當(dāng)前位置:育文網(wǎng)>高中>高中數(shù)學(xué)> 高中數(shù)學(xué)重要知識總復(fù)習(xí)歸納

高中數(shù)學(xué)重要知識總復(fù)習(xí)歸納

時間:2022-04-25 11:44:51 高中數(shù)學(xué) 我要投稿
  • 相關(guān)推薦

高中數(shù)學(xué)重要知識總復(fù)習(xí)歸納

  總結(jié)是在某一特定時間段對學(xué)習(xí)和工作生活或其完成情況,包括取得的成績、存在的問題及得到的經(jīng)驗(yàn)和教訓(xùn)加以回顧和分析的書面材料,它能幫我們理順知識結(jié)構(gòu),突出重點(diǎn),突破難點(diǎn),是時候?qū)懸环菘偨Y(jié)了。那么總結(jié)要注意有什么內(nèi)容呢?以下是小編為大家整理的高中數(shù)學(xué)重要知識總復(fù)習(xí)歸納,歡迎閱讀與收藏。

高中數(shù)學(xué)重要知識總復(fù)習(xí)歸納

  高考數(shù)學(xué)一輪復(fù)習(xí)重點(diǎn)總結(jié)

  第一,高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。

  主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點(diǎn)考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點(diǎn)還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

  第二,平面向量和三角函數(shù)

  重點(diǎn)考察三個方面:一個是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。

  第三,數(shù)列

  數(shù)列這個板塊,重點(diǎn)考兩個方面:一個通項(xiàng);一個是求和。

  第四,空間向量和立體幾何

  在里面重點(diǎn)考察兩個方面:一個是證明;一個是計(jì)算。

  第五,概率和統(tǒng)計(jì)

  這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個方面,第一xxx等可能的概率,第二xxx事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。

  第六,解析幾何

  這是我們比較頭疼的問題,是整個試卷里難度比較大,計(jì)算量的題,當(dāng)然這一類題,我總結(jié)下面五類?嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容。考生應(yīng)該掌握它的通法,第二類我們所講的動點(diǎn)問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經(jīng)考過的一點(diǎn),第五類重點(diǎn)問題,這類題時往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

  第七,押軸題

  考生在備考復(fù)習(xí)時,應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

  高三數(shù)學(xué)專題復(fù)習(xí)歸納

  1、進(jìn)行集合的交、并、補(bǔ)運(yùn)算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解。

  2、在應(yīng)用條件時,易A忽略是空集的情況。

  3、你會用補(bǔ)集的思想解決有關(guān)問題嗎?

  4、簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

  5、你知道“否命題”與“命題的否定形式”的區(qū)別。

  6、求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則。

  7、判斷函數(shù)奇偶性時,易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對稱。

  8、求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標(biāo)注該函數(shù)的定義域。

  9、原函數(shù)在區(qū)間[—a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。

  10、你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法。

  11、求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。

  12、求函數(shù)的值域必須先求函數(shù)的定義域。

  13、如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題)、這幾種基本應(yīng)用你掌握了嗎?

  14、解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論。

  15、三個二次(哪三個二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

  16、用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。

  17、“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時,你是否注意到:當(dāng)時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?

  18、利用均值不等式求最值時,你是否注意到:“一正;二定;三等”。

  19、絕對值不等式的解法及其幾何意義是什么?

  20、解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?

  21、解含參數(shù)不等式的通法是“定義域?yàn)榍疤,函?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”。

  22、在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示。

  23、兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0、

  24、解決一些等比數(shù)列的前項(xiàng)和問題,你注意到要對公比及兩種情況進(jìn)行討論了嗎?

  25、在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。

  26、你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無窮等比數(shù)列的所有項(xiàng)的和必定存在?

  27、數(shù)列單調(diào)性問題能否等同于對應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)

  28、應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時成立,再結(jié)合一些數(shù)學(xué)方法用來證明時也成立。

  29、正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

  30、三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?

  31、在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?

  32、你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角、異角化同角,異名化同名,高次化低次)

  33、反正弦、反余弦、反正切函數(shù)的取值范圍分別是xxx。

  34、你還記得某些特殊角的三角函數(shù)值嗎?

  35、掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)、你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?

  36、函數(shù)的圖象的平移,方程的平移以及點(diǎn)的平移公式易混:

  (1)函數(shù)的圖象的平移為“左+右—,上+下—”;如函數(shù)的圖象左移2個單位且下移3個單位得到的圖象的解析式為y=2(x+2)+4—3,即y=2x+5。

  (2)方程表示的圖形的平移為“左+右—,上—下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為2(x+2)—(y+3)+4=0,即y=2x+5。

  (3)點(diǎn)的平移公式:點(diǎn)P(x,y)按向量平移到點(diǎn)P(x,y),則x=x+hy=y+k。

  37、在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)

  38、形如的周期都是,但的周期為。

  39、正弦定理時易忘比值還等于2R。

  高三數(shù)學(xué)重要復(fù)習(xí)歸納

  一、函數(shù)

