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。(4)集合的性質(zhì)

 、偃魏我粋集合是它本身的子集,AA②如果AB,BC,那么AC③如果AB且BC,那么AC

 、苡衝個元素的集合,含有2n個子集,2n-1個真子集

  7、集合的運算

  運算類型交集并集定義由所有屬于A且屬于B由所有屬于集合A或?qū)俚脑厮M成的集合,于集合B的元素所組成叫做A,B的交集.記作的集合,叫做A,B的并AB(讀作‘A交B’)集.記作:AB(讀作‘A并B’)補集全集:一般,若一個集合含有我們所研究問題中的所有元素,我們就稱這個集合為全集,記作:U設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作CSA,韋恩圖示ABABSA圖1圖2CU(CUA)A性質(zhì)A∩A=AA∩Φ=ΦA(chǔ)∩B=BAAUA=AAUΦ=AAUB=BUAAU(CuA)=UA∩(CuA)=Φ.A∩BAA∩AUBABBAUBB二函數(shù)1.函數(shù)的概念:記法y=f(x),x∈A.

  2.函數(shù)的三要素:定義域、值域、對應(yīng)法則

  3.函數(shù)的表示方法:(1)解析法:(2)圖象法:(3)列表法:4.函數(shù)的基本性質(zhì)

  a、函數(shù)解析式子的求法

 。1)代入法:(2)待定系數(shù)法:(3)換元法:(4)拼湊法:

  b、定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。(1)分式的分母不等于零;

  (2)偶次方根的被開方數(shù)大于等于零;

  (3)對數(shù)式的真數(shù)必須大于零;(4)零次冪式的底數(shù)不等于零;(5)分段函數(shù)的各段范圍取并集;

  (6)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合;

  (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.c、相同函數(shù)的判斷方法;定義域一致②對應(yīng)法則一致

  d.區(qū)間的概念:

  e.值域(先考慮其定義域)5.分段函數(shù)6.映射的概念

  對于映射f:A→B來說,則應(yīng)滿足:

  (1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;(3)不要求集合B中的每一個元素在集合A中都有原象。注意:函數(shù)是特殊的映射。7、函數(shù)的單調(diào)性(局部性質(zhì))(1)增減函數(shù)定義(2)圖象的特點

  如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的.,減函數(shù)的圖象從左到右是下降的

 。3)函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A)定義法:○1取值;○2作差;○3變形;○4定號;○5結(jié)論.(B)圖象法(從圖象上看升降)

  (C)復(fù)合函數(shù)的單調(diào)性:“同增異減”

  注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

  8、函數(shù)的奇偶性(整體性質(zhì))(1)奇、偶函數(shù)定義

 。2)具有奇偶性的函數(shù)的圖象的特征

  偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.(3)利用定義判斷函數(shù)奇偶性的步驟:

  a、首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點對稱;若是不對稱,則是非奇非偶的函數(shù);若對稱,則進行下面判斷;b、確定f(-x)與f(x)的關(guān)系;

  c、作出相應(yīng)結(jié)論:若f(-x)=f(x),則f(x)是偶函數(shù);

  若f(-x)=-f(x),則f(x)是奇函數(shù).

  注意:函數(shù)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的前提條件.首先看函數(shù)的定義域是否關(guān)于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).(4)函數(shù)的奇偶性與單調(diào)性

  奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性。(5)若已知是奇、偶函數(shù)可以直接用特值9、基本初等函數(shù)

  一、一次函數(shù)

  二、二次函數(shù):二次函數(shù)的圖象與性質(zhì),注意:二次函數(shù)值域求法三、指數(shù)函數(shù)(一)指數(shù)

  1、有理指數(shù)冪的運算法則2、根式的概念3、分數(shù)指數(shù)冪

  正數(shù)的分數(shù)指數(shù)冪的

  anam(a0,m,nNx,n1),amnmn1amn1nam(a0,m,nNx,n1)

  (二)指數(shù)函數(shù)的性質(zhì)及其特點

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)yax(a0,且a1)叫做指數(shù)函數(shù),其中x是自變量,

  函數(shù)的定義域為R.

  2、指數(shù)函數(shù)的圖象和性質(zhì)a>16540

  注意:換底公式

  logablogcb(a0,且a1;c0,且c1;b0).logca1nlogab;(2)logabmlogba利用換底公式推導(dǎo)下面的結(jié)論(1)logambn.

  (三)對數(shù)函數(shù)

  1、對數(shù)函數(shù)的概念:函數(shù)ylogax(a0,且a1)叫做對數(shù)函數(shù),其中x是自變量,

  函數(shù)的定義域是(0,+∞).

