高中數(shù)學(xué)知識點總結(jié)15篇(熱)
總結(jié)就是把一個時間段取得的成績、存在的問題及得到的經(jīng)驗和教訓(xùn)進(jìn)行一次全面系統(tǒng)的總結(jié)的書面材料,寫總結(jié)有利于我們學(xué)習(xí)和工作能力的提高,讓我們好好寫一份總結(jié)吧?偨Y(jié)一般是怎么寫的呢?下面是小編為大家收集的高中數(shù)學(xué)知識點總結(jié),希望能夠幫助到大家。
高中數(shù)學(xué)知識點總結(jié)1
一、求導(dǎo)數(shù)的方法
。1)基本求導(dǎo)公式
(2)導(dǎo)數(shù)的四則運算
。3)復(fù)合函數(shù)的導(dǎo)數(shù)
設(shè)在點x處可導(dǎo),y=在點處可導(dǎo),則復(fù)合函數(shù)在點x處可導(dǎo),且即
二、關(guān)于極限
1、數(shù)列的極限:
粗略地說,就是當(dāng)數(shù)列的項n無限增大時,數(shù)列的項無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:
2、函數(shù)的極限:
當(dāng)自變量x無限趨近于常數(shù)時,如果函數(shù)無限趨近于一個常數(shù),就說當(dāng)x趨近于時,函數(shù)的極限是,記作
三、導(dǎo)數(shù)的概念
1、在處的導(dǎo)數(shù)。
2、在的導(dǎo)數(shù)。
3。函數(shù)在點處的導(dǎo)數(shù)的幾何意義:
函數(shù)在點處的導(dǎo)數(shù)是曲線在處的切線的斜率,
即k=,相應(yīng)的切線方程是
注:函數(shù)的'導(dǎo)函數(shù)在時的函數(shù)值,就是在處的導(dǎo)數(shù)。
例、若=2,則=()A—1B—2C1D
四、導(dǎo)數(shù)的綜合運用
。ㄒ唬┣的切線
函數(shù)y=f(x)在點處的導(dǎo)數(shù),就是曲線y=(x)在點處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:
。1)求出函數(shù)y=f(x)在點處的導(dǎo)數(shù),即曲線y=f(x)在點處的切線的斜率k=
(2)在已知切點坐標(biāo)和切線斜率的條件下,求得切線方程為x。
高中數(shù)學(xué)知識點總結(jié)2
數(shù)學(xué)知識點1
柱、錐、臺、球的結(jié)構(gòu)特征
(1)棱柱:
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到
截面距離與高的比的平方。
(3)棱臺:
幾何特征:
①上下底面是相似的平行多邊形
、趥(cè)面是梯形
③側(cè)棱交于原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:
、俚酌媸侨鹊膱A;
、谀妇與軸平行;
、圯S與底面圓的.半徑垂直;
、軅(cè)面展開圖
是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:
、俚酌媸且粋圓;
、谀妇交于圓錐的頂點;
③側(cè)面展開圖是一個扇形。
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:
、偕舷碌酌媸莾蓚圓;
、趥(cè)面母線交于原圓錐的頂點;
、蹅(cè)面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:
①球的截面是圓;
、谇蛎嫔先我庖稽c到球心的距離等于半徑。
數(shù)學(xué)知識點2
空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、 俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。
數(shù)學(xué)知識點3
空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:
①原來與x軸平行的線段仍然與x平行且長度不變;
、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。
高中數(shù)學(xué)知識點總結(jié)3
高考數(shù)學(xué)導(dǎo)數(shù)知識點
。ㄒ唬⿲(dǎo)數(shù)第一定義
設(shè)函數(shù)y = f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0 + △x也在該鄰域內(nèi))時,相應(yīng)地函數(shù)取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y = f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y = f(x)在點x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一定義
。ǘ⿲(dǎo)數(shù)第二定義
設(shè)函數(shù)y = f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x — x0也在該鄰域內(nèi))時,相應(yīng)地函數(shù)變化△y = f(x)— f(x0);如果△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y = f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y = f(x)在點x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二定義
。ㄈ⿲(dǎo)函數(shù)與導(dǎo)數(shù)
如果函數(shù)y = f(x)在開區(qū)間I內(nèi)每一點都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時函數(shù)y = f(x)對于區(qū)間I內(nèi)的每一個確定的x值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y = f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。
。ㄋ模﹩握{(diào)性及其應(yīng)用
1。利用導(dǎo)數(shù)研究多項式函數(shù)單調(diào)性的一般步驟
(1)求f¢(x)
。2)確定f¢(x)在(a,b)內(nèi)符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2。用導(dǎo)數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟
。1)求f¢(x)
。2)f¢(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間
高中數(shù)學(xué)重難點知識點
高中數(shù)學(xué)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)習(xí)兩本書。
必修一:1、集合與函數(shù)的概念(這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)
必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角
這部分知識是高一學(xué)生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強。這部分知識高考占22———27分
2、直線方程:高考時不單獨命題,易和圓錐曲線結(jié)合命題
3、圓方程:
必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計:3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分
必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點,)必考大題:15———20分,并且經(jīng)常和其他函數(shù)混合起來考查
2、平面向量:高考不單獨命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17———22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨命題,一般和函數(shù)結(jié)合求最值、解集。
高中數(shù)學(xué)知識點大全
一、集合與簡易邏輯
1、集合的元素具有確定性、無序性和互異性。
2、對集合,時,必須注意到“極端”情況:或;求集合的子集時是否注意到是任何集合的子集、是任何非空集合的真子集。
3、判斷命題的真假關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”。
4、“或命題”的真假特點是“一真即真,要假全假”;“且命題”的真假特點是“一假即假,要真全真”;“非命題”的真假特點是“一真一假”。