  1、對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(—x)=—f(x),那么f(x)為奇函數(shù);

  2、對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(—x)=f(x),那么f(x)為偶函數(shù);

  3、一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對稱;

  4、一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x都有f(a+x)=f(a—x),則它的圖象關(guān)于x=a成軸對稱。

  5、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

  6、由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則—x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點(diǎn)對稱)。

  二、命題條件

  一、充分條件和必要條件

  當(dāng)命題“若A則B”為真時,A稱為B的充分條件,B稱為A的必要條件。

  二、充分條件、必要條件的常用判斷法

  1、定義法:判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可

  2、轉(zhuǎn)換法:當(dāng)所給命題的充要條件不易判斷時,可對命題進(jìn)行等價裝換,例如改用其逆否命題進(jìn)行判斷。

  3、集合法

  在命題的條件和結(jié)論間的關(guān)系判斷有困難時,可從集合的角度考慮,記條件p、q對應(yīng)的集合分別為A、B,則:

  若A?B,則p是q的充分條件。

  若A?B,則p是q的必要條件。

  若A=B,則p是q的充要條件。

  若A?B,且B?A,則p是q的既不充分也不必要條件。

  三、知識擴(kuò)展

  1、四種命題反映出命題之間的內(nèi)在聯(lián)系,要注意結(jié)合實(shí)際問題,理解其關(guān)系(尤其是兩種等價關(guān)系)的產(chǎn)生過程,關(guān)于逆命題、否命題與逆否命題,也可以敘述為:

  (1)交換命題的條件和結(jié)論,所得的新命題就是原來命題的逆命題;

  (2)同時否定命題的條件和結(jié)論,所得的新命題就是原來的否命題;

 。3)交換命題的條件和結(jié)論,并且同時否定,所得的新命題就是原命題的逆否命題。

  2、由于“充分條件與必要條件”是四種命題的關(guān)系的深化,他們之間存在這密切的聯(lián)系,故在判斷命題的條件的充要性時,可考慮“正難則反”的原則,即在正面判斷較難時,可轉(zhuǎn)化為應(yīng)用該命題的逆否命題進(jìn)行判斷。一個結(jié)論成立的充分條件可以不止一個,必要條件也可以不止一個。

  高考數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)

 。ㄒ唬⿲(dǎo)數(shù)第一定義

  設(shè)函數(shù)y = f(x)在點(diǎn)x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0 + △x也在該鄰域內(nèi))時,相應(yīng)地函數(shù)取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y = f(x)在點(diǎn)x0處可導(dǎo),并稱這個極限值為函數(shù)y = f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一定義。

 。ǘ⿲(dǎo)數(shù)第二定義

  設(shè)函數(shù)y = f(x)在點(diǎn)x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x — x0也在該鄰域內(nèi))時,相應(yīng)地函數(shù)變化△y = f(x)— f(x0);如果△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y = f(x)在點(diǎn)x0處可導(dǎo),并稱這個極限值為函數(shù)y = f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二定義。

 。ㄈ⿲(dǎo)函數(shù)與導(dǎo)數(shù)

  如果函數(shù)y = f(x)在開區(qū)間I內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時函數(shù)y = f(x)對于區(qū)間I內(nèi)的每一個確定的x值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y = f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。

 。ㄋ模﹩握{(diào)性及其應(yīng)用

  1、利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟

 。1)求f¢(x)

 。2)確定f¢(x)在(a,b)內(nèi)符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

  2、用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟

  (1)求f¢(x)

 。2)f¢(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間

  高中數(shù)學(xué)重難點(diǎn)知識點(diǎn)

  高中數(shù)學(xué)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)習(xí)兩本書。

  必修一:

  1、集合與函數(shù)的概念(這部分知識抽象,較難理解)

  2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))

  3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)

  必修二:

  1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角

  這部分知識是高一學(xué)生的難點(diǎn),比如:一個角實(shí)際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強(qiáng)。這部分知識高考占22———27分

  2、直線方程:高考時不單獨(dú)命題,易和圓錐曲線結(jié)合命題

  3、圓方程:

  必修三:

  1、算法初步:高考必考內(nèi)容,5分(選擇或填空)

  2、統(tǒng)計(jì):

  3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分

  必修四:

  1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15———20分,并且經(jīng)常和其他函數(shù)混合起來考查

  2、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分

  必修五:

  1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右

  2、數(shù)列:高考必考,17———22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。

  高中數(shù)學(xué)知識點(diǎn)大全

  一、集合與簡易邏輯

  1、集合的元素具有確定性、無序性和互異性。

  2、對集合,時,必須注意到“極端”情況:或;求集合的子集時是否注意到是任何集合的子集、是任何非空集合的真子集。

  3、判斷命題的真假關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”。

  4、“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”。

  5、四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”。

  原命題等價于逆否命題,但原命題與逆命題、否命題都不等價。反證法分為三步:假設(shè)、推矛、得果。

  6、充要條件

  二、函數(shù)