  2、對數(shù)函數(shù)的性質(zhì):a>10

高中數(shù)學(xué)必修一知識點總結(jié)3

  方程的根與函數(shù)的零點

  1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

  2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點。

  3、函數(shù)零點的求法:

 。1)(代數(shù)法)求方程的實數(shù)根;

  (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的'性質(zhì)找出零點。

  4、二次函數(shù)的零點:

 。1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點。

  (2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點。

  (3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點。

高中數(shù)學(xué)必修一知識點總結(jié)4

  1.函數(shù)的奇偶性

  (1)若f(x)是偶函數(shù),那么f(x)=f(-x) ;

  (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

  (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

  (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

  2.復(fù)合函數(shù)的有關(guān)問題

  (1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

  (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

  3.函數(shù)圖像(或方程曲線的對稱性)

  (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的`對稱點仍在圖像上;

  (2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

  (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;

  (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;

  4.函數(shù)的周期性

  (1)y=f(x)對x∈R時,f(x +a)=f(x-a)或f(x-2a )=f(x) (a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

  (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

  (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

  (4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

  (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

  (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

  5.方程k=f(x)有解k∈D(D為f(x)的值域);

  ≥f(x)恒成立a≥[f(x)]max,; a≤f(x)恒成立a≤[f(x)]min;

  7.(1) (a>0,a≠1,b>0,n∈R+);

  (2) l og a N= ( a>0,a≠1,b>0,b≠1);

  (3) l og a b的符號由口訣“同正異負”記憶;

  (4) a log a N= N ( a>0,a≠1,N>0 );

  8.判斷對應(yīng)是否為映射時,抓住兩點:

  (1)A中元素必須都有象且唯一;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

  10.對于反函數(shù),應(yīng)掌握以下一些結(jié)論:

  (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

  (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

  (3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);

  (4)周期函數(shù)不存在反函數(shù);

  (5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;

  y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

  11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;

  12.依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題

  13.恒成立問題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

  數(shù)學(xué)旋轉(zhuǎn)的知識點

  旋轉(zhuǎn)的特征:

  (1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等;

  (2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

  (3)旋轉(zhuǎn)前后的圖形全等。

  理解以下幾點:

  (1)圖形中的每一個點都繞旋轉(zhuǎn)中心旋轉(zhuǎn)了同樣大小的角度。

  (2)對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)線段相等,對應(yīng)角相等。

  (3)圖形的大小和形狀都沒有發(fā)生改變,只改變了圖形的位置。

  學(xué)習(xí)數(shù)學(xué)小竅門

  建立數(shù)學(xué)糾錯本。

  把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。

  限時訓(xùn)練。

  可以找一組題(比如10道選擇題),爭取限定一個時間完成;也可以找1道大題,限時完成。這主要是創(chuàng)設(shè)一種考試情境,檢驗自己在緊張狀態(tài)下的思維水平。

高中數(shù)學(xué)必修一知識點總結(jié)5

  1、拋物線是軸對稱圖形。對稱軸為直線

  x=—b/2a。

  對稱軸與拋物線的交點為拋物線的頂點P。

  特別地,當b=0時,拋物線的'對稱軸是y軸(即直線x=0)

  2、拋物線有一個頂點P,坐標為

  P(—b/2a,(4ac—b’2)/4a)

  當—b/2a=0時,P在y軸上;當Δ=b’2—4ac=0時,P在x軸上。

  3、二次項系數(shù)a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4、一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當a與b同號時(即ab>0),對稱軸在y軸左;

  當a與b異號時(即ab<0),對稱軸在y軸右。

  5、常數(shù)項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6、拋物線與x軸交點個數(shù)

  Δ=b’2—4ac>0時,拋物線與x軸有2個交點。

  Δ=b’2—4ac=0時,拋物線與x軸有1個交點。

  Δ=b’2—4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

高中數(shù)學(xué)必修一知識點總結(jié)6

 。1)不等關(guān)系

  感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實際背景。

 。2)一元二次不等式

  ①經(jīng)歷從實際情境中抽象出一元二次不等式模型的過程。

  ②通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。

  ③會解一元二次不等式,對給定的一元二次不等式,嘗試設(shè)計求解的程序框圖。

 。3)二元一次不等式組與簡單線性規(guī)劃問題

 、購膶嶋H情境中抽象出二元一次不等式組。

  ②了解二元一次不等式的'幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。

 、蹚膶嶋H情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。

  (4)基本不等式

 、偬剿鞑⒘私饣静坏仁降淖C明過程。

 、跁没静坏仁浇鉀Q簡單的(。┲祮栴}。

高中數(shù)學(xué)必修一知識點總結(jié)7

  一、平面的基本性質(zhì)與推論

  1、平面的基本性質(zhì):

  公理1如果一條直線的兩點在一個平面內(nèi),那么這條直線在這個平面內(nèi);

  公理2過不在一條直線上的三點,有且只有一個平面;

  公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

  2、空間點、直線、平面之間的位置關(guān)系:

  直線與直線—平行、相交、異面;

  直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);

  平面與平面—平行、相交。

  3、異面直線:

  平面外一點A與平面一點B的連線和平面內(nèi)不經(jīng)過點B的直線是異面直線(判定);

  所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補角);

  兩條直線不是異面直線,則兩條直線平行或相交(反證);

