高中數學知識點(合集15篇)
在我們平凡無奇的學生時代,很多人都經常追著老師們要知識點吧,知識點是傳遞信息的基本單位,知識點對提高學習導航具有重要的作用。想要一份整理好的知識點嗎?下面是小編為大家整理的高中數學知識點,僅供參考,歡迎大家閱讀。
高中數學知識點1
橢圓的標準方程共分兩種情況:當焦點在x軸時,橢圓的標準方程是:x^2/a^2+y^2/b^2=1,(a>b>0);當焦點在y軸時,橢圓的標準方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a^2—c^2=b^2推導:PF1+PF2>F1F2(P為橢圓上的'點F為焦點)
橢圓的對稱性:不論焦點在X軸還是Y軸,橢圓始終關于X/Y/原點對稱。
頂點:焦點在X軸時:長軸頂點:(—a,0),(a,0),短軸頂點:(0,b),(0,—b),焦點在Y軸時:長軸頂點:(0,—a),(0,a),短軸頂點:(b,0),(—b,0)。注意長短軸分別代表哪一條軸,在此容易引起混亂,還需數形結合逐步理解透徹。
焦點:當焦點在X軸上時焦點坐標F1(—c,0)F2(c,0),當焦點在Y軸上時焦點坐標F1(0,—c)F2(0,c)。
距離問題
習題:一列火車從甲地開往乙地,開出2。5小時,行了150千米。照這樣的速度,再行駛3小時到達乙地。甲、乙兩地相距多少千米?
答案:先求火車每小時行多少千米,再求共行了幾小時,最后求出共行了多少千米(即甲、乙兩地距離);疖嚸啃r行多少千米:150÷2。5=60(千米)火車共行了多少小時:2。5+3=5。5(小時)甲乙兩地相距多少千米:60×5。5=330(千米)
綜合算式:150÷2。5×(2。5+3)=150÷2。5×5。5=60×5。5=330(千米)
常見運算符號
如加號(+),減號(—),乘號(×或·),除號(÷或/),兩個集合的并集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb,lim),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
高中數學知識點2
什么是不等式?
一般地,用純粹的大于號“>”、小于號“<”連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)“≥”、不大于號(小于或等于號)“≤”連接的不等式稱為非嚴格不等式,或稱廣義不等式。總的來說,用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。
通常不等式中的數是實數,字母也代表實數,不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號也可以為<,≤,≥,>中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。
數學知識點1、不等式性質比較大小方法:
(1)作差比較法(2)作商比較法
不等式的基本性質
、賹ΨQ性:a > b,b > a
、趥鬟f性:a > b,b > ca > c
、劭杉有裕篴 > b a + c > b + c
、芸煞e性:a > b,c > 0,ac > bc
、菁臃ǚ▌t:a > b,c > d,a + c > b + d
、蕹朔ǚ▌t:a > b > 0,c > d > 0,ac > bd
、叱朔椒▌t:a > b > 0,an > bn(n∈N)
、嚅_方法則:a > b > 0
數學知識點2、算術平均數與幾何平均數定理:
。1)如果a、b∈R,那么a2 + b2 ≥2ab;(當且僅當a=b時等號)
。2)如果a、b∈R+,那么(當且僅當a=b時等號)推廣:
如果為實數,則重要結論
。1)如果積xy是定值P,那么當x=y時,和x+y有最小值2;
。2)如果和x+y是定值S,那么當x=y時,和xy有最大值S2/4。
數學知識點3、證明不等式的常用方法:
比較法:比較法是最基本、最重要的方法。
當不等式的兩邊的差能分解因式或能配成平方和的形式,則選擇作差比較法;當不等式的兩邊都是正數且它們的商能與1比較大小,則選擇作商比較法;碰到絕對值或根式,我們還可以考慮作平方差。
綜合法:從已知或已證明過的.不等式出發(fā),根據不等式的性質推導出欲證的不等式。綜合法的放縮經常用到均值不等式。
分析法:不等式兩邊的聯系不夠清楚,通過尋找不等式成立的充分條件,逐步將欲證的不等式轉化,直到尋找到易證或已知成立的結論。
高中數學知識點3
一、數列定義:
如果一個數列從第二項起,每一項與它的前一項的差等于同一個常數,這個數列就叫做等差數列,這個常數叫做等差數列的公差,公差常用字母d表示。
等差數列的通項公式為:an=a1+(n-1)d(1)