  1、指數(shù)式、對數(shù)式

  2、

 。1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個集合中的元素必有像,但第二個集合中的元素不一定有原像(中元素的像有且僅有下一個,但中元素的原像可能沒有,也可任意個);函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集的子集”。

  (2)函數(shù)圖像與軸垂線至多一個公共點(diǎn),但與軸垂線的公共點(diǎn)可能沒有,也可任意個。

  (3)函數(shù)圖像一定是坐標(biāo)系中的曲線,但坐標(biāo)系中的曲線不一定能成為函數(shù)圖像。

  3、單調(diào)性和奇偶性

 。1)奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同。

  偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反。

 。2)復(fù)合函數(shù)的單調(diào)性特點(diǎn)是:“同性得增,增必同性;異性得減,減必異性”。

  復(fù)合函數(shù)的奇偶性特點(diǎn)是:“內(nèi)偶則偶,內(nèi)奇同外”。復(fù)合函數(shù)要考慮定義域的變化。(即復(fù)合有意義)

  4、對稱性與周期性(以下結(jié)論要消化吸收,不可強(qiáng)記)

 。1)函數(shù)與函數(shù)的圖像關(guān)于直線(軸)對稱。

  推廣一:如果函數(shù)對于一切,都有成立,那么的圖像關(guān)于直線(由“和的一半確定”)對稱。

  推廣二:函數(shù),的圖像關(guān)于直線對稱。

 。2)函數(shù)與函數(shù)的圖像關(guān)于直線(軸)對稱。

 。3)函數(shù)與函數(shù)的圖像關(guān)于坐標(biāo)原點(diǎn)中心對稱。

  三、數(shù)列

  1、數(shù)列的通項(xiàng)、數(shù)列項(xiàng)的項(xiàng)數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項(xiàng)與數(shù)列的前項(xiàng)和公式的關(guān)系

  2、等差數(shù)列中

 。1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性。

 。2)也成等差數(shù)列。

 。3)兩等差數(shù)列對應(yīng)項(xiàng)和(差)組成的新數(shù)列仍成等差數(shù)列。

 。4)仍成等差數(shù)列。

 。5)“首正”的遞等差數(shù)列中,前項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和;“首負(fù)”的遞增等差數(shù)列中,前項(xiàng)和的最小值是所有非正項(xiàng)之和;

 。6)有限等差數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定。若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和“奇數(shù)項(xiàng)和=總項(xiàng)數(shù)的一半與其公差的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和—偶數(shù)項(xiàng)和”=此數(shù)列的中項(xiàng)。

 。7)兩數(shù)的等差中項(xiàng)惟一存在。在遇到三數(shù)或四數(shù)成等差數(shù)列時,?紤]選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解。

 。8)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項(xiàng)法、通項(xiàng)法、和式法、圖像法(也就是說數(shù)列是等差數(shù)列的充要條件主要有這五種形式)。

  3、等比數(shù)列中

 。1)等比數(shù)列的符號特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項(xiàng)、公比與等比數(shù)列的單調(diào)性。

 。2)兩等比數(shù)列對應(yīng)項(xiàng)積(商)組成的新數(shù)列仍成等比數(shù)列。

 。3)“首大于1”的正值遞減等比數(shù)列中,前項(xiàng)積的最大值是所有大于或等于1的項(xiàng)的積;“首小于1”的正值遞增等比數(shù)列中,前項(xiàng)積的最小值是所有小于或等于1的項(xiàng)的積;

  (4)有限等比數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定。若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”=“奇數(shù)項(xiàng)和”與“公比”的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和“首項(xiàng)”加上“公比”與“偶數(shù)項(xiàng)和”積的和。

 。5)并非任何兩數(shù)總有等比中項(xiàng)。僅當(dāng)實(shí)數(shù)同號時,實(shí)數(shù)存在等比中項(xiàng)。對同號兩實(shí)數(shù)的等比中項(xiàng)不僅存在,而且有一對。也就是說,兩實(shí)數(shù)要么沒有等比中項(xiàng)(非同號時),如果有,必有一對(同號時)。在遇到三數(shù)或四數(shù)成等差數(shù)列時,常優(yōu)先考慮選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解。

  (6)判定數(shù)列是否是等比數(shù)列的方法主要有:定義法、中項(xiàng)法、通項(xiàng)法、和式法(也就是說數(shù)列是等比數(shù)列的充要條件主要有這四種形式)。

  4、等差數(shù)列與等比數(shù)列的聯(lián)系

 。1)如果數(shù)列成等差數(shù)列,那么數(shù)列(總有意義)必成等比數(shù)列。

 。2)如果數(shù)列成等比數(shù)列,那么數(shù)列必成等差數(shù)列。

 。3)如果數(shù)列既成等差數(shù)列又成等比數(shù)列,那么數(shù)列是非零常數(shù)數(shù)列;但數(shù)列是常數(shù)數(shù)列僅是數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件。