  異面直線不同在任何一個平面內(nèi)。

  求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角

  二、空間中的平行關(guān)系

  1、直線與平面平行(核心)

  定義:直線和平面沒有公共點

  判定:不在一個平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)

  性質(zhì):一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行

  2、平面與平面平行

  定義:兩個平面沒有公共點

  判定:一個平面內(nèi)有兩條相交直線平行于另一個平面,則這兩個平面平行

  性質(zhì):兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。

  3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線

  三、空間中的垂直關(guān)系

  1、直線與平面垂直

  定義:直線與平面內(nèi)任意一條直線都垂直

  判定:如果一條直線與一個平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直

  性質(zhì):垂直于同一直線的兩平面平行

  推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面

  直線和平面所成的.角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度

  2、平面與平面垂直

  定義:兩個平面所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內(nèi)分別作垂直于棱的兩條射線所成的角)

  判定:一個平面過另一個平面的垂線,則這兩個平面垂直

  性質(zhì):兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直

高中數(shù)學(xué)必修一知識點總結(jié)8

  1、集合的含義與表示

  集合的三大特性:確定性、互異性、無序性。集合的表示有列舉法、描述法。

  描述法格式為:{元素|元素的特征},例如{x|x5,且xN}2、常用數(shù)集及其表示方法

 。1)自然數(shù)集N(又稱非負整數(shù)集):0、1、2、3、

 。2)正整數(shù)集N

  或N+:1、2、3、

 。3)整數(shù)集Z:

  (4)有理數(shù)集Q:包含分數(shù)、整數(shù)、有限小數(shù)等

 。5)實數(shù)集R:全體實數(shù)的集合

 。6)空集Ф:不含任何元素的集合

  3、元素與集合的關(guān)系:屬于∈,不屬于

  4、集合與集合的關(guān)系:子集、真子集、相等

  5、重要結(jié)論

 。1)傳遞性:若AB,BC,則AC

  (2)Ф是任何集合的子集,是任意非空集合的真子集。

  6、含有n個元素的集合,它的子集個數(shù)共有2n個;真子集有2n1個;非空子集有2n1個(即不計空集);非空的真子集有2n2個。

  7、集合的運算:交集、并集、補集.

  (1)A∩B={x|x∈A,且x∈B}.

 。2)A∪B={x|x∈A,或x∈B}.

 。3)CUAx|xU,且xA注:討論集合的情況時,不要發(fā)遺忘了A的情況。

  8、函數(shù)概念

  9、分段函數(shù):在定義域的不同部分,有不同的對應(yīng)法則的函數(shù)。如y2x1x0x23x010、求函數(shù)的定義域的原則:(解決任何函數(shù)問題,必須要考慮其定義域)

 、俜质降姆帜覆粸榱悖蝗纾簓1x1,則x10

 、谂即畏礁谋婚_方數(shù)大于或等于零;如:y5x,則5x0

 、蹖(shù)的底數(shù)大于0且不等于1;如:yloga(x2),則a0且a1

  ④對數(shù)的真數(shù)大于0;如:yloga(x2),則x20

 、葜笖(shù)為0的底不能為零;如:y(m1)x,則m1011、函數(shù)的奇偶性(在整個定義域內(nèi)考慮)

 。1)奇函數(shù)滿足f(x)f(x),奇函數(shù)的圖象關(guān)于原點對稱;

  (2)偶函數(shù)滿足f(x)f(x),偶函數(shù)的圖象關(guān)于y軸對稱;

  注:

 、倬哂衅媾夹缘暮瘮(shù),其定義域關(guān)于原點對稱;

  ②若奇函數(shù)在原點有定義,則f(0)0

 、鄹鶕(jù)奇偶性可將函數(shù)分為四類:奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)、非奇非偶函數(shù)。

  12、函數(shù)的單調(diào)性(在定義域的某個區(qū)間內(nèi)考慮)

  當x1x2時,都有f(x1)f(x2),則f(x)在該區(qū)間上是增函數(shù),圖象從左到右上升;當x1x2時,都有f(x1)f(x2),則f(x)在該區(qū)間上是減函數(shù),圖象從左到右下降。

  函數(shù)f(x)在某區(qū)間上是增函數(shù)或減函數(shù),那么說f(x)在該區(qū)間具有單調(diào)性,該區(qū)間叫做單調(diào)(增/減)區(qū)間

  13、一元二次方程ax2bxc0(a0)

 。1)求根公式:xbb24ac21,22a

 。2)判別式:b4ac

 。3)0時方程有兩個不等實根;0時方程有一個實根;0時方程無實根。

 。4)根與系數(shù)的關(guān)系韋達定理:xxbc12a,x1x2a

  14、二次函數(shù):一般式y(tǒng)ax2bxc(a0);兩根式y(tǒng)a(xx1)(xx2)(a0)

 。1)頂點坐標為(b4acb2by2a,4a);