前n項和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
以上n均屬于正整數。
二、解釋說明:
從(1)式可以看出,an是n的一次函數(d≠0)或常數函數(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(d≠0)或一次函數(d=0,a1≠0),且常數項為0。
在等差數列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項,且為數列的`平均數。
且任意兩項am,an的關系為:an=am+(n-m)d
它可以看作等差數列廣義的通項公式。
三、推論公式:
從等差數列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數列,等等。
四、基本公式:
和=(首項+末項)×項數÷2
項數=(末項-首項)÷公差+1
首項=2和÷項數-末項
末項=2和÷項數-首項
末項=首項+(項數-1)×公差
高中數學知識點4
一、初中數學形象化,便于學生理解,并且聯系生活實際比較多。對于這些知識點,只要用心一些,很是比較容易把握的,運用起來也會比較自如。而高中數學相對來說則比較抽象,學生經常不能很好的把所學知識理解透徹,甚至進入理解誤區(qū),如此,便造成運用定理和公式不熟練或運用錯誤的現象。針對這些情況,建議家長由專業(yè)教師引導一下,深入淺出,為高中數學后續(xù)課程的學習打下堅實的基礎;
二、初中數學淺顯化,學生只要認真思考,理解其所表達的意思。而高中很多知識點則較為隱晦,學生體會不到所表達的意思。比如:初中所學的二次函數,比較多的.偏向于感性認識,學生們往往能較好地掌握,但是進入高中之后,高中數學對二次函數提出了新的更高的要求,比較偏向于理性思維時,某些學生便會適應不過來。
三、初中數學知識容量相對較小?傮w而言,初中數學知識點較少,學生能夠通過三年的系統(tǒng)學習,比較好地掌握。高中數學則知識點眾多,而每個章節(jié)所包含的小知識點則更是繁雜,學生們則往往難以適應。
綜上,建議學生與家長以謹慎、認真的態(tài)度去對待初三升高中這一蛻變的階段,因為這是我們邁進高中的第一步,只有第一步走踏實了,我們才能走過高中,踏進高考的大門!
高中數學知識點5
1.空間的距離問題
主要是求空間兩點之間、點到直線、點到平面、兩條異面直線之間(限于給出公垂線段的)、平面和它的平行直線、以及兩個平行平面之間的距離(在會求距離問題之前,需要明確其位置關系,詳見 空間點、直線、平面的'位置關系 ). 求距離的一般方法和步驟是:一作出表示距離的線段;二證明它就是所要求的距離;三計算其值.此外,我們還常用體積法求點到平面的距離.
2.面積和體積
柱、錐、臺、球及其簡單組合體等內容是立體幾何的基礎,也是研究空間問題的基本載體,是高考考查的重要方面,在學習中應注意這些幾何體的概念、性質以及對面積、體積公式的理解和運用。
3.三視圖
幾何體的三視圖和直觀圖是認知幾何體的基本內容,在高考中,對這兩個知識點的考查集中在兩個方面,一是考查三視圖與直觀圖的基本知識和基本的視圖能力,二是根據三視圖與直觀圖進行簡單的計算,常以選擇題、填空題的形式出現。
高中數學知識點6
1、含n個元素的有限集合其子集共有2n個,非空子集有2n—1個,非空真子集有2n—2個。
2、集合中,Cu(A∩B)=(CuA)U(CuB),交之補等于補之并。
Cu(AUB)=(CuA)∩(CuB),并之補等于補之交。
3、ax2+bx+c<0的解集為x(0
+c>0的解集為x,cx2+bx+a>0的解集為>x或x<;ax2—bx+
4、c<0的解集為x,cx2—bx+a>0的解集為—>x或x<—。
5、原命題與其逆否命題是等價命題。
原命題的逆命題與原命題的否命題也是等價命題。
6、函數是一種特殊的映射,函數與映射都可用:f:A→B表示。
A表示原像,B表示像。當f:A→B表示函數時,A表示定義域,B大于或等于其值域范圍。只有一一映射的函數才具有反函數。
7、原函數與反函數的單調性一致,且都為奇函數。
偶函數和周期函數沒有反函數。若f(x)與g(x)關于點(a,b)對稱,則g(x)=2b—f(2a—x)。
8、若f(—x)=f(x),則f(x)為偶函數,若f(—x)=f(x),則f(x)為奇函數;
偶函數關于y軸對稱,且對稱軸兩邊的單調性相反;奇函數關于原點對稱,且在整個定義域上的單調性一致。反之亦然。若奇函數在x=0處有意義,則f(0)=0。函數的單調性可用定義法和導數法求出。偶函數的導函數是奇函數,奇函數的導函數是偶函數。對于任意常數T(T≠0),在定義域范圍內,都有f(x+T)=f(x),則稱f(x)是周期為T的周期函數,且f(x+kT)=f(x),k≠0。