5、四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”。
原命題等價于逆否命題,但原命題與逆命題、否命題都不等價。反證法分為三步:假設(shè)、推矛、得果。
6、充要條件
二、函數(shù)
1、指數(shù)式、對數(shù)式,
2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個集合中的元素必有像,但第二個集合中的元素不一定有原像(中元素的像有且僅有下一個,但中元素的原像可能沒有,也可任意個);函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集的子集”。
。2)函數(shù)圖像與軸垂線至多一個公共點,但與軸垂線的公共點可能沒有,也可任意個。
。3)函數(shù)圖像一定是坐標(biāo)系中的曲線,但坐標(biāo)系中的曲線不一定能成為函數(shù)圖像。
3、單調(diào)性和奇偶性
。1)奇函數(shù)在關(guān)于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同。
偶函數(shù)在關(guān)于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反。
(2)復(fù)合函數(shù)的單調(diào)性特點是:“同性得增,增必同性;異性得減,減必異性”。
復(fù)合函數(shù)的奇偶性特點是:“內(nèi)偶則偶,內(nèi)奇同外”。復(fù)合函數(shù)要考慮定義域的變化。(即復(fù)合有意義)
4、對稱性與周期性(以下結(jié)論要消化吸收,不可強記)
。1)函數(shù)與函數(shù)的圖像關(guān)于直線(軸)對稱。
推廣一:如果函數(shù)對于一切,都有成立,那么的圖像關(guān)于直線(由“和的一半確定”)對稱。
推廣二:函數(shù),的圖像關(guān)于直線對稱。
。2)函數(shù)與函數(shù)的圖像關(guān)于直線(軸)對稱。
。3)函數(shù)與函數(shù)的圖像關(guān)于坐標(biāo)原點中心對稱。
三、數(shù)列
1、數(shù)列的通項、數(shù)列項的項數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項與數(shù)列的前項和公式的關(guān)系
2、等差數(shù)列中
(1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性。
。2)也成等差數(shù)列。
。3)兩等差數(shù)列對應(yīng)項和(差)組成的新數(shù)列仍成等差數(shù)列。
。4)仍成等差數(shù)列。
。5)“首正”的遞等差數(shù)列中,前項和的最大值是所有非負(fù)項之和;“首負(fù)”的遞增等差數(shù)列中,前項和的最小值是所有非正項之和;
。6)有限等差數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定。若總項數(shù)為偶數(shù),則“偶數(shù)項和“奇數(shù)項和=總項數(shù)的一半與其公差的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和—偶數(shù)項和”=此數(shù)列的中項。
。7)兩數(shù)的等差中項惟一存在。在遇到三數(shù)或四數(shù)成等差數(shù)列時,?紤]選用“中項關(guān)系”轉(zhuǎn)化求解。
。8)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說數(shù)列是等差數(shù)列的充要條件主要有這五種形式)。
3、等比數(shù)列中:
。1)等比數(shù)列的符號特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項、公比與等比數(shù)列的單調(diào)性。
。2)兩等比數(shù)列對應(yīng)項積(商)組成的新數(shù)列仍成等比數(shù)列。
。3)“首大于1”的正值遞減等比數(shù)列中,前項積的最大值是所有大于或等于1的項的積;“首小于1”的正值遞增等比數(shù)列中,前項積的最小值是所有小于或等于1的項的積;
。4)有限等比數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定。若總項數(shù)為偶數(shù),則“偶數(shù)項和”=“奇數(shù)項和”與“公比”的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和“首項”加上“公比”與“偶數(shù)項和”積的和。
。5)并非任何兩數(shù)總有等比中項。僅當(dāng)實數(shù)同號時,實數(shù)存在等比中項。對同號兩實數(shù)的等比中項不僅存在,而且有一對。也就是說,兩實數(shù)要么沒有等比中項(非同號時),如果有,必有一對(同號時)。在遇到三數(shù)或四數(shù)成等差數(shù)列時,常優(yōu)先考慮選用“中項關(guān)系”轉(zhuǎn)化求解。
。6)判定數(shù)列是否是等比數(shù)列的方法主要有:定義法、中項法、通項法、和式法(也就是說數(shù)列是等比數(shù)列的充要條件主要有這四種形式)。
4、等差數(shù)列與等比數(shù)列的聯(lián)系
。1)如果數(shù)列成等差數(shù)列,那么數(shù)列(總有意義)必成等比數(shù)列。
。2)如果數(shù)列成等比數(shù)列,那么數(shù)列必成等差數(shù)列。
(3)如果數(shù)列既成等差數(shù)列又成等比數(shù)列,那么數(shù)列是非零常數(shù)數(shù)列;但數(shù)列是常數(shù)數(shù)列僅是數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件。
(4)如果兩等差數(shù)列有公共項,那么由他們的公共項順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù)。
如果一個等差數(shù)列與一個等比數(shù)列有公共項順次組成新數(shù)列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數(shù)列的項為主,探求等比數(shù)列中那些項是他們的公共項,并構(gòu)成新的'數(shù)列。
5、數(shù)列求和的常用方法:
(1)公式法:①等差數(shù)列求和公式(三種形式),
、诘缺葦(shù)列求和公式(三種形式),
。2)分組求和法:在直接運用公式法求和有困難時,常將“和式”中“同類項”先合并在一起,再運用公式法求和。
(3)倒序相加法:在數(shù)列求和中,若和式中到首尾距離相等的兩項和有其共性或數(shù)列的通項與組合數(shù)相關(guān)聯(lián),則?煽紤]選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數(shù)列前和公式的推導(dǎo)方法)。
。4)錯位相減法:如果數(shù)列的通項是由一個等差數(shù)列的通項與一個等比數(shù)列的通項相乘構(gòu)成,那么常選用錯位相減法,將其和轉(zhuǎn)化為“一個新的的等比數(shù)列的和”求解(注意:一般錯位相減后,其中“新等比數(shù)列的項數(shù)是原數(shù)列的項數(shù)減一的差”。ㄟ@也是等比數(shù)列前和公式的推導(dǎo)方法之一)。
。5)裂項相消法:如果數(shù)列的通項可“分裂成兩項差”的形式,且相鄰項分裂后相關(guān)聯(lián),那么常選用裂項相消法求和
。6)通項轉(zhuǎn)換法。
四、三角函數(shù)
1、終邊與終邊相同(的終邊在終邊所在射線上)。
終邊與終邊共線(的終邊在終邊所在直線上)。
終邊與終邊關(guān)于軸對稱
終邊與終邊關(guān)于軸對稱
終邊與終邊關(guān)于原點對稱
一般地:終邊與終邊關(guān)于角的終邊對稱。
與的終邊關(guān)系由“兩等分各象限、一二三四”確定。
2、弧長公式:,扇形面積公式:1弧度(1rad)。
3、三角函數(shù)符號特征是:一是全正、二正弦正、三是切正、四余弦正。
4、三角函數(shù)線的特征是:正弦線“站在軸上(起點在軸上)”、余弦線“躺在軸上(起點是原點)”、正切線“站在點處(起點是)”。務(wù)必重視“三角函數(shù)值的大小與單位圓上相應(yīng)點的坐標(biāo)之間的關(guān)系,‘正弦’‘縱坐標(biāo)’、‘余弦’‘橫坐標(biāo)’、‘正切’‘縱坐標(biāo)除以橫坐標(biāo)之商’”;務(wù)必記。簡挝粓A中角終邊的變化與值的大小變化的關(guān)系為銳角
5、三角函數(shù)同角關(guān)系中,平方關(guān)系的運用中,務(wù)必重視“根據(jù)已知角的范圍和三角函數(shù)的取值,精確確定角的范圍,并進(jìn)行定號”;
6、三角函數(shù)誘導(dǎo)公式的本質(zhì)是:奇變偶不變,符號看象限。
7、三角函數(shù)變換主要是:角、函數(shù)名、次數(shù)、系數(shù)(常值)的變換,其核心是“角的變換”!