 。2)對稱軸方程為:x=2a;x0

 。3)當a0時,圖象是開口向上的拋物線,在x=b4acb22a處取得最小值4a

  當a0時,圖象是開口向下的拋物線,在x=b4acb22a處取得最大值4a

 。4)二次函數(shù)圖象與x軸的交點個數(shù)和判別式的關(guān)系:

  0時,有兩個交點;0時,有一個交點(即頂點);0時,無交點。

  15、函數(shù)的零點

  使f(x)0的實數(shù)x20叫做函數(shù)的零點。例如x01是函數(shù)f(x)x1的一個零點。注:函數(shù)yfx有零點函數(shù)yfx的圖象與x軸有交點方程fx0有實根

  16、函數(shù)零點的判定:

  如果函數(shù)yfx在區(qū)間a,b上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)0。那么,函數(shù)yfx在區(qū)間a,b內(nèi)有零點,即存在ca,b,使得fc0。

  17、分數(shù)指數(shù)冪(a0,m,nN,且n1)m3

 。1)annam。如x3x2;

  (2)amn1132mn。如1;

 。3)(na)na;anamx3x

 。4)當n為奇數(shù)時,nana;當n為偶數(shù)時,nan|a|a,a0a,a0.1

  18、有理指數(shù)冪的運算性質(zhì)(a0,r,sQ)

  (1)arasars;

 。2)(ar)sars;

 。3)(ab)rarbr

  19、指數(shù)函數(shù)yax(a0且a1),其中x是自變量,a叫做底數(shù),定義域是Ra10a1yy圖象1x10x

 。1)定義域:R0性

 。2)值域:(0,+∞)質(zhì)

  (3)過定點(0,1),即x=0時,y=1

  (4)在R上是增函數(shù)(4)在R上是減函數(shù)20、若abN,則叫做以為底N的對數(shù)。記作:logaNb(a0,a1,N0)其中,a叫做對數(shù)的底數(shù),N叫做對數(shù)的真數(shù)。

  注:指數(shù)式與對數(shù)式的互化公式:logaNbabN(a0,a1,N0)

  21、對數(shù)的性質(zhì)

 。1)零和負數(shù)沒有對數(shù),即logaN中N0;

 。2)1的對數(shù)等于0,即loga10;底數(shù)的對數(shù)等于1,即logaa122、常用對數(shù)lgN:以10為底的對數(shù)叫做常用對數(shù),記為:log10NlgN

  自然對數(shù)lnN:以e(e=2。71828)為底的對數(shù)叫做自然對數(shù),記為:logeNlnN23、對數(shù)恒等式:alogaNN

  24、對數(shù)的運算性質(zhì)(a>0,a≠1,M>0,N>0)

 。1)loga(MN)logMaMlogaN;

 。2)logaNlogaMlogaN;

 。3)lognaMnlogaM(nR)(注意公式的逆用)

  25、對數(shù)的換底公式logmNaNloglog(a0,且a1,m0,且m1,N0)。

  ma推論

 、倩騦og1nnablog;

 、趌ogamblogab。

  bam

  26、對數(shù)函數(shù)ylogax(a0,且a1):其中,x是自變量,a叫做底數(shù),定義域是(0,)

  a10a1y圖像x01x01定義域:(0,∞)性質(zhì)值域:R過定點(1,0)增函數(shù)減函數(shù)取值范圍0

 、廴绻麅蓚不重合的平面有一個公共點,那么它們有且僅有一條過該點的公共直線。

 、芷叫杏谕恢本的兩條直線平行(平行的傳遞性)。

  33、等角定理:

  空間中如果兩個角的兩邊對應(yīng)平行,那么這兩個角相等或互補(如圖)12334、兩條直線的位置關(guān)系:平行:(在同一平面內(nèi),沒有公共點)共面直線(在同一平面內(nèi),有一個公共點)異面直線

  相交:(不同在任何一個平面內(nèi)的.兩條直線,沒有公共點)直線與平面的位置關(guān)系:

 。1)直線在平面上;

 。2)直線在平面外(包括直線與平面平行,直線與平面相交)

  兩個平面的位置關(guān)系:

  (1)兩個平面平行;

 。2)兩個平面相交35、直線與平面平行:

  定義一條直線與一個平面沒有公共點,則這條直線與這個平面平行。判定平面外一條直線與此平面內(nèi)的一直線平行,則該直線與此平面平行。

  性質(zhì)一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。

  36、平面與平面平行:

  定義兩個平面沒有公共點,則這兩平面平行。

  判定若一個平面內(nèi)有兩條相交直線與另一個平面平行,則這兩個平面平行。

  性質(zhì)

 、偃绻麅蓚平面平行,則其中一個面內(nèi)的任一直線與另一個平面平行。

  ②如果兩個平行平面同時與第三個平面相交,那么它們交線平行。

  37、直線與平面垂直:

  定義如果一條直線與一個平面內(nèi)的任一直線都垂直,則這條直線與這個平面垂直。

  判定一條直線與一個平面內(nèi)的兩相交直線垂直,則這條直線與這個平面垂直。

  性質(zhì)