9、周期函數的特征性:①f(x+a)=—f(x),是T=2a的函數,②若f(x+a)+f(x+b)=0,即f(x+a)=—f(x+b),T=2(b—a)的函數,③若f(x)既x=a關對稱,又關于x=b對稱,則f(x)是T=2(b—a)的函數④若f(x
+a)?f(x+b)=±1,即f(x+a)=±,則f(x)是T=2(b—a)的函數⑤f(x+a)=±,則f(x)
是T=4(b—a)的函數
10、復合函數的單調性滿足“同增異減”原理。
定義域都是指函數中自變量的取值范圍。
11、抽象函數主要有f(xy)=f(x)+f(y)(對數型),f(x+y)=f(x)?f(y)(指數型),f(x+y)=f(x)+f(y)(直線型)。
解此類抽象函數比較實用的方法是特殊值法和周期法。
12、指數函數圖像的規(guī)律是:底數按逆時針增大。
對數函數與之相反。
13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。
在解可化為a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指數方程或不等式時,常借助于換元法,應特別注意換元后新變元的取值范圍。
14、log10N=lgN;logeN=lnN(e=2。718???);對數的性質:如果a>0,a≠0,M>0N>0,
那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N。
換底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk。
15、函數圖像的變換:
。1)水平平移:y=f(x±a)(a>0)的圖像可由y=f(x)向左或向右平移a個單位得到;
。2)豎直平移:y=f(x)±b(b>0)圖像,可由y=f(x)向上或向下平移b個單位得到;
(3)對稱:若對于定義域內的一切x均有f(x+m)=f(x—m),則y=f(x)的圖像關于直線x=m對稱;y=f(x)關于(a,b)對稱的函數為y!=2b—f(2a—x)。
(4),學習計劃;翻折:①y=|f(x)|是將y=f(x)位于x軸下方的`部分以x軸為對稱軸將期翻折到x軸上方的圖像。②y=f(|x|)是將y=f(x)位于y軸左方的圖像翻折到y(tǒng)軸的右方而成的圖像。
。5)有關結論:①若f(a+x)=f(b—x),在x為一切實數上成立,則y=f(x)的圖像關于
x=對稱。②函數y=f(a+x)與函數y=f(b—x)的圖像有關于直線x=對稱。
15、等差數列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+
16、若n+m=p+q,則am+an=ap+aq;
sk,s2k—k,s3k—2k成以k2d為公差的等差數列。an是等差數列,若ap=q,aq=p,則ap+q=0;若sp=q,sq=p,則sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差數列,則可設前n項和為sn=an2+bn(注:沒有常數項),用方程的思想求解a,b。在等差數列中,若將其腳碼成等差數列的項取出組成數列,則新的數列仍舊是等差數列。
17、等比數列中,an=a1?qn—1=am?qn—m,若n+m=p+q,則am?an=ap?aq;sn=na1(q=1),
sn=,(q≠1);若q≠1,則有=q,若q≠—1,=q;
sk,s2k—k,s3k—2k也是等比數列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比數列。在等比數列中,若將其腳碼成等差數列的項取出組成數列,則新的數列仍舊是等比數列。裂項公式:
=—,=?(—),常用數列遞推形式:疊加,疊乘,
18、弧長公式:l=|α|?r。
s扇=?lr=?|α|r2=?;當一個扇形的周長一定時(為L時),
其面積為,其圓心角為2弧度。
19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;
Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ
高中數學知識點7
1.定義:如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列, 這個常數叫做等差數列的公差,通常用字母d來表示。同樣為數列的等比數列的`性質與等差數列也有相通之處。
2.數列為等差數列的充要條件是:數列的前n項和S 可以寫成S = an^2 + bn的形式(其中a、b為常數).等差數列練習題
3.性質1:公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd.