角的變換主要有:已知角與特殊角的變換、已知角與目標(biāo)角的變換、角與其倍角的變換、兩角與其和差角的變換。
8、三角函數(shù)性質(zhì)、圖像及其變換:
。1)三角函數(shù)的定義域、值域、單調(diào)性、奇偶性、有界性和周期性
注意:正切函數(shù)、余切函數(shù)的定義域;絕對值對三角函數(shù)周期性的影響:一般說來,某一周期函數(shù)解析式加絕對值或平方,其周期性是:弦減半、切不變。既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對值,其周期性不變;其他不定。如的周期都是,但的周期為,y=|tanx|的周期不變,問函數(shù)y=cos|x|,,y=cos|x|是周期函數(shù)嗎?
。2)三角函數(shù)圖像及其幾何性質(zhì):
。3)三角函數(shù)圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換。
。4)三角函數(shù)圖像的作法:三角函數(shù)線法、五點法(五點橫坐標(biāo)成等差數(shù)列)和變換法。
9、三角形中的三角函數(shù):
。1)內(nèi)角和定理:三角形三角和為,任意兩角和與第三個角總互補,任意兩半角和與第三個角的半角總互余。銳角三角形三內(nèi)角都是銳角三內(nèi)角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方。
。2)正弦定理:(R為三角形外接圓的半徑)。
。3)余弦定理:常選用余弦定理鑒定三角形的類型。
五、向量
1、向量運算的幾何形式和坐標(biāo)形式,請注意:向量運算中向量起點、終點及其坐標(biāo)的特征。
2、幾個概念:零向量、單位向量(與共線的單位向量是,平行(共線)向量(無傳遞性,是因為有)、相等向量(有傳遞性)、相反向量、向量垂直、以及一個向量在另一向量方向上的投影(在上的投影是)。
3、兩非零向量平行(共線)的充要條件
4、平面向量的基本定理:如果e1和e2是同一平面內(nèi)的兩個不共線向量,那么對該平面內(nèi)的任一向量a,有且只有一對實數(shù),使a= e1+ e2。
5、三點共線;
6、向量的數(shù)量積:
六、不等式
1、(1)解不等式是求不等式的解集,最后務(wù)必有集合的形式表示;不等式解集的端點值往往是不等式對應(yīng)方程的根或不等式有意義范圍的端點值。
。2)解分式不等式的一般解題思路是什么?(移項通分,分子分母分解因式,x的系數(shù)變?yōu)檎,?biāo)根及奇穿過偶彈回);
。3)含有兩個絕對值的不等式如何去絕對值?(一般是根據(jù)定義分類討論、平方轉(zhuǎn)化或換元轉(zhuǎn)化);
。4)解含參不等式常分類等價轉(zhuǎn)化,必要時需分類討論。注意:按參數(shù)討論,最后按參數(shù)取值分別說明其解集,但若按未知數(shù)討論,最后應(yīng)求并集。
2、利用重要不等式以及變式等求函數(shù)的最值時,務(wù)必注意a,b(或a,b非負(fù)),且“等號成立”時的條件是積ab或和a+b其中之一應(yīng)是定值(一正二定三等四同時)。
3、常用不等式有:(根據(jù)目標(biāo)不等式左右的運算結(jié)構(gòu)選用)
a、b、c R,(當(dāng)且僅當(dāng)時,取等號)
4、比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數(shù)性質(zhì)法、綜合法、分析法
5、含絕對值不等式的性質(zhì):
6、不等式的恒成立,能成立,恰成立等問題
(1)恒成立問題
若不等式在區(qū)間上恒成立,則等價于在區(qū)間上
若不等式在區(qū)間上恒成立,則等價于在區(qū)間上
(2)能成立問題
。3)恰成立問題
若不等式在區(qū)間上恰成立,則等價于不等式的解集為。
若不等式在區(qū)間上恰成立,則等價于不等式的解集為,
七、直線和圓
1、直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義(或)及其直線方程的向量式((為直線的方向向量))。應(yīng)用直線方程的點斜式、斜截式設(shè)直線方程時,一般可設(shè)直線的斜率為k,但你是否注意到直線垂直于x軸時,即斜率k不存在的情況?
2、知直線縱截距,常設(shè)其方程為或;知直線橫截距,常設(shè)其方程為(直線斜率k存在時,為k的倒數(shù))或知直線過點,常設(shè)其方程為。
(2)直線在坐標(biāo)軸上的截距可正、可負(fù)、也可為0。直線兩截距相等直線的斜率為—1或直線過原點;直線兩截距互為相反數(shù)直線的斜率為1或直線過原點;直線兩截距絕對值相等直線的斜率為或直線過原點。
。3)在解析幾何中,研究兩條直線的位置關(guān)系時,有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合。
3、相交兩直線的夾角和兩直線間的到角是兩個不同的概念:夾角特指相交兩直線所成的較小角,范圍是。而其到角是帶有方向的角,范圍是
4、線性規(guī)劃中幾個概念:約束條件、可行解、可行域、目標(biāo)函數(shù)、最優(yōu)解。
5、圓的方程:最簡方程;標(biāo)準(zhǔn)方程;
6、解決直線與圓的關(guān)系問題有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價轉(zhuǎn)化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長、弦心距構(gòu)成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!”