 、俅怪庇谕黄矫娴膬蓷l直線平行。

 、趦善叫兄本中的一條與一個平面垂直,則另一條也與這個平面垂直。

  38、平面與平面垂直:

  定義兩個平行相交,如果它們所成的二面角是直二面角,則這兩個平面垂直。判定一個平面過另一個平面的垂線,則這兩個平面垂直。

  性質(zhì)兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直。

  39、三角形的五“心”

 。1)O為ABC的外心(各邊垂直平分線的交點)。外心到三個頂點的距離相等

 。2)O為ABC的重心(各邊中線的交點)。重心將中線分成2:1的兩段

 。3)O為ABC的垂心(各邊高的交點)。

 。4)O為ABC的內(nèi)心(各內(nèi)角平分線的交點)。內(nèi)心到三邊的距離相等

  40、直線的斜率:

 。1)過Ax1,y1,Bx2,y2y12兩點的直線,斜率kyx,(x1x2)2x1

 。2)已知傾斜角為的直線,斜率ktan(900)

  41、直線位置關(guān)系:已知兩直線l1:yk1xb1,l2:yk2xb2,則l1//l2k1k2且b1b2 l1l2k1k21

  特殊情況:

 。1)當k1,k2都不存在時,l1//l2;

 。2)當k1不存在而k20時,l1l24

  2、直線的五種方程:

 、冱c斜式y(tǒng)y1k(xx1)(直線l過點(x1,y1),斜率為k).

 、谛苯厥統(tǒng)kxb(直線l在y軸上的截距為b,斜率為k)。

 、蹆牲c式y(tǒng)y1xx1yx(直線過兩點(x1,y1)與(x2,y2))。2y12x1

 、芙鼐嗍絰ayb1(a,b分別是直線在x軸和y軸上的截距,均不為0)

  ⑤一般式AxByC0(其中A、B不同時為0);可化為斜截式:yABxCB4

  3、(1)平面上兩點A(x,y221,y1),B(x22)間的距離公式:|AB|=(x1x2)(y1y2)

  (2)空間兩點A(x(x2221,y1,z1),B2,y2,z2)距離公式|AB|=(x1x2)(y1y2)(z1z2)

 。3)點到直線的距離d|Ax0By0C|A2B2(點P(x0,y0),直線l:AxByC0)。

  44、兩條平行直線AxByC10與AxByC20間的距離公式:dC1C2A2B2

  注:求直線AxByC0的平行線,可設(shè)平行線為AxBym0,求出m即得。

  45、求兩相交直線A1xB1yC10與A2xB2yC20的交點:解方程組AxB1yC10A12xB2yC20

  46、圓的方程:

 、賵A的標準方程(xa)2(yb)2r2。其中圓心為(a,b),半徑為r

  ②圓的一般方程x2y2DxEyF0。

  其中圓心為(D2,ED2E24F222),半徑為r2,其中DE4F>0

  47、直線AxByC0與圓的(xa)2(yb)2r2位置關(guān)系

 。1)dr相離0;

  (2)dr相切0;其中d是圓心到直線的距離,且dAaBbC(3)dr相交0。

  A2B23

  48、直線與圓相交于A(x1,y1),B(x2,y2)兩點,求弦AB長度的公式:

 。1)|AB|2r2d2

 。2)|AB|1k2(x21x2)4x1x2(結(jié)合韋達定理使用),其中k是直線的斜率

  49、兩個圓的位置關(guān)系:設(shè)兩圓的圓心分別為O1,O2,半徑分別為r1,r2,O1O2d

  1)dr1r2外離4條公切線;

  2)dr1r2外切3條公切線;

  3)r1r2dr1r2相交2條公切線;

  4)dr1r2內(nèi)切1條公切線;

  5)0dr1r2內(nèi)含無公切線

  必修③公式表

  50、三種抽樣方法的區(qū)別與聯(lián)系類別共同點各自特點相互聯(lián)系適用范圍簡單隨機抽樣從總體中逐個抽取總體中個體數(shù)較少分層抽取過程將總體分成幾層各層抽樣可采用總體有差異明顯的幾部抽樣中每個個體進行抽取簡單隨機抽樣或分組成被抽取的概系統(tǒng)抽樣率相等將總體平均分成系統(tǒng)抽樣幾部分,按事先確在起始部分抽樣定的規(guī)則分別在各時采用簡單隨機總體中的個體較多部分抽取抽樣

  51、

 。1)頻率分布直方圖(注意其縱坐標是“頻率/組距)

  組數(shù)極差,頻率頻數(shù),小矩形面積組距頻率頻率。組距樣本容量組距

  (2)數(shù)字特征

  眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)。

  中位數(shù):一組數(shù)從小到大排列,最中間的那個數(shù)(若最中間有兩個數(shù),則取其平均數(shù))。平均數(shù):x1nx1x2xn方差:s2=1n[(x22221x)(x2x)(x3x)(xnx)]