4.性質2:公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d.
5.性質3:當公差d>0時,等差數列中的數隨項數的增大而增大;當d<0時,等差數列中的數隨項數的減少而減小;d=0時,等差數列中的數等于一個常數.
高中數學知識點8
首先,我們要了解下正弦定理的應用領域
在解三角形中,有以下的應用領域:
(1)已知三角形的兩角與一邊,解三角形
(2)已知三角形的兩邊和其中一邊所對的角,解三角形
(3)運用a:b:c=sinA:sinB:sinC解決角之間的轉換關系
直角三角形的一個銳角的對邊與斜邊的比叫做這個角的正弦
正弦定理
在△ABC中,角A、B、C所對的邊分別為a、b、c,則有a/sinA=b/sinB=c/sinC=2R(其中R為三角形外接圓的半徑)
其次,余弦的應用領域
余弦定理
余弦定理是揭示三角形邊角關系的重要定理,直接運用它可解決一類已知三角形兩邊及夾角求第三邊或者是已知三個邊求角的'問題,若對余弦定理加以變形并適當移于其它知識,則使用起來更為方便、靈活。
正弦定理的變形公式
(1) a=2RsinA, b=2RsinB, c=2RsinC;
(2) sinA : sinB : sinC = a : b : c; 在一個三角形中,各邊與其所對角的正弦的比相等,且該比值都等于該三角形外接圓的直徑已知三角形是確定的,利用正弦定理解三角形時,其解是唯一的;已知三角形的兩邊和其中一邊的對角,由于該三角形具有不穩(wěn)定性,所以其解不確定,可結合平面幾何作圖的方法及大邊對大角,大角對大邊定理和三角形內角和定理去考慮解決問題
(3)相關結論: a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC) c/sinC=c/sinD=BD=2R(R為外接圓半徑)
(4)設R為三角外接圓半徑,公式可擴展為:a/sinA=b/sinB=c/sinC=2R,即當一內角為90時,所對的邊為外接圓的直徑。靈活運用正弦定理,還需要知道它的幾個變形 sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA
(5)a=bsinA/sinB sinB=bsinA/a
正弦、余弦典型例題
1.在△ABC中,C=90,a=1,c=4,則sinA 的值為
2.已知為銳角,且,則 的度數是( ) A.30 B.45 C.60 D.90
3.在△ABC中,若,A,B為銳角,則C的度數是() A.75 B.90 C.105 D.120
4.若A為銳角,且,則A=() A.15 B.30 C.45 D.60
5.在△ABC中,AB=AC=2,ADBC,垂足為D,且AD= ,E是AC中點, EFBC,垂足為F,求sinEBF的值。
正弦、余弦解題訣竅
1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理
2、已知三邊,或兩邊及其夾角用余弦定理
3、余弦定理對于確定三角形形狀非常有用,只需要知道最大角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。
高中數學知識點9
一、簡單隨機抽樣
設一個總體的個體數為N,如果通過逐個抽取的方法從中抽取一個樣本,且每次抽取時,各個體被抽到的概率相等,就稱這樣的抽樣為簡單隨機抽樣。一般地如果用簡單隨機抽樣從個體數為N的總體中抽取一個容量為n的樣本那么每個個體被抽到的概率等于n/N.常用的簡單隨機抽樣方法有:抽簽法、隨機數法。
1.抽簽法
一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本。
2.隨機數法
隨機抽樣中,另一個經常被采用的方法是隨機數法,即利用隨機數表、隨機數骰子或計算機產生的隨機數進行抽樣。
二、活用隨機抽樣
系統(tǒng)抽樣的最基本特征是“等距性”,每組內所抽取的號碼需要依據第一組抽取的號碼和組距是唯一確定,每組抽取樣本的號碼依次構成一個以第一組抽取的號碼m為首項,組距d為公差的等差數列{an},第k組抽取樣本的`號碼,ak=m+(k-1)d,如本題中根據第一組的樣本號碼和組距,可得第k組抽取號碼應該為9+30*(k-1)