。1)過圓上一點圓的切線方程
過圓上一點圓的切線方程
過圓上一點圓的切線方程
如果點在圓外,那么上述直線方程表示過點兩切線上兩切點的“切點弦”方程。
如果點在圓內(nèi),那么上述直線方程表示與圓相離且垂直于(為圓心)的直線方程,(為圓心到直線的距離)。
7、曲線與的交點坐標(biāo)方程組的解;
過兩圓交點的圓(公共弦)系為,當(dāng)且僅當(dāng)無平方項時,為兩圓公共弦所在直線方程。
八、圓錐曲線
1、圓錐曲線的兩個定義,及其“括號”內(nèi)的限制條件,在圓錐曲線問題中,如果涉及到其兩焦點(兩相異定點),那么將優(yōu)先選用圓錐曲線第一定義;如果涉及到其焦點、準(zhǔn)線(一定點和不過該點的一定直線)或離心率,那么將優(yōu)先選用圓錐曲線第二定義;涉及到焦點三角形的問題,也要重視焦半徑和三角形中正余弦定理等幾何性質(zhì)的應(yīng)用。
。1)注意:①圓錐曲線第一定義與配方法的綜合運用;
、趫A錐曲線第二定義是:“點點距為分子、點線距為分母”,橢圓點點距除以點線距商是小于1的正數(shù),雙曲線點點距除以點線距商是大于1的正數(shù),拋物線點點距除以點線距商是等于1。
2、圓錐曲線的幾何性質(zhì):圓錐曲線的對稱性、圓錐曲線的范圍、圓錐曲線的特殊點線、圓錐曲線的變化趨勢。其中,橢圓中、雙曲線中。
重視“特征直角三角形、焦半徑的最值、焦點弦的最值及其‘頂點、焦點、準(zhǔn)線等相互之間與坐標(biāo)系無關(guān)的幾何性質(zhì)’”,尤其是雙曲線中焦半徑最值、焦點弦最值的特點。
3、在直線與圓錐曲線的位置關(guān)系問題中,有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價轉(zhuǎn)化求解。特別是:
、僦本與圓錐曲線相交的必要條件是他們構(gòu)成的方程組有實數(shù)解,當(dāng)出現(xiàn)一元二次方程時,務(wù)必“判別式≥0”,尤其是在應(yīng)用韋達(dá)定理解決問題時,必須先有“判別式≥0”。
、谥本與拋物線(相交不一定交于兩點)、雙曲線位置關(guān)系(相交的四種情況)的特殊性,應(yīng)謹(jǐn)慎處理。
、墼谥本與圓錐曲線的位置關(guān)系問題中,常與“弦”相關(guān),“平行弦”問題的關(guān)鍵是“斜率”、“中點弦”問題關(guān)鍵是“韋達(dá)定理”或“小小直角三角形”或“點差法”、“長度(弦長)”問題關(guān)鍵是長度(弦長)公式
、苋绻谝粭l直線上出現(xiàn)“三個或三個以上的點”,那么可選擇應(yīng)用“斜率”為橋梁轉(zhuǎn)化。
4、要重視常見的尋求曲線方程的方法(待定系數(shù)法、定義法、直譯法、代點法、參數(shù)法、交軌法、向量法等),以及如何利用曲線的方程討論曲線的幾何性質(zhì)(定義法、幾何法、代數(shù)法、方程函數(shù)思想、數(shù)形結(jié)合思想、分類討論思想和等價轉(zhuǎn)化思想等),這是解析幾何的兩類基本問題,也是解析幾何的基本出發(fā)點。
注意:①如果問題中涉及到平面向量知識,那么應(yīng)從已知向量的特點出發(fā),考慮選擇向量的幾何形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化,還是選擇向量的代數(shù)形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化。
、谇與曲線方程、軌跡與軌跡方程是兩個不同的概念,尋求軌跡或軌跡方程時應(yīng)注意軌跡上特殊點對軌跡的“完備性與純粹性”的影響。
、墼谂c圓錐曲線相關(guān)的綜合題中,常借助于“平面幾何性質(zhì)”數(shù)形結(jié)合(如角平分線的雙重身份)、“方程與函數(shù)性質(zhì)”化解析幾何問題為代數(shù)問題、“分類討論思想”化整為零分化處理、“求值構(gòu)造等式、求變量范圍構(gòu)造不等關(guān)系”等等。
九、直線、平面、簡單多面體
1、計算異面直線所成角的關(guān)鍵是平移(補形)轉(zhuǎn)化為兩直線的夾角計算
2、計算直線與平面所成的角關(guān)鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運用等積法求點到直線的距離,后虛擬直角三角形求解。注:一斜線與平面上以斜足為頂點的角的兩邊所成角相等斜線在平面上射影為角的平分線。
3、空間平行垂直關(guān)系的證明,主要依據(jù)相關(guān)定義、公理、定理和空間向量進(jìn)行,請重視線面平行關(guān)系、線面垂直關(guān)系(三垂線定理及其逆定理)的橋梁作用。注意:書寫證明過程需規(guī)范。
4、直棱柱、正棱柱、平行六面體、長方體、正方體、正四面體、棱錐、正棱錐關(guān)于側(cè)棱、側(cè)面、對角面、平行于底的截面的幾何體性質(zhì)。
如長方體中:對角線長,棱長總和為,全(表)面積為,(結(jié)合可得關(guān)于他們的等量關(guān)系,結(jié)合基本不等式還可建立關(guān)于他們的不等關(guān)系式),
如三棱錐中:側(cè)棱長相等(側(cè)棱與底面所成角相等)頂點在底上射影為底面外心,側(cè)棱兩兩垂直(兩對對棱垂直)頂點在底上射影為底面垂心,斜高長相等(側(cè)面與底面所成相等)且頂點在底上在底面內(nèi)頂點在底上射影為底面內(nèi)心。
5、求幾何體體積的常規(guī)方法是:公式法、割補法、等積(轉(zhuǎn)換)法、比例(性質(zhì)轉(zhuǎn)換)法等。注意:補形:三棱錐三棱柱平行六面體
6、多面體是由若干個多邊形圍成的幾何體。棱柱和棱錐是特殊的多面體。
正多面體的每個面都是相同邊數(shù)的正多邊形,以每個頂點為其一端都有相同數(shù)目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體。
7、球體積公式。球表面積公式,是兩個關(guān)于球的幾何度量公式。它們都是球半徑及的函數(shù)。
十、導(dǎo)數(shù)
1、導(dǎo)數(shù)的意義:曲線在該點處的切線的斜率(幾何意義)、瞬時速度、邊際成本(成本為因變量、產(chǎn)量為自變量的函數(shù)的導(dǎo)數(shù),C為常數(shù))
2、多項式函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性
在一個區(qū)間上(個別點取等號)在此區(qū)間上為增函數(shù)。
在一個區(qū)間上(個別點取等號)在此區(qū)間上為減函數(shù)。
3、導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值:
。1)函數(shù)處有且“左正右負(fù)”在處取極大值;
函數(shù)在處有且左負(fù)右正”在處取極小值。
注意:①在處有是函數(shù)在處取極值的必要非充分條件。
、谇蠛瘮(shù)極值的方法:先找定義域,再求導(dǎo),找出定義域的分界點,列表求出極值。特別是給出函數(shù)極大(。┲档臈l件,一定要既考慮,又要考慮驗“左正右負(fù)”(“左負(fù)右正”)的轉(zhuǎn)化,否則條件沒有用完,這一點一定要切記。
、蹎握{(diào)性與最值(極值)的研究要注意列表!