 。4)如果兩等差數(shù)列有公共項(xiàng),那么由他們的公共項(xiàng)順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù)。

  如果一個等差數(shù)列與一個等比數(shù)列有公共項(xiàng)順次組成新數(shù)列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數(shù)列的項(xiàng)為主,探求等比數(shù)列中那些項(xiàng)是他們的公共項(xiàng),并構(gòu)成新的數(shù)列。

  5、數(shù)列求和的常用方法:

 。1)公式法:

 、俚炔顢(shù)列求和公式(三種形式),

  ②等比數(shù)列求和公式(三種形式),

  (2)分組求和法:在直接運(yùn)用公式法求和有困難時,常將“和式”中“同類項(xiàng)”先合并在一起,再運(yùn)用公式法求和。

 。3)倒序相加法:在數(shù)列求和中,若和式中到首尾距離相等的兩項(xiàng)和有其共性或數(shù)列的通項(xiàng)與組合數(shù)相關(guān)聯(lián),則?煽紤]選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數(shù)列前和公式的推導(dǎo)方法)。

 。4)錯位相減法:如果數(shù)列的通項(xiàng)是由一個等差數(shù)列的通項(xiàng)與一個等比數(shù)列的通項(xiàng)相乘構(gòu)成,那么常選用錯位相減法,將其和轉(zhuǎn)化為“一個新的的等比數(shù)列的和”求解(注意:一般錯位相減后,其中“新等比數(shù)列的項(xiàng)數(shù)是原數(shù)列的項(xiàng)數(shù)減一的差”。ㄟ@也是等比數(shù)列前和公式的推導(dǎo)方法之一)。

 。5)裂項(xiàng)相消法:如果數(shù)列的通項(xiàng)可“分裂成兩項(xiàng)差”的形式,且相鄰項(xiàng)分裂后相關(guān)聯(lián),那么常選用裂項(xiàng)相消法求和

 。6)通項(xiàng)轉(zhuǎn)換法。

  四、三角函數(shù)

  1、終邊與終邊相同(的終邊在終邊所在射線上)。

  終邊與終邊共線(的終邊在終邊所在直線上)。

  終邊與終邊關(guān)于軸對稱

  終邊與終邊關(guān)于軸對稱

  終邊與終邊關(guān)于原點(diǎn)對稱

  一般地:終邊與終邊關(guān)于角的終邊對稱。

  與的終邊關(guān)系由“兩等分各象限、一二三四”確定。

  2、弧長公式:,扇形面積公式:1弧度(1rad)。

  3、三角函數(shù)符號特征是:一是全正、二正弦正、三是切正、四余弦正。

  4、三角函數(shù)線的特征是:正弦線“站在軸上(起點(diǎn)在軸上)”、余弦線“躺在軸上(起點(diǎn)是原點(diǎn))”、正切線“站在點(diǎn)處(起點(diǎn)是)”。務(wù)必重視“三角函數(shù)值的大小與單位圓上相應(yīng)點(diǎn)的坐標(biāo)之間的關(guān)系,‘正弦’‘縱坐標(biāo)’、‘余弦’‘橫坐標(biāo)’、‘正切’‘縱坐標(biāo)除以橫坐標(biāo)之商’”;務(wù)必記住:單位圓中角終邊的變化與值的大小變化的關(guān)系為銳角

  5、三角函數(shù)同角關(guān)系中,平方關(guān)系的運(yùn)用中,務(wù)必重視“根據(jù)已知角的范圍和三角函數(shù)的取值,精確確定角的范圍,并進(jìn)行定號”;

  6、三角函數(shù)誘導(dǎo)公式的本質(zhì)是:奇變偶不變,符號看象限。

  7、三角函數(shù)變換主要是:角、函數(shù)名、次數(shù)、系數(shù)(常值)的變換,其核心是“角的變換”!

  角的變換主要有:已知角與特殊角的變換、已知角與目標(biāo)角的變換、角與其倍角的變換、兩角與其和差角的變換。

  8、三角函數(shù)性質(zhì)、圖像及其變換:

 。1)三角函數(shù)的定義域、值域、單調(diào)性、奇偶性、有界性和周期性

  注意:正切函數(shù)、余切函數(shù)的定義域;絕對值對三角函數(shù)周期性的影響:一般說來,某一周期函數(shù)解析式加絕對值或平方,其周期性是:弦減半、切不變。既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對值,其周期性不變;其他不定。如的周期都是,但的周期為,y=|tanx|的周期不變,問函數(shù)y=cos|x|,y=cos|x|是周期函數(shù)嗎?