三、系統(tǒng)抽樣
當總體中的個體數較多時,采用簡單隨機抽樣顯得較為費事,這時,可將總體分成均衡的幾個部分,然后按照預先定出的規(guī)則,從每一部分抽取一個個體,得到所需要的樣本,這種抽樣叫做系統(tǒng)抽樣。
四、分層抽樣
當已知總體有差異明顯的幾部分組成時,為了使樣本更充分地反映總體的情況,常常將總體分為幾個部分,然后按照各個部分所占比例進行抽樣,這種抽樣叫做分層抽樣,其中所分層的各部分叫做層
高中數學知識點10
試題啟示:考生須基礎扎實,思維嚴密試卷特點:基礎題送分到位;中檔題拉開距離;高檔題考查能力。文理科完全相同的54分。有42分考查內容相近(文理第17、18題,文22題與理科21題),但文科運算量或難度明顯小于理科,客觀題有24分不同,解答題有兩大題計32分不同,從總體上看,文理科試題能體現考生的實際差別,很符合中學數學教學現狀。
理科試卷各學科所占分數:代數約90分,解析幾何30分,立體幾何16分,三角14分。文科試卷各學科所占分數:代數約88分,解析幾何24分,立體幾何16分,三角22分。其中立體幾何都是一個大題一個小題,要求不高,大題為求異面直線所成的角,用向量和傳統(tǒng)方法都可以做。三角沒有解答題,考查知識點相對簡單,恒等變形要求不高。文科的解析幾何都是基本要求:求直線交點坐標、直線與圓的位置關系及簡單的軌跡,計算量不大。理科的解析幾何解答題需要解二元二次方程組,多數考生可以得分,但第二問要轉化為二次函數在閉區(qū)間上的最值問題,對考試的思維能力有一定要求,還有部分考生在配方時出現錯誤,在此把一部分考生的水平區(qū)分出來。應用題文理相同,結合目前的形勢,考查等差、等比數列的基本應用,但試題還是設計一些小坎兒,考查思維的嚴密性。文、理科最后兩道題上手相對容易做對難。對考生的數學素養(yǎng)、數學能力要求較高,便于優(yōu)秀考生展示才能。
復習方法切實打好基礎
第一輪復習,要扎扎實實,不要盲目攀高,欲速則不達。要把書本上的常規(guī)題型(20xx年約有70~80%是書本上的題型)做好,所謂做好就是要用最少的時間把題目做對。部分同學在第一輪復習時對基礎題不屑一顧,認為這是小菜一碟,只是把心思放在一些能力題上。結果常在一些不該錯的地方錯了,應引以為戒,及時調整學習策略和學習方法。
部分同學(尤其是腦子比較好的同學),自己感覺很好,平時做題只是寫個答案,不注重解題過程,書寫不規(guī)范,在正規(guī)考試中即使答案對了,由于過程不完整被扣分較多。部分同學平時學習過程中自信心不足,做作業(yè)時免不了互相對答案,也不認真找出錯誤原因并加以改正。這些同學到了考場上常會出現心理性錯誤,導致會而不對,或是為了保證正確率,反復驗算,浪費很多時間,影響整體得分。這些問題都很難在短時間得以解決,必須在平時下功夫努力改正。
會而不對是高三數學學習的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這是一種不良的學習習慣,必須在第一輪復習中逐步克服,否則,后患無窮?山Y合平時解題中存在的具體問題,逐題找出原因,看其是行為習慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時作些記錄(不妨稱為錯解題記),以便以后查詢。
形成知識網絡
所謂形成網絡就是在復習過程中,把前后各章節(jié)相關的.知識點串聯起來,形成有機整體,做到縱向成一條線(以知識點為主線),橫向成一片(各數學分支知識形成網絡),縱橫成一體(相互滲透形成有機整體)。
如今年文科第9題:直線y=x/2關于直線x=1對稱的直線方程是_____。作為填空題,只要以2-x帶x即得直線方程x+2y-2=0,理由是方程f(x,y)=0關于直線x=a對稱的方程為f(2a-x,y)=0。如果不記得這個結論,可在直線上取一點,如O(0,0),它關于直線x=1的對稱點為(2,0),再由直線x=1和y=x/2的交點(1,1/2)求出直線方程。這樣既浪費時間,還容易出錯。