。2)函數(shù)在一閉區(qū)間上的最大值是此函數(shù)在此區(qū)間上的極大值與其端點值中的“最大值”
函數(shù)在一閉區(qū)間上的最小值是此函數(shù)在此區(qū)間上的極小值與其端點值中的“最小值”;
注意:利用導(dǎo)數(shù)求最值的步驟:先找定義域再求出導(dǎo)數(shù)為0及導(dǎo)數(shù)不存在的的點,然后比較定義域的端點值和導(dǎo)數(shù)為0的點對應(yīng)函數(shù)值的大小,其中最大的就是最大值,最小就為最小。
高中數(shù)學(xué)知識點總結(jié)4
高中數(shù)學(xué)(文)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)**兩本書。
必修一:1、集合與函數(shù)的概念 (這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用 (比較抽象,較難理解)
必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角
這部分知識是高一學(xué)生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強。這部分知識高考占22---27分
2、直線方程:高考時不單獨命題,易和圓錐曲線結(jié)合命題
3、圓方程:
必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計:3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分
必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點,)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來考查
2、平面向量:高考不單獨命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨命題,一般和函數(shù)結(jié)合求最值、解集。
文科:選修1—1、1—2
選修1--1:重點:高考占30分
1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導(dǎo)數(shù)、導(dǎo)數(shù)的應(yīng)用(高考必考)
選修1--2:1、統(tǒng)計:2、推理證明:一般不考,若考會是填空題3、復(fù)數(shù):(新課標(biāo)比老課本難的多,高考必考內(nèi)容)
理科:選修2—1、2—2、2—3
選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)
選修2--2:1、導(dǎo)數(shù)與微積分2、推理證明:一般不考3、復(fù)數(shù)
選修2--3:1、計數(shù)原理:(排列組合、二項式定理)掌握這部分知識點需要大量做題找規(guī)律,無技巧。高考必考,10分2、隨機變量及其分布:不單獨命題3、統(tǒng)計:
高考的知識板塊
集合與簡單邏輯:5分或不考
函數(shù):高考60分:①、指數(shù)函數(shù) ②對數(shù)函數(shù) ③二次函數(shù) ④三次函數(shù) ⑤三角函數(shù) ⑥抽象函數(shù)(無函數(shù)表達(dá)式,不易理解,難點)
平面向量與解三角形
立體幾何:22分左右
不等式:(線性規(guī)則)5分必考
數(shù)列:17分 (一道大題+一道選擇或填空)易和函數(shù)結(jié)合命題
平面解析幾何:(30分左右)
計算原理:10分左右
概率統(tǒng)計:12分----17分
復(fù)數(shù):5分
推理證明
一般高考大題分布
1、17題:三角函數(shù)
2、18、19、20 三題:立體幾何 、概率 、數(shù)列
3、21、22 題:函數(shù)、圓錐曲線
成績不理想一般是以下幾種情況:
做題不細(xì)心,(會做,做不對)
基礎(chǔ)知識沒有掌握
解決問題不全面,知識的運用沒有系統(tǒng)化(如:一道題綜合了多個知識點)
心理素質(zhì)不好
總之學(xué)**數(shù)學(xué)一定要掌握科學(xué)的學(xué)**方法:1、筆記:記老師講的課本上沒有的知識點,尤其是數(shù)列性質(zhì),課本上沒有,但做題經(jīng)常用到 2、錯題收集、歸納總結(jié)
高一年級
必修一
第一章 集合與函數(shù)概念
第二章 基本初等函數(shù)(Ⅰ)
第三章 函數(shù)的應(yīng)用
必修二
第一章 空間幾何體
第二章 點、直線、平面之間的位置關(guān)系
第三章 直線與方程
必修三
第一章 算法初步
第二章 統(tǒng)計
第三章 概率
必修四
第一章 三角函數(shù)
第二章 平面向量
第三章 三角恒等變換
(二)教學(xué)要求
在教學(xué)中,由于集合、函數(shù)等內(nèi)容比較抽象,三角函數(shù)在高考中占據(jù)重要地位,平面向量又是高考中數(shù)學(xué)必考內(nèi)容,教師在備課組協(xié)作的基礎(chǔ)上應(yīng)注意對各章知識的重難點的講解和釋疑,減輕學(xué)生自學(xué)的壓力,增強學(xué)生學(xué)好數(shù)學(xué)的信心。
首先,在高中數(shù)學(xué)中,集合的初步知識以及與其它內(nèi)容的密切聯(lián)系。它們是學(xué)**、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是高中數(shù)學(xué)學(xué)**的出發(fā)點。在教學(xué)中,應(yīng)注重引導(dǎo)學(xué)生更好的理解數(shù)學(xué)中出現(xiàn)的集合語言,使學(xué)生更好的使用集合語言表述數(shù)學(xué)問題,并且可以使學(xué)生運用集合的觀點,研究、處理數(shù)學(xué)問題。因此集合的基本概念、函數(shù)等有關(guān)內(nèi)容是教師重點講解的內(nèi)容。
其次,函數(shù)作為中學(xué)數(shù)學(xué)中最重要的基本概念之一,教師應(yīng)注意運用有關(guān)的概念和函數(shù)的性質(zhì),培養(yǎng)學(xué)生的思維能力;通過指數(shù)與對數(shù),指數(shù)函數(shù)與對數(shù)函數(shù)之間的內(nèi)在聯(lián)系,對學(xué)生進(jìn)行辯證唯物主義觀點的教育;通過聯(lián)系實際的引入問題和解決帶有實際意義的某些問題,培養(yǎng)學(xué)生的實踐能力和創(chuàng)新意識。
第三,通過對三角函數(shù)的學(xué)**,學(xué)生將進(jìn)一步了解符號與變元、集合與對應(yīng)、數(shù)形結(jié)合等基本的數(shù)學(xué)思想在研究三角函數(shù)時所起的重要作用,在式子與圖形的變化中,教師應(yīng)引導(dǎo)學(xué)生通過分析、探索、劃歸、類比、平行移動、伸長和縮短等常用的基本方法的學(xué)**,使學(xué)生在學(xué)**數(shù)學(xué)和應(yīng)用數(shù)學(xué)方面達(dá)到一個新的層次。
第四,學(xué)**平面向量,不但應(yīng)注意平面向量基本知識的講解,更要充分挖掘平面向量的工具作用,提高學(xué)生應(yīng)用數(shù)學(xué)知識解決實際問題的能力和實際操作的能力,使學(xué)生學(xué)會提出問題,明確研究方向,使學(xué)生學(xué)會交流,體驗數(shù)學(xué)活動的過程,培養(yǎng)創(chuàng)新精神和應(yīng)用能力。
第五、在學(xué)**空間幾何體、點、直線、平面之間的位置關(guān)系時,重點要幫助學(xué)生逐步形成空間想象能力,嚴(yán)格遵循從整體到局部,從具體到抽象的原則,逐步掌握解決空間幾何體的相關(guān)問題。