  標準差:s1nxx2x2212xxnx

  注:通過標準差或方差可以判斷一組數(shù)據(jù)的分散程度;其值越小,數(shù)據(jù)越集中;其值越大,數(shù)據(jù)越分散。ninxyxiy回歸直線方程:ybxa,其中bi1n,aybx,

  x2inx2i1

  注:回歸直線一定過樣本點中心(x,y)

  52、事件的分類:

  基本事件:一個事件如果不能再被分解為兩個或兩個以上事件,稱作基本事件。

  (1)必然事件:必然事件是每次試驗都一定出現(xiàn)的事件。P(必然事件)=1

 。2)不可能事件:任何一次試驗都不可能出現(xiàn)的事件稱為不可能事件。P(不可能事件)=0

 。3)隨機事件:隨機試驗的每一種結(jié)果或隨機現(xiàn)象的每一種表現(xiàn)稱作隨機事件,簡稱為事件

  53、在n次重復(fù)實驗中,事件A發(fā)生的次數(shù)為m,則事件A發(fā)生的頻率為m/n,當n很大時,m總是在某個常數(shù)值附近擺動,就把這個常數(shù)叫做事件A的概率。(概率范圍:0PA1)

  54、互斥事件概念:在一次隨機事件中,不可能同時發(fā)生的兩個事件,叫做互斥事件(如圖1)。如果事件A、B是互斥事件,則P(A+B)=P(A)+P(B)

  55、對立事件(如圖2):指兩個事件不可能同時發(fā)生,但必有一個發(fā)生。AB圖1對立事件性質(zhì):P(A)+P(A)=1,其中A表示事件A的對立事件。

  56、古典概型是最簡單的隨機試驗?zāi)P,古典概型有兩個特征:AB

  (1)基本事件個數(shù)是有限的;

 。2)各基本事件的出現(xiàn)是等可能的,即它們發(fā)生的概率相同.

  57、設(shè)一試驗有n個等可能的基本事件,而事件A恰包含其中的m個基本事件,則事件A的概率P(A)公式為PAA包含的基本事件的個數(shù)基本事件的總數(shù)=mn

  運用互斥事件的概率加法公式時,首先要判斷它們是否互斥,再由隨機事件的概率公式分別求它們的概率,然后計算。在計算某些事件的概率較復(fù)雜時,可轉(zhuǎn)而先示對立事件的概率。58、幾何概型的概率公式:PA構(gòu)成事件A的區(qū)域長度(面積或體積)試驗的全部結(jié)果構(gòu)成的區(qū)域長度(面積或體積)

  必修④公式表

  r59、終邊相同角構(gòu)成的集合:|2k,kZ

  l)l

  60、弧度計算公式:r

  61、扇形面積公式:S12lr12r2(為弧度)62、三角函數(shù)的定義:已知Px,y是的終邊上除原點外的任一點P(x,y)r則siny,cosx,tany,其中r2x2)yrrxy2x63、三角函數(shù)值的符號++++

  ++sincostan

  4

  64、特殊角的三角函數(shù)值:0235643234632sin012332122212220—1cos132112220—2—232—2—10tan03313不存—1—3在—330不存在65、同角三角函數(shù)的關(guān)系:sin2cos21,tansincos

  66、和角與差角公式:二倍角公式:

  sin()sincoscossin;sin22sincos

  cos()coscossinsin;cos2cos2sin212sin2

  tan()tantan2cos211tantan。tan22tan1tan267、誘導(dǎo)公式記憶口訣:奇變偶不變,符號看象限;其中,奇偶是指2的個數(shù)

  sin2ksinsinsinsinsinsinsincos2kcoscoscoscoscoscoscos

  tan2ktantantantantantantansin(2)coscos(2)sinsin(2)coscos(2)sin

  68、輔助角公式:asinbcos=a2b2sin()(輔助角所在象限與點(a,b)的象限相同,且

  tanba)。主要在求周期、單調(diào)性、最值時運用。如y3sinxcosx2sin(x6)

  69、半角公式(降冪公式):sin21cos1cos22,cos22270、三角函數(shù)yAsin(x)的性質(zhì)(A0,0)

 。1)最小正周期T2;振幅為A;頻率f1T;相位:x;初相:;值域:[A,A];

  對稱軸:由x2k解得x;對稱中心:由xk解得x組成的點(x,0)