  (2)三角函數(shù)圖像及其幾何性質(zhì):

 。3)三角函數(shù)圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換。

 。4)三角函數(shù)圖像的作法:三角函數(shù)線法、五點(diǎn)法(五點(diǎn)橫坐標(biāo)成等差數(shù)列)和變換法。

  9、三角形中的三角函數(shù):

  (1)內(nèi)角和定理:三角形三角和為,任意兩角和與第三個角總互補(bǔ),任意兩半角和與第三個角的半角總互余。銳角三角形三內(nèi)角都是銳角三內(nèi)角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方。

 。2)正弦定理:(R為三角形外接圓的半徑)。

 。3)余弦定理:常選用余弦定理鑒定三角形的類型。

  五、向量

  1、向量運(yùn)算的幾何形式和坐標(biāo)形式,請注意:向量運(yùn)算中向量起點(diǎn)、終點(diǎn)及其坐標(biāo)的特征。

  2、幾個概念:零向量、單位向量(與共線的單位向量是,平行(共線)向量(無傳遞性,是因?yàn)橛校、相等向量(有傳遞性)、相反向量、向量垂直、以及一個向量在另一向量方向上的投影(在上的投影是)。

  3、兩非零向量平行(共線)的充要條件

  4、平面向量的基本定理:如果e1和e2是同一平面內(nèi)的兩個不共線向量,那么對該平面內(nèi)的任一向量a,有且只有一對實(shí)數(shù),使a= e1+ e2。

  5、三點(diǎn)共線;

  6、向量的數(shù)量積:

  六、不等式

  1、

 。1)解不等式是求不等式的解集,最后務(wù)必有集合的形式表示;不等式解集的端點(diǎn)值往往是不等式對應(yīng)方程的根或不等式有意義范圍的端點(diǎn)值。

 。2)解分式不等式的一般解題思路是什么?(移項(xiàng)通分,分子分母分解因式,x的系數(shù)變?yōu)檎,?biāo)根及奇穿過偶彈回);

 。3)含有兩個絕對值的不等式如何去絕對值?(一般是根據(jù)定義分類討論、平方轉(zhuǎn)化或換元轉(zhuǎn)化);

 。4)解含參不等式常分類等價轉(zhuǎn)化,必要時需分類討論。注意:按參數(shù)討論,最后按參數(shù)取值分別說明其解集,但若按未知數(shù)討論,最后應(yīng)求并集。

  2、利用重要不等式以及變式等求函數(shù)的最值時,務(wù)必注意a,b(或a,b非負(fù)),且“等號成立”時的條件是積ab或和a+b其中之一應(yīng)是定值(一正二定三等四同時)。

  3、常用不等式有:(根據(jù)目標(biāo)不等式左右的運(yùn)算結(jié)構(gòu)選用)

  a、b、c R,(當(dāng)且僅當(dāng)時,取等號)

  4、比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數(shù)性質(zhì)法、綜合法、分析法

  5、含絕對值不等式的性質(zhì):

  6、不等式的恒成立,能成立,恰成立等問題

  (1)恒成立問題

  若不等式在區(qū)間上恒成立,則等價于在區(qū)間上

  若不等式在區(qū)間上恒成立,則等價于在區(qū)間上

 。2)能成立問題

  (3)恰成立問題

  若不等式在區(qū)間上恰成立,則等價于不等式的解集為。

  若不等式在區(qū)間上恰成立,則等價于不等式的解集為,

  七、直線和圓

  1、直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義(或)及其直線方程的向量式((為直線的方向向量))。應(yīng)用直線方程的點(diǎn)斜式、斜截式設(shè)直線方程時,一般可設(shè)直線的斜率為k,但你是否注意到直線垂直于x軸時,即斜率k不存在的情況?

  2、知直線縱截距,常設(shè)其方程為或;知直線橫截距,常設(shè)其方程為(直線斜率k存在時,為k的倒數(shù))或知直線過點(diǎn),常設(shè)其方程為。

 。1)直線在坐標(biāo)軸上的截距可正、可負(fù)、也可為0。直線兩截距相等直線的斜率為—1或直線過原點(diǎn);直線兩截距互為相反數(shù)直線的斜率為1或直線過原點(diǎn);直線兩截距絕對值相等直線的斜率為或直線過原點(diǎn)。

 。2)在解析幾何中,研究兩條直線的位置關(guān)系時,有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合。

  3、相交兩直線的夾角和兩直線間的到角是兩個不同的概念:夾角特指相交兩直線所成的較小角,范圍是。而其到角是帶有方向的角,范圍是

  4、線性規(guī)劃中幾個概念:約束條件、可行解、可行域、目標(biāo)函數(shù)、最優(yōu)解。

  5、圓的方程:最簡方程;標(biāo)準(zhǔn)方程;

  6、解決直線與圓的關(guān)系問題有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價轉(zhuǎn)化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長、弦心距構(gòu)成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!”