第六、要在平面解析幾何初步教學(xué)中,幫助學(xué)生經(jīng)歷如下的過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進(jìn)而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿平面解析幾何教學(xué)的`始終,幫助學(xué)生不斷地體會“數(shù)形結(jié)合”的思想方法。
第七、在學(xué)**算法初步、統(tǒng)計等內(nèi)容的時候,要注意順序漸進(jìn),不可追求一步到位,特別要注意其思想的重要性。
高二年級
必修五
第一章 解三角形
第二章 數(shù)列
第三章 不等式
選修1-1
第一章 常用邏輯用語
第二章 圓錐曲線與方程
第三章 導(dǎo)數(shù)及其應(yīng)用
選修1-2
第一章 統(tǒng)計案例
第二章 推理與證明
第三章 數(shù)系的擴充與復(fù)數(shù)的引入
第四章 框圖
選修2-1
第一章 常用邏輯用語
第二章 圓錐曲線與方程
第三章 空間向量與立體幾何
選修2-2
第一章 導(dǎo)數(shù)及其應(yīng)用
第二章 推理與證明
第三章 數(shù)系的擴充與復(fù)數(shù)的引入
選修2-3
第一章 計數(shù)原理
第二章 隨機變量及其分布
第三章 統(tǒng)計案例
(二)教學(xué)要求
高二上
必修5
學(xué)生將在已有知識的基礎(chǔ)上,通過對任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握三角形中的邊長與角度之間的數(shù)量關(guān)系,并認(rèn)識到運用它們可以解決一些與測量和幾何計算有關(guān)的實際問題。
數(shù)列作為一種特殊的函數(shù),是反映自然規(guī)律的基本數(shù)學(xué)模型。在本模塊中,學(xué)生將通過對日常生活中大量實際問題的分析,建立等差數(shù)列和等比數(shù)列這兩種數(shù)列模型,探索并掌握它們的一些基本數(shù)量關(guān)系,感受這兩種數(shù)列模型的廣泛應(yīng)用,并利用它們解決一些實際問題。
不等關(guān)系與相等關(guān)系都是客觀事物的基本數(shù)量關(guān)系,是數(shù)學(xué)研究的重要內(nèi)容。建立不等觀念、處理不等關(guān)系與處理等量問題是同樣重要的。在本模塊中,學(xué)生將通過具體情境,感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)對于刻畫不等關(guān)系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實際問題;能用二元一次不等式組表示平面區(qū)域,并嘗試解決一些簡單的二元線性規(guī)劃問題;認(rèn)識基本不等式及其簡單應(yīng)用;體會不等式、方程及函數(shù)之間的聯(lián)系。
選修1—1(文科)
在本模塊中,學(xué)生將在義務(wù)教育階段的基礎(chǔ)上,學(xué)**常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,更好地進(jìn)行交流。
在必修課程學(xué)**平面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用,進(jìn)一步體會數(shù)形結(jié)合的思想。
在本模塊中,學(xué)生將通過大量實例,經(jīng)歷由平均變化率到瞬時變化率的過程,刻畫現(xiàn)實問題,理解導(dǎo)數(shù)的含義,體會導(dǎo)數(shù)的思想及其內(nèi)涵;應(yīng)用導(dǎo)數(shù)探索函數(shù)的單調(diào)、極值等性質(zhì)及其在實際中的應(yīng)用,感受導(dǎo)數(shù)在解決數(shù)學(xué)問題和實際問題中的作用,體會微積分的產(chǎn)生對人類文化發(fā)展的價值。
選修2-1(理科)
在本模塊中,學(xué)生將學(xué)**常用邏輯用語、圓錐曲線與方程、空間中的向量(簡稱空間向量)與立體幾何。
在本模塊中,學(xué)生將在義務(wù)教育階段的基礎(chǔ)上,學(xué)**常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,從而更好地進(jìn)行交流。
在必修階段學(xué)**平面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用。結(jié)合已學(xué)過的曲線及其方程的實例,了解曲線與方程的對應(yīng)關(guān)系,進(jìn)一步體會數(shù)形結(jié)合的思想。
在本模塊中,學(xué)生將在學(xué)**平面向量的基礎(chǔ)上,把平面向量及其運算推廣到空間,運用空間向量解決有關(guān)直線、平面位置關(guān)系的問題,體會向量方法在研究幾何圖形中的作用,進(jìn)一步發(fā)展空間想像能力和幾何直觀能力。
高中數(shù)學(xué)知識點總結(jié)5
有界性
設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無界。
單調(diào)性
設(shè)函數(shù)f(x)的定義域為D,區(qū)間I包含于D.如果對于區(qū)間上任意兩點x1及x2,當(dāng)x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的。單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù)。
奇偶性
設(shè)為一個實變量實值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù)。
幾何上,一個奇函數(shù)關(guān)于原點對稱,亦即其圖像在繞原點做180度旋轉(zhuǎn)后不會改變。
奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)。
設(shè)f(x)為一實變量實值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù)。
幾何上,一個偶函數(shù)關(guān)于y軸對稱,亦即其圖在對y軸映射后不會改變。
偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)。
偶函數(shù)不可能是個雙射映射。
連續(xù)性
在數(shù)學(xué)中,連續(xù)是函數(shù)的`一種屬性。直觀上來說,連續(xù)的函數(shù)就是當(dāng)輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數(shù)。如果輸入值的某種微小的變化會產(chǎn)生輸出值的一個突然的跳躍甚至無法定義,則這個函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性)。
高中數(shù)學(xué)知識點總結(jié)6
第一章算法初步
1.1.1
算法的概念
1、算法概念:
在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.2.算法的特點:
(1)有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的
。2)確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.
。3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題.
。4)不唯一性:求解某一個問題的解法不一定是唯一的,對于一個問題可以有不同的算法.
(5)普遍性:很多具體的問題,都可以設(shè)計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設(shè)計好的步驟加以解決.