類似地,以下結論每一位同學都要掌握:f(x,y)=0關于直線y=b對稱的方程是f(x,2b-y)=0;關于直線x=a,y=b同時對稱,即關于點(a,b)的方程為f(2a-x,2b-y)=0,特別地,當a=0、b=0時得到關于y軸、x軸對稱的方程。方程f(x,y)=0關于直線x-y=0、x+y=0對稱的方程分別為f(y,x)=0、f(-y,-x)=0。同時還要掌握直線外一點關于一條直線對稱點的求法。
若把對稱問題遷移到函數中,則有結論:函數y=f(x)的圖像關于直線x=a對稱的充要條件是f(a-x)=f(a+x)。但若函數滿足y=f(a-x)和y=f(a+x),則它們的圖像關于y軸對稱。這是很容易混淆的。前者是一個函數圖像自身關于直線x=a對稱,后者是兩個函數圖像關于y軸對稱。 函數圖像關于直線對稱,還有結論:
函數y=f(b-x)與y=f(a+x)的圖像關于直線x=(b-a)/2對稱。
函數y=f(a-x)與y=f(x-a),則f(x)的圖像關于直線x=a對稱。
函數圖像關于點對稱,有結論:函數y=f(x)滿足f(x)+f(2a-x)=2b(或f(a+x)+f(a-x)=2b),則f(x)的圖像關于點(a,b)對稱。
當b=0時,函數y=f(x)滿足f(2a-x)=-f(x),則f(x)的圖像關于點(a,0)對稱。
與周期函數聯系,有結論:
函數y=f(x)滿足f(x-a)=f(x+a),則2a是f(x)的一個周期。
函數y=f(x)滿足f(x+a)=-f(x),則2a是f(x)的一個周期。
函數y=f(x)的圖像關于直線x=a和x=b都對稱,則2(a-b)是f(x)的一個周期。
函數y=f(x)的圖像關于直線x=a和點(b,c)都對稱,則4(a-b)是f(x)的一個周期。
以上是由一個簡單的填空題引出的一連串結論,用于解客觀題就是秘密武器,用于解答題可以化繁為簡。
高中數學知識點11
知識點概述
本節(jié)包括集合的概念、集合元素的特性、集合的表示方法、常見的特殊集合、集合的分類和集合間的基本關系等知識點,除了集合的表示方法中的描述法較難理解,其它的都多是好理解的知識,只需加強記憶。
知識點總結
方法:常用數軸或韋恩圖進行集合的交、并、補三種運算
1.包含關系子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA
2.不含任何元素的集合叫做空集,記為
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集
3.相等關系(55,且55,則5=5)
實例:設A={xx2-1=0}B={-11}元素相同
結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
常見考點考法
集合是學習函數的.基礎知識,在段考和高考中是必考內容。在段考中多考查集合間的子集和真子集關系,在高考中也是不可少的考查內容,多以選擇題和填空題的形式出現,經常出現在選擇填空題的前幾小題,難度不大。主要與函數和方程、不等式聯合考查的集合的表示方法和集合間的基本關系。
常見誤區(qū)提醒
1.集合的關系問題,有同學容易忽視空集這個特殊的集合,導致錯解?占侨魏渭系淖蛹,是任何非空集合的真子集。
2.集合的運算要注意靈活運用韋恩圖和數軸,這實際上是數形結合的思想的具體運用。
3.集合的運算注意端點的取等問題。最好是直接代入原題檢驗。
4.集合中的元素具有確定性、互異性和無序性三個特征,尤其是確定性和互異性。在解題中,要注意把握與運用,例如在解答含有參數問題時,千萬別忘了檢驗,否則很可能會因為不滿足互異性而導致結論錯誤。
高中數學知識點12
一、排列
1 定義
。1)從n個不同元素中取出m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一排列。
。2)從n個不同元素中取出m個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,記為 Amn.