 。1)過圓上一點(diǎn)圓的切線方程

  過圓上一點(diǎn)圓的切線方程

  過圓上一點(diǎn)圓的切線方程

  如果點(diǎn)在圓外,那么上述直線方程表示過點(diǎn)兩切線上兩切點(diǎn)的“切點(diǎn)弦”方程。

  如果點(diǎn)在圓內(nèi),那么上述直線方程表示與圓相離且垂直于(為圓心)的直線方程,(為圓心到直線的距離)。

  7、曲線與的交點(diǎn)坐標(biāo)方程組的解;

  過兩圓交點(diǎn)的圓(公共弦)系為,當(dāng)且僅當(dāng)無平方項(xiàng)時,為兩圓公共弦所在直線方程。

  八、圓錐曲線

  1、圓錐曲線的兩個定義,及其“括號”內(nèi)的限制條件,在圓錐曲線問題中,如果涉及到其兩焦點(diǎn)(兩相異定點(diǎn)),那么將優(yōu)先選用圓錐曲線第一定義;如果涉及到其焦點(diǎn)、準(zhǔn)線(一定點(diǎn)和不過該點(diǎn)的一定直線)或離心率,那么將優(yōu)先選用圓錐曲線第二定義;涉及到焦點(diǎn)三角形的問題,也要重視焦半徑和三角形中正余弦定理等幾何性質(zhì)的應(yīng)用。

  (1)注意:

 、賵A錐曲線第一定義與配方法的綜合運(yùn)用;

 、趫A錐曲線第二定義是:“點(diǎn)點(diǎn)距為分子、點(diǎn)線距為分母”,橢圓點(diǎn)點(diǎn)距除以點(diǎn)線距商是小于1的正數(shù),雙曲線點(diǎn)點(diǎn)距除以點(diǎn)線距商是大于1的正數(shù),拋物線點(diǎn)點(diǎn)距除以點(diǎn)線距商是等于1。

  2、圓錐曲線的幾何性質(zhì):圓錐曲線的對稱性、圓錐曲線的范圍、圓錐曲線的特殊點(diǎn)線、圓錐曲線的變化趨勢。其中,橢圓中、雙曲線中。

  重視“特征直角三角形、焦半徑的最值、焦點(diǎn)弦的最值及其‘頂點(diǎn)、焦點(diǎn)、準(zhǔn)線等相互之間與坐標(biāo)系無關(guān)的幾何性質(zhì)’”,尤其是雙曲線中焦半徑最值、焦點(diǎn)弦最值的特點(diǎn)。

  3、在直線與圓錐曲線的位置關(guān)系問題中,有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價轉(zhuǎn)化求解。特別是:

  ①直線與圓錐曲線相交的必要條件是他們構(gòu)成的方程組有實(shí)數(shù)解,當(dāng)出現(xiàn)一元二次方程時,務(wù)必“判別式≥0”,尤其是在應(yīng)用韋達(dá)定理解決問題時,必須先有“判別式≥0”。

  ②直線與拋物線(相交不一定交于兩點(diǎn))、雙曲線位置關(guān)系(相交的四種情況)的特殊性,應(yīng)謹(jǐn)慎處理。

 、墼谥本與圓錐曲線的位置關(guān)系問題中,常與“弦”相關(guān),“平行弦”問題的關(guān)鍵是“斜率”、“中點(diǎn)弦”問題關(guān)鍵是“韋達(dá)定理”或“小小直角三角形”或“點(diǎn)差法”、“長度(弦長)”問題關(guān)鍵是長度(弦長)公式

 、苋绻谝粭l直線上出現(xiàn)“三個或三個以上的點(diǎn)”,那么可選擇應(yīng)用“斜率”為橋梁轉(zhuǎn)化。

  4、要重視常見的尋求曲線方程的方法(待定系數(shù)法、定義法、直譯法、代點(diǎn)法、參數(shù)法、交軌法、向量法等),以及如何利用曲線的方程討論曲線的幾何性質(zhì)(定義法、幾何法、代數(shù)法、方程函數(shù)思想、數(shù)形結(jié)合思想、分類討論思想和等價轉(zhuǎn)化思想等),這是解析幾何的兩類基本問題,也是解析幾何的基本出發(fā)點(diǎn)。

  注意:

 、偃绻麊栴}中涉及到平面向量知識,那么應(yīng)從已知向量的特點(diǎn)出發(fā),考慮選擇向量的幾何形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化,還是選擇向量的代數(shù)形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化。

 、谇與曲線方程、軌跡與軌跡方程是兩個不同的概念,尋求軌跡或軌跡方程時應(yīng)注意軌跡上特殊點(diǎn)對軌跡的“完備性與純粹性”的影響。

  ③在與圓錐曲線相關(guān)的綜合題中,常借助于“平面幾何性質(zhì)”數(shù)形結(jié)合(如角平分線的雙重身份)、“方程與函數(shù)性質(zhì)”化解析幾何問題為代數(shù)問題、“分類討論思想”化整為零分化處理、“求值構(gòu)造等式、求變量范圍構(gòu)造不等關(guān)系”等等。

  九、直線、平面、簡單多面體

  1、計(jì)算異面直線所成角的關(guān)鍵是平移(補(bǔ)形)轉(zhuǎn)化為兩直線的夾角計(jì)算

  2、計(jì)算直線與平面所成的角關(guān)鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運(yùn)用等積法求點(diǎn)到直線的距離,后虛擬直角三角形求解。注:一斜線與平面上以斜足為頂點(diǎn)的角的兩邊所成角相等斜線在平面上射影為角的平分線。