1.1.2程序框圖
1、程序框圖基本概念:
。ㄒ唬┏绦驑(gòu)圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形。一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明。
。ǘ(gòu)成程序框的圖形符號及其作用
程序框起止框輸入、輸出框處理框判斷框“Y”;不成立時標(biāo)明“否”或“N”。寫在不同的用以處理數(shù)據(jù)的處理框內(nèi)。判斷某一條件是否成立,成立時在出口處標(biāo)明“是”或要輸入、輸出的位置。賦值、計算,算法中處理數(shù)據(jù)需要的算式、公式等分別表示一個算法輸入和輸出的信息,可用在算法中任何需名稱功能表示一個算法的起始和結(jié)束,是任何流程圖不可少的。
學(xué)習(xí)這部分知識的時候,要掌握各個圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:
1、使用標(biāo)準(zhǔn)的圖形符號。
2、框圖一般按從上到下、從左到右的方向畫。
3、除判斷框外,大多數(shù)流程圖符號只有一個進(jìn)入點和一個退出點。判斷框具有超過一個退出點的唯一符號。
4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個結(jié)果;另一類是多分支判斷,有幾種不同的結(jié)果。
5、在圖形符號內(nèi)描述的語言要非常簡練清楚。
。ㄈ┧惴ǖ娜N基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。
1、順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡單的算法結(jié)構(gòu),語句與語句之間,框與框之間是按從上到下的順序進(jìn)行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種基本算法結(jié)構(gòu)。順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所指定的操作。
2、條件結(jié)構(gòu):
條件結(jié)構(gòu)是指在算法中通過對條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。
條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個判斷結(jié)構(gòu)可以有多個判斷框。
3、循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:(1)一類是當(dāng)型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當(dāng)給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。
。2)另一類是直到型循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。
當(dāng)型循環(huán)結(jié)構(gòu)直到型循環(huán)結(jié)構(gòu)ABAAP不成立構(gòu)要在某個條件循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)下終止循允許“死循環(huán)”。P注意:1循環(huán)結(jié)不成立成立環(huán),這就需要條件結(jié)構(gòu)來判斷。因此,成立2在循環(huán)結(jié)構(gòu)中都有一個計數(shù)變量和累加變量。計數(shù)變量果。計數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計數(shù)一次。
1.2.1輸入、輸出語句和賦值語句
1、輸入語句
。1)輸入語句的一般格式
INPUT“提示內(nèi)容”;變量圖形計算器格式
。2)輸入
INPUT“提示內(nèi)容”,變量語句的作用是實現(xiàn)算法的輸入信息功能;
。3)“提示內(nèi)容”提示用戶輸入什么樣的信息,變量是指程序在運行時其值是可以變化的量;
。4)輸入語句要求輸入的值只能是具體的常數(shù),不能是函數(shù)、變量或表達(dá)式;
。5)提示內(nèi)容與變量之間用分號“;”隔開,若輸入多個變量,變量與變量之間用逗號“,”隔開。
2、輸出語句
。1)輸出語句的一般格式輸PRINT“提示內(nèi)容”;表達(dá)式圖形計算器格式Disp“提示內(nèi)容”,變量
(2)出語
句的作用是實現(xiàn)算法的輸出結(jié)果功能;
(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,表達(dá)式是指程序要輸出的數(shù)據(jù);
。4)輸出語句可以輸出常量、變量或表達(dá)式的值以及字符。
3、賦值語句
。1)賦值語句的一般格式
。2)賦值語句的作用是將表達(dá)式所代表的值賦給變量;
(3)賦值語句中的“=”稱作賦值號,與數(shù)學(xué)中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值號右邊的表達(dá)式的值賦給賦值號左邊的變量;
。4)賦值語句左邊只能是變量名字,而不是表達(dá)式,右邊表達(dá)式可以是一個數(shù)據(jù)、常量或算式;
。5)對于一個變量可以多次賦值。
注意:
、儋x值號左邊只能是變量名字,而不能是表達(dá)式。如:2=X是錯誤的。
②賦值號左右不能對換。如“A=B”“B=A”的含義運行結(jié)果是不同的。
、鄄荒芾觅x值語句進(jìn)行代數(shù)式的演算。(如化簡、因式分解、解方程等)
、苜x值號“=”與數(shù)學(xué)中的等號意義不同。1.2.2條件語句
1、條件語句的一般格式有兩種:
。1)IFTHENELSE語句;
。2)IFTHEN語句。
2、IFTHENELSE語句IFTHENELSE語句的一般格式為圖1,對應(yīng)的程序框圖為圖2。
圖形計算器變量=表達(dá)式格式表達(dá)式變量IF條件THEN語句1ELSE語句2ENDIF滿足條件?是語句1否
語句2
圖1圖2
分析:在IFTHENELSE語句中,“條件”表示判斷的條件,“語句1”表示滿足條件時執(zhí)行的操作內(nèi)容;“語句2”表示不滿足條件時執(zhí)行的操作內(nèi)容;ENDIF表示條件語句的結(jié)束。計算機在執(zhí)行時,首先對IF后的.條件進(jìn)行判斷,如果條件符合,則執(zhí)行THEN后面的語句1;若條件不符合,則執(zhí)行ELSE后面的語句2。3、IFTHEN語句
IFTHEN語句的一般格式為圖3,對應(yīng)的程序框圖為圖4。
IF條件THEN語句ENDIF(圖3)
是滿足條件?否(圖4)語句注意:“條件”表示判斷的條件;“語句”表示滿足條件時執(zhí)行的操作
內(nèi)容,條件不滿足時,結(jié)束程序;ENDIF表示條件語句的結(jié)束。計算機在執(zhí)行時首先對IF后的條件進(jìn)行判斷,如果條件符合就執(zhí)行THEN后邊的語句,若條件不符合則直接結(jié)束該條件語句,轉(zhuǎn)而執(zhí)行其它語句。
1.2.3循環(huán)語句
循環(huán)結(jié)構(gòu)是由循環(huán)語句來實現(xiàn)的。對應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計語言中也有當(dāng)型(WHILE型)和直到型(UNTIL型)兩種語句結(jié)構(gòu)。即WHILE語句和UNTIL語句。1、WHILE語句
。1)WHILE語句的一般格式是對應(yīng)的程序框圖是
循環(huán)體WHILE條件循環(huán)體WEND滿足條件?否是(2)當(dāng)計算機遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與WEND之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個過程反復(fù)進(jìn)行,直到某一次條件不符合為止。這時,計算機將不執(zhí)行循環(huán)體,直接跳到WEND語句后,接著執(zhí)行WEND之后的語句。因此,當(dāng)型循環(huán)有時也稱為“前測試型”循環(huán)。2、UNTIL語句
(1)UNTIL語句的一般格式是對應(yīng)的程序框圖是
。2)直到型循環(huán)又稱為“后測試型”循環(huán),從UNTIL型循環(huán)結(jié)構(gòu)分析,計算機執(zhí)行該語句時,先執(zhí)行一次循環(huán)體,然后進(jìn)行DO循環(huán)體LOOPUNTIL條件循環(huán)體否滿足條件?是