2 排列數的公式與性質
。1)排列數的公式: Amn=n(n-1)(n-2)…(n-m+1)
特例:當m=n時, Amn=n!=n(n-1)(n-2)…321
規(guī)定:0!=1
二、組合
1 定義
(1)從n個不同元素中取出 m個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合
(2)從n個不同元素中取出m個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數,用符號 Cmn表示。
2 比較與鑒別
由排列與組合的定義知,獲得一個排列需要“取出元素”和“對取出元素按一定順序排成一列”兩個過程,而獲得一個組合只需要“取出元素”,不管怎樣的順序并成一組這一個步驟。
排列與組合的區(qū)別在于組合僅與選取的元素有關,而排列不僅與選取的`元素有關,而且還與取出元素的順序有關。因此,所給問題是否與取出元素的順序有關,是判斷這一問題是排列問題還是組合問題的理論依據。
高中數學知識點13
名稱 符號 面積S和體積V
1、正方體 a-邊長 S=6a2 ; V=a3
2、長方體a-長;b-寬 ;c-高; S=2(ab+ac+bc) ; V=abc
3、棱柱S-底面積;h-高;V=Sh
4、棱錐 S-底面積h-高 ;V=Sh/3
5、棱臺S1和S2-上、下底面積h-高 ;V=h[S1+S2+(S1S1)1/2]/3
6、擬柱體S1-上底面積 ;S2-下底面積 ;S0-中截面積 ;h-高
V=h(S1+S2+4S0)/6
7、圓柱 r-底半徑;h-高;C底面周長;S底底面積;S側側面積
S表表面積
C=2r
S底=r2
S側=Ch
S表=Ch+2S底
V=S底h =r2h
8、空心圓柱 R-外圓半徑;r-內圓半徑;h-高
V=h(R2-r2)
9、直圓錐r-底半徑;h-高 V=r2h/3
10、圓臺r-上底半徑R-下底半徑h-高
V=h(R2+Rr+r2)/3
11、球 r-半徑 ;d-直徑 V=4/3d2/6
12、球缺 h-球缺高;r-球半徑;a-球缺底半徑
V=h(3a2+h2)/6
=h2(3r-h)/3
a2=h(2r-h)
13、球臺r1和r2-球臺上、下底半徑;h-高
V=h[3(r12+r22)+h2]/6
14、圓環(huán)體R-環(huán)體半徑;D-環(huán)體直徑;r-環(huán)體截面半徑;d-環(huán)體截面直徑 V=22Rr2=2Dd2/4
15、桶狀體D-桶腹直徑;d-桶底直徑;h-桶高
V=h(2D2+d2)/12
(母線是圓弧形,圓心是桶的中心)
V=h(2D2+Dd+3d2/4)/15
(母線是拋物線形)
高中數學知識點14
空間兩條直線只有三種位置關系:平行、相交、異面。
按是否共面可分為兩類:
(1)共面:平行、相交
。2)異面:
異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp。空間向量法。
兩異面直線間距離:公垂線段(有且只有一條)esp?臻g向量法。
若從有無公共點的角度看可分為兩類:
(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面。
直線和平面的位置關系:
直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行。
、僦本在平面內——有無數個公共點
、谥本和平面相交——有且只有一個公共點
直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的'銳角。
空間向量法(找平面的法向量)
規(guī)定:a、直線與平面垂直時,所成的角為直角;b、直線與平面平行或在平面內,所成的角為0°角。
由此得直線和平面所成角的取值范圍為[0°,90°]。
最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角。
三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直。
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。
直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。直線和平面平行——沒有公共點
直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。
直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。
高中數學知識點15
高一數學上學期知識點:冪函數
定義:
形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。
定義域和值域:
當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的`所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域
性質:
對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;
排除了為0這種可能,即對于x<0 x="">0的所有實數,q不能是偶數;
排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:
如果a為任意實數,則函數的定義域為大于0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。
在x大于0時,函數的值域總是大于0的實數。
在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。
而只有a為正數,0才進入函數的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。
(3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。
(4)當a小于0時,a越小,圖形傾斜程度越大。
(5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。
(6)顯然冪函數無界。
【高中數學知識點】相關文章:
高中數學重要知識點10-18
高中數學知識點11-28
高中數學必考知識點07-02
高中數學知識點07-25
高中數學邏輯知識點10-16
高中數學復數知識點總結05-10
高中數學基本的知識點總結05-17
高中數學導數知識點總結04-10
高中數學學習的知識點04-12
愛在高中數學知識點01-15