  3、空間平行垂直關(guān)系的證明,主要依據(jù)相關(guān)定義、公理、定理和空間向量進(jìn)行,請重視線面平行關(guān)系、線面垂直關(guān)系(三垂線定理及其逆定理)的橋梁作用。注意:書寫證明過程需規(guī)范。

  4、直棱柱、正棱柱、平行六面體、長方體、正方體、正四面體、棱錐、正棱錐關(guān)于側(cè)棱、側(cè)面、對角面、平行于底的截面的幾何體性質(zhì)。

  如長方體中:對角線長,棱長總和為,全(表)面積為,(結(jié)合可得關(guān)于他們的等量關(guān)系,結(jié)合基本不等式還可建立關(guān)于他們的不等關(guān)系式),如三棱錐中:側(cè)棱長相等(側(cè)棱與底面所成角相等)頂點(diǎn)在底上射影為底面外心,側(cè)棱兩兩垂直(兩對對棱垂直)頂點(diǎn)在底上射影為底面垂心,斜高長相等(側(cè)面與底面所成相等)且頂點(diǎn)在底上在底面內(nèi)頂點(diǎn)在底上射影為底面內(nèi)心。

  5、求幾何體體積的常規(guī)方法是:公式法、割補(bǔ)法、等積(轉(zhuǎn)換)法、比例(性質(zhì)轉(zhuǎn)換)法等。注意:補(bǔ)形:三棱錐三棱柱平行六面體

  6、多面體是由若干個多邊形圍成的幾何體。棱柱和棱錐是特殊的多面體。

  正多面體的每個面都是相同邊數(shù)的正多邊形,以每個頂點(diǎn)為其一端都有相同數(shù)目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體。

  7、球體積公式。球表面積公式,是兩個關(guān)于球的幾何度量公式。它們都是球半徑及的函數(shù)。

  十、導(dǎo)數(shù)

  1、導(dǎo)數(shù)的意義:曲線在該點(diǎn)處的切線的斜率(幾何意義)、瞬時速度、邊際成本(成本為因變量、產(chǎn)量為自變量的函數(shù)的導(dǎo)數(shù),C為常數(shù))

  2、多項(xiàng)式函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性

  在一個區(qū)間上(個別點(diǎn)取等號)在此區(qū)間上為增函數(shù)。

  在一個區(qū)間上(個別點(diǎn)取等號)在此區(qū)間上為減函數(shù)。

  3、導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值:

 。1)函數(shù)處有且“左正右負(fù)”在處取極大值;

  函數(shù)在處有且左負(fù)右正”在處取極小值。

  注意:

 、僭谔幱惺呛瘮(shù)在處取極值的必要非充分條件。

 、谇蠛瘮(shù)極值的方法:先找定義域,再求導(dǎo),找出定義域的分界點(diǎn),列表求出極值。特別是給出函數(shù)極大(小)值的條件,一定要既考慮,又要考慮驗(yàn)“左正右負(fù)”(“左負(fù)右正”)的轉(zhuǎn)化,否則條件沒有用完,這一點(diǎn)一定要切記。

  ③單調(diào)性與最值(極值)的研究要注意列表!

  (2)函數(shù)在一閉區(qū)間上的最大值是此函數(shù)在此區(qū)間上的極大值與其端點(diǎn)值中的“最大值”

  函數(shù)在一閉區(qū)間上的最小值是此函數(shù)在此區(qū)間上的極小值與其端點(diǎn)值中的“最小值”;

  注意:利用導(dǎo)數(shù)求最值的步驟:先找定義域再求出導(dǎo)數(shù)為0及導(dǎo)數(shù)不存在的的點(diǎn),然后比較定義域的端點(diǎn)值和導(dǎo)數(shù)為0的點(diǎn)對應(yīng)函數(shù)值的大小,其中最大的就是最大值,最小就為最小。

  高中數(shù)學(xué)重要知識總復(fù)習(xí)歸納 篇1

  總體和樣本

  ①在統(tǒng)計(jì)學(xué)中,把研究對象的全體叫做總體。

 、诎衙總研究對象叫做個體。

 、郯芽傮w中個體的總數(shù)叫做總體容量。

 、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,x-x研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量。

  簡單隨機(jī)抽樣

  也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ),高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。

  簡單隨機(jī)抽樣常用的方法

 、俪楹灧

  ②隨機(jī)數(shù)表法

 、塾(jì)算機(jī)模擬法

 、苁褂媒y(tǒng)計(jì)軟件直接抽取。

  在簡單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:

  ①總體變異情況;

 、谠试S誤差范圍;

  ③概率保證程度。

  抽簽法

 、俳o調(diào)查對象群體中的每一個對象編號;

 、跍(zhǔn)備抽簽的工具,實(shí)施抽簽;