  (2)圖象平移:x左加右減、y上加下減。

  例如:向左平移1個單位,解析式變?yōu)閥Asin[(x1)]向下平移3個單位,解析式變?yōu)閥Asin(x)3

  (3)函數(shù)ytan(x)的最小正周期T。71、正弦定理:在一個三角形中,各邊與對應(yīng)角正弦的比相等。

  asinAbsinBcsinC2R(R是三角形外接圓半徑)cosAb2c2a2a2b2c22bccosA,2bc,ca2cacosB,推論cosc2a272、余弦定理:bBb2222,c2a2b22abcosC。2caosCa2b2c2c2ab。73、三角形的面積公式:S11ABC2absinC2acsinB12bcsinA。74、三角函數(shù)的圖象與性質(zhì)和性質(zhì)三角函數(shù)ysinxycosxytanxyyy11圖象xx—0x3—122—20—122—0222定義域(,)(,)(k2,k2)值域[—1,1][—1,1](,)最大值x22k,ymax1x2k,ymax1最小值x22k,ymin1x2k,ymin1周期22奇偶性奇函數(shù)偶函數(shù)奇函數(shù)在[22k,22k]在[2k,2k]在(2k,22k)單調(diào)性上是增函數(shù)上是增函數(shù)上都是增函數(shù)kZ在[22k,322k]在[2k,2k]上是減函數(shù)上是減函數(shù)76、向量的三角形法則:79、向量的平行平行四邊形法則:

  a+bbabab—aba+ba—177、平面向量的坐標運算:設(shè)向量a=(x1,y1),向量b=(x2,y2)

 。1)加法a+b=(x1x2,y1y2)。(2)減法a—b=(x1x2,y1y2)。(3)數(shù)乘a=(x1,y1)(x1,y1)

 。4)數(shù)量積ab=|a||b|cosθ=x1x2y1y2,其中是這兩個向量的夾角

  (5)已知兩點A(x1,y1),B(x2,y2),則向量ABOBOA(x2x1,y2y1)。

  78、向量a=(x,y)的模:|a|=(a)22222aaxy,即|a|a

  79、兩向量的夾角公式cosabx1x2y1y2abx2y22y2

  11x2280、向量的平行與垂直(b0)

  a||bb=λax1y2x2y10。記法:a=(x1,y1),b=(x2,y2)

  abab=0x1x2y1y20。記法:a=(x1,y1),b=(x2,y2)

  必修⑤公式表

  81、數(shù)列前n項和與通項公式的關(guān)系:

  aS1,n1;n(數(shù)列{an}的前n項的和為sna1a2aSn)。nSn1,n2。82、等差、等比數(shù)列公式對比nN等差數(shù)列等比數(shù)列定義式aanan1danq(q0)n1通項公式及a1推廣公式anaa1n1mddana1qnnmnanamqnm中項公式若a,A,b成等差,則Aab若a,G,b成等比,則G22ab運算性質(zhì)若mnpq2r,則若mnpq2r,則anamapaq2aranamapaqa2r前n項和公Sna1annna21q1,式Snnann112da11-qna11qanq1q,q1。一個性質(zhì)Sm,S2mSm,S3mS2m成等差數(shù)列Sm,S2mSm,S3mS2m成等比數(shù)列83、解不等式(1)、含有絕對值的不等式

  當a>0時,有xax2a2axa。[小于取中間]

  xax2a2xa或xa。[大于取兩邊]

 。2)、解一元二次不等式ax2bxc0,(a0)的步驟:

 、偾笈袆e式b24ac000②求一元二次方程的解:兩相異實根一個實根沒有實根③畫二次函數(shù)yax2bxc的圖象

 、芙Y(jié)合圖象寫出解集

  ax2bxc0解集xxxb2或xx1xx2aR

  ax2bxc0解集xx1xx2

  注:ax2bxc0(a0)解集為Rax2bxc0對xR恒成立0(3)分式不等式:先移項通分,化一邊為0,再將除變乘,化為整式不等式,求解。如解分式不等式

  x1x1:先移項x1x10;通分(x1)xx0;再除變乘(2x1)x0,解出。

  84、線性規(guī)劃:

  直線AxByC0

 。1)一條直線將平面分為三部分(如圖):

  AxByC0(2)不等式AxByC0表示直線AxByC0

  AxByC0

  某一側(cè)的平面區(qū)域,驗證方法:取原點(0,0)代入不

  等式,若不等式成立,則平面區(qū)域在原點所在的一側(cè)。假如直線恰好經(jīng)過原點,則取其它點來驗證,例如取點(1,0)。

  (3)線性規(guī)劃求最值問題:一般情況可以求出平面區(qū)域各個頂點的坐標,代入目標函數(shù)z,最大的為最大值。

高中數(shù)學(xué)必修一知識點總結(jié)9

  1、集合的含義:

  “集合”這個詞首先讓我們想到的是上體育課或者開會時老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。

  所以集合的`含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個集合,每一個同學(xué)就稱為這個集合的元素。

  2、集合的表示

  通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

  有一些特殊的集合需要記憶:

  非負整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+

  整數(shù)集Z有理數(shù)集Q實數(shù)集R

  集合的表示方法:列舉法與描述法。

 、倭信e法:{a,b,c……}

  ②描述法:將集合中的元素的公共屬性描述出來。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

 、壅Z言描述法:例:{不是直角三角形的三角形}

  例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  強調(diào):描述法表示集合應(yīng)注意集合的代表元素

  A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。

  3、集合的三個特性

  (1)無序性

  指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

  例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

  解:,A=B

  注意:該題有兩組解。

  (2)互異性

  指集合中的元素不能重復(fù),A={2,2}只能表示為{2}

  (3)確定性

  集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。

高中數(shù)學(xué)必修一知識點總結(jié)10

  對數(shù)函數(shù)

  對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

  右圖給出對于不同大小a所表示的'函數(shù)圖形:

  可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。

 。1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。

 。2)對數(shù)函數(shù)的值域為全部實數(shù)集合。

 。3)函數(shù)總是通過(1,0)這點。

 。4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

 。5)顯然對數(shù)函數(shù)。

高中數(shù)學(xué)必修一知識點總結(jié)11

  ★高中數(shù)學(xué)導(dǎo)數(shù)知識點

  一、早期導(dǎo)數(shù)概念————特殊的形式大約在1629年法國數(shù)學(xué)家費馬研究了作曲線的切線和求函數(shù)極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時他構(gòu)造了差分f(A+E)—f(A),發(fā)現(xiàn)的因子E就是我們所說的導(dǎo)數(shù)f(A)。

  二、17世紀————廣泛使用的“流數(shù)術(shù)”17世紀生產(chǎn)力的發(fā)展推動了自然科學(xué)和技術(shù)的發(fā)展在前人創(chuàng)造性研究的基礎(chǔ)上大數(shù)學(xué)家牛頓、萊布尼茨等從不同的角度開始系統(tǒng)地研究微積分。牛頓的微積分理論被稱為“流數(shù)術(shù)”他稱變量為流量稱變量的變化率為流數(shù)相當于我們所說的導(dǎo)數(shù)。牛頓的有關(guān)“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運用無窮多項方程的計算法》和《流數(shù)術(shù)和無窮級數(shù)》流數(shù)理論的實質(zhì)概括為他的重點在于一個變量的函數(shù)而不在于多變量的方程在于自變量的變化與函數(shù)的'變化的比的構(gòu)成最在于決定這個比當變化趨于零時的極限。

  三、19世紀導(dǎo)數(shù)————逐漸成熟的理論1750年達朗貝爾在為法國科學(xué)家院出版的《百科全書》第五版寫的“微分”條目中提出了關(guān)于導(dǎo)數(shù)的一種觀點可以用現(xiàn)代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導(dǎo)數(shù)如果函數(shù)y=f(x)在變量x的兩個給定的界限之間保持連續(xù)并且我們?yōu)檫@樣的變量指定一個包含在這兩個不同界限之間的值那么是使變量得到一個無窮小增量。19世紀60年代以后魏爾斯特拉斯創(chuàng)造了ε—δ語言對微積分中出現(xiàn)的各種類型的極限重加表達導(dǎo)數(shù)的定義也就獲得了今天常見的形式。

  四、實無限將異軍突起微積分第二輪初等化或成為可能微積分學(xué)理論基礎(chǔ)大體可以分為兩個部分。一個是實無限理論即無限是一個具體的東西一種真實的存在另一種是潛無限指一種意識形態(tài)上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實無限用了150年后來極限論就是現(xiàn)在所使用的。光是電磁波還是粒子是一個物理學(xué)長期爭論的問題后來由波粒二象性來統(tǒng)一。微積分無論是用現(xiàn)代極限論還是150年前的理論都不是最好的手段。

  ★高中數(shù)學(xué)導(dǎo)數(shù)要點

  1、求函數(shù)的單調(diào)性:

  利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

  利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

  反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

  (2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

 。3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

  2、求函數(shù)的極值:

  設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

  可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:

  (1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的

  變化情況:

 。4)檢查f(x)的符號并由表格判斷極值。

  3、求函數(shù)的最大值與最小值:

  如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的最大值。函數(shù)在定義域內(nèi)的極值不一定唯一,但在定義域內(nèi)的最值是唯一的。

  求函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

 。2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的最大值與最小值。

  4、解決不等式的有關(guān)問題:

 。1)不等式恒成立問題(絕對不等式問題)可考慮值域。

  f(x)(xA)的值域是[a,b]時,不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

  f(x)(xA)的值域是(a,b)時,不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

 。2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

  5、導(dǎo)數(shù)在實際生活中的應(yīng)用:

  實際生活求解最大(。┲祮栴},通常都可轉(zhuǎn)化為函數(shù)的最值。在利用導(dǎo)數(shù)來求函數(shù)最值時,一定要注意,極值點唯一的單峰函數(shù),極值點就是最值點,在解題時要加以說明。

【高中數(shù)學(xué)必修一知識點總結(jié)】相關(guān)文章:

高中數(shù)學(xué)必修知識點11-08

高中數(shù)學(xué)必修2知識點總結(jié)11-22

高中數(shù)學(xué)必修二知識點總結(jié)05-25

高中數(shù)學(xué)必修2知識點總結(jié)4篇11-23

高中數(shù)學(xué)必修知識點8篇11-09

高中數(shù)學(xué)必修知識點(8篇)11-10

高中數(shù)學(xué)必修知識點(精選22篇)05-14

高中數(shù)學(xué)必修教案03-01

高中必修一生物知識點總結(jié)11-28