  ③對樣本中的每一個個體進(jìn)行測量或調(diào)查。

  高二數(shù)學(xué)學(xué)習(xí)方法

  一、提高聽課的效率是關(guān)鍵

  課前預(yù)習(xí)能提高聽課的針對性。預(yù)習(xí)中發(fā)現(xiàn)的難點(diǎn),就是聽課的重點(diǎn);對預(yù)習(xí)中遇到的沒有掌握好的有關(guān)的舊知識,可進(jìn)行補(bǔ)缺,以減少聽課過程中的困難;有助于提高思維能力,預(yù)習(xí)后把自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己思維水平;預(yù)習(xí)還可以培養(yǎng)自己的自學(xué)能力。其次就是聽課要全神貫注。

  二、做好復(fù)習(xí)和總結(jié)工作

  做好及時的復(fù)習(xí)。課完課的當(dāng)天,必須做好當(dāng)天的復(fù)習(xí)。復(fù)習(xí)的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復(fù)習(xí),然后打開筆記與書本,對照一下還有哪些沒記清的,把它補(bǔ)起來,就使得當(dāng)天上課內(nèi)容鞏固下來,同時也就檢查了當(dāng)天課堂聽課的效果如何,也為改進(jìn)聽課方法及提高聽課效果提出必要的改進(jìn)措施。

  三、指導(dǎo)做一定量的練習(xí)題

  做題的目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準(zhǔn),甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準(zhǔn)確地把握住基本知識和方法的基礎(chǔ)上做一定量的練習(xí)是必要的。而對于中檔題,尢其要講究做題的效益,這就需要在做題后進(jìn)行一定的“反思”,思考一下本題所用的基礎(chǔ)知識,把它們聯(lián)系起來,你就會得到更多的經(jīng)驗(yàn)和教訓(xùn),更重要的是養(yǎng)成善于思考的好習(xí)慣,這將大大有利于你今后的學(xué)習(xí)。

  立體幾何初步

  NO.1柱、錐、臺、球的結(jié)構(gòu)特征

  棱柱

  定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱。

  幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  棱錐

  定義:有一個面是多邊形,其余各面都是有一個公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點(diǎn)字母,如五棱錐

  幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

  棱臺

  定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等

  表示:用各頂點(diǎn)字母,如五棱臺

  幾何特征:

  ①上下底面是相似的平行多邊形

 、趥(cè)面是梯形

 、蹅(cè)棱交于原棱錐的頂點(diǎn)

  圓柱

  定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

  幾何特征:

 、俚酌媸侨鹊膱A;

 、谀妇與軸平行;

  ③軸與底面圓的'半徑垂直;

 、軅(cè)面展開圖是一個矩形。

  圓錐

  定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

  幾何特征:

 、俚酌媸且粋圓;

  ②母線交于圓錐的頂點(diǎn);

 、蹅(cè)面展開圖是一個扇形。

  圓臺

  定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:

  ①上下底面是兩個圓;

 、趥(cè)面母線交于原圓錐的頂點(diǎn);

 、蹅(cè)面展開圖是一個弓形。

  球體

  定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:

 、偾虻慕孛媸菆A;

 、谇蛎嫔先我庖稽c(diǎn)到球心的距離等于半徑。

  NO.2空間幾何體的三視圖

  定義三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

  俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

  側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

  NO.3空間幾何體的直觀圖——斜二測畫法

  斜二測畫法

  斜二測畫法特點(diǎn)

 、僭瓉砼cx軸平行的線段仍然與x平行且長度不變;

  ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

  直線與方程

  直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

  直線的斜率

  定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時,。當(dāng)時,;當(dāng)時,不存在。

  過兩點(diǎn)的直線的斜率公式:

  (注意下面四點(diǎn))

  (1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關(guān);

  (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

  冪函數(shù)

  定義

  形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

  定義域和值域

  當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

  性質(zhì)

  對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:

  排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實(shí)數(shù);

  排除了為0這種可能,即對于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);

  排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

  指數(shù)函數(shù)

  (1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

  (2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。

  (3)函數(shù)圖形都是下凹的。

  (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

  (5)可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

  (6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

  (7)函數(shù)總是通過(0,1)這點(diǎn)。

  (8)顯然指數(shù)函數(shù)無界。

  奇偶性

  定義

  一般地,對于函數(shù)f(x)

  (1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

  (2)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

  (3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

  (4)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

【高中數(shù)學(xué)重要知識總復(fù)習(xí)歸納】相關(guān)文章:

高中數(shù)學(xué)圓的知識點(diǎn)歸納04-14

高中數(shù)學(xué)水平考知識點(diǎn)歸納12-07

高中總復(fù)習(xí)生物必背知識點(diǎn)12-08

初中語文基礎(chǔ)知識總復(fù)習(xí)指導(dǎo)02-10

《總復(fù)習(xí)》教案03-08

小學(xué)教案《總復(fù)習(xí)》04-29

綜合應(yīng)用總復(fù)習(xí)教案04-28

數(shù)學(xué)總復(fù)習(xí)教學(xué)反思03-24

拼音總復(fù)習(xí)教學(xué)反思04-10