條件的判斷,如果條件不滿足,繼續(xù)返回執(zhí)行循環(huán)體,然后再進(jìn)行條件的判斷,這個過程反復(fù)進(jìn)行,直到某一次條件滿足時,不再執(zhí)行循環(huán)體,跳到LOOPUNTIL語句后執(zhí)行其他語句,是先執(zhí)行循環(huán)體后進(jìn)行條件判斷的循環(huán)語句。分析:當(dāng)型循環(huán)與直到型循環(huán)的區(qū)別:(先由學(xué)生討論再歸納)
。1)當(dāng)型循環(huán)先判斷后執(zhí)行,直到型循環(huán)先執(zhí)行后判斷;在WHILE語句中,是當(dāng)條件滿足時執(zhí)行循環(huán)體,在UNTIL語句中,是當(dāng)條件不滿足時執(zhí)行循環(huán)
1.3.1輾轉(zhuǎn)相除法與更相減損術(shù)
1、輾轉(zhuǎn)相除法。也叫歐幾里德算法,用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:
。1):用較大的數(shù)m除以較小的數(shù)n得到一個商
S0和一個余數(shù)R0;
。2):若R0=0,則n為m,n的最大公約數(shù);若R0≠0,則用除數(shù)n除以余數(shù)除以余數(shù)
R0得到一個商S1和一個余數(shù)R1;
(3):若R1=0,則R1為m,n的最大公約數(shù);若R1≠0,則用除數(shù)R0R1得到一個商S2和一個余數(shù)R2;依次計算直至Rn=0,此時所得到的Rn1即為所求的最大公約數(shù)。
2、更相減損術(shù)
我國早期也有求最大公約數(shù)問題的算法,就是更相減損術(shù)。在《九章算術(shù)》中有更相減損術(shù)求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。
翻譯為:
。1):任意給出兩個正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡;若不是,執(zhí)行第二步。
。2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)(等數(shù))就是所求的最大公約數(shù)。例2用更相減損術(shù)求98與63的最大公約數(shù).分析:(略)
3、輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別:
。1)都是求最大公約數(shù)的方法,計算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計算次數(shù)上輾轉(zhuǎn)相除法計算次數(shù)相對較少,特別當(dāng)兩個數(shù)字大小區(qū)別較大時計算次數(shù)的區(qū)別較明顯。
。2)從結(jié)果體現(xiàn)形式來看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到
1.3.2秦九韶算法與排序
1、秦九韶算法概念:
f(x)=anxn+an-1xn-1+….+a1x+a0求值問題
f(x)=anxn+an-1xn-1+….+a1x+a0=(anxn-1+an-1xn-2+….+a1)x+a0=((anxn-2+an-1xn-3+….+a2)x+a1)x+a0
=......=(...(anx+an-1)x+an-2)x+...+a1)x+a0
求多項式的值時,首先計算最內(nèi)層括號內(nèi)依次多項式的值,即v1=anx+an-1然后由內(nèi)向外逐層計算一次多項式的值,即v2=v1x+an-2v3=v2x+an-3......vn=vn-1x+a0
這樣,把n次多項式的求值問題轉(zhuǎn)化成求n個一次多項式的值的問題。
2、兩種排序方法:直接插入排序和冒泡排序
。1)直接插入排序
基本思想:插入排序的思想就是讀一個,排一個。將第1個數(shù)放入數(shù)組的第1個元素中,以后讀入的數(shù)與已存入數(shù)組的數(shù)進(jìn)行比較,確定它在從大到小的排列中應(yīng)處的位置.將該位置以及以后的元素向后推移一個位置,將讀入的新數(shù)填入空出的位置中.(由于算法簡單,可以舉例說明)
。2)冒泡排序
基本思想:依次比較相鄰的兩個數(shù),把大的放前面,小的放后面.即首先比較第1個數(shù)和第2個數(shù),大數(shù)放前,小數(shù)放后.然后比較第2個數(shù)和第3個數(shù)......直到比較最后兩個數(shù).第一趟結(jié)束,最小的一定沉到最后.重復(fù)上過程,仍從第1個數(shù)開始,到最后第2個數(shù)......由于在排序過程中總是大數(shù)往前,小數(shù)往后,相當(dāng)氣泡上升,所以叫冒泡排序.
1.3.3進(jìn)位制
1、概念:進(jìn)位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值?墒褂脭(shù)字符號的個數(shù)稱為基數(shù),基數(shù)為n,即可稱n進(jìn)位制,簡稱n進(jìn)制,F(xiàn)在最常用的是十進(jìn)制,通常使用10個阿拉伯?dāng)?shù)字0-9進(jìn)行記數(shù)。對于任何一個數(shù),我們可以用不同的進(jìn)位制來表示。比如:十進(jìn)數(shù)57,可以用二進(jìn)制表示為111001,也可以用八進(jìn)制表示為71、用十六進(jìn)制表示為39,它們所代表的數(shù)值都是一樣的。
一般地,若k是一個大于一的整數(shù),那么以k為基數(shù)的k進(jìn)制可以表示為:anan1...a1a0(k)(0ank,0an1,...,a1,a0k),而表示各種進(jìn)位制數(shù)一般在數(shù)字右下腳加注來表示,如111001(2)表示二進(jìn)制數(shù),34(5)表示5進(jìn)制數(shù)
高中數(shù)學(xué)知識點總結(jié)7
導(dǎo)數(shù)及其應(yīng)用
一.導(dǎo)數(shù)概念的引入
數(shù)學(xué)選修2-2知識點總結(jié)
1.導(dǎo)數(shù)的物理意義:瞬時速率。一般的,函數(shù)yf(x)在xx0處的瞬時變化率是
limf(x0x)f(x0)x,
x0我們稱它為函數(shù)yf(x)在xx0處的導(dǎo)數(shù),記作f(x0)或y|xx,即
0f(x0)=limf(x0x)f(x0)xx0
例1.在高臺跳水運動中,運動員相對于水面的高度h(單位:m)與起跳后的時間t(單位:
s)存在函數(shù)關(guān)系
h(t)4.9t6.5t10
2運動員在t=2s時的瞬時速度是多少?解:根據(jù)定義
vh(2)limh(2x)h(2)xx013.1
即該運動員在t=2s是13.1m/s,符號說明方向向下
2.導(dǎo)數(shù)的幾何意義:曲線的切線.通過圖像,我們可以看出當(dāng)點Pn趨近于P時,直線PT與
曲線相切。容易知道,割線PPn的斜率是knf(xn)f(x0)xnx0,當(dāng)點Pn趨近于P時,函
數(shù)yf(x)在xx0處的導(dǎo)數(shù)就是切線PT的斜率k,即
klimf(xn)f(x0)xnx0f(x0)
x03.導(dǎo)函數(shù):當(dāng)x變化時,f(x)便是x的一個函數(shù),我們稱它為f(x)的導(dǎo)函數(shù).yf(x)的導(dǎo)函數(shù)有時也記作y,即
f(x)limf(xx)f(x)xx0
二.導(dǎo)數(shù)的計算
1.函數(shù)yf(x)c的導(dǎo)數(shù)2.函數(shù)yf(x)x的導(dǎo)數(shù)3.函數(shù)yf(x)x的導(dǎo)數(shù)
4.函數(shù)yf(x)1x的導(dǎo)數(shù)
基本初等函數(shù)的導(dǎo)數(shù)公式:
1若f(x)c(c為常數(shù)),則f(x)0;2若f(x)x,則f(x)x1;3若f(x)sinx,則f(x)cosx4若f(x)cosx,則f(x)sinx;5若f(x)ax,則f(x)axlna6若f(x)ex,則f(x)ex
x7若f(x)loga,則f(x)1xlna1x
8若f(x)lnx,則f(x)導(dǎo)數(shù)的運算法則
1.[f(x)g(x)]f(x)g(x)
2.[f(x)g(x)]f(x)g(x)f(x)g(x)
f(x)g(x)f(x)g(x)f(x)g(x)[g(x)]23.[]
復(fù)合函數(shù)求導(dǎo)
yf(u)和ug(x),稱則y可以表示成為x的函數(shù),即yf(g(x))為一個復(fù)合函數(shù)yf(g(x))g(x)
三.導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用1.函數(shù)的單調(diào)性與導(dǎo)數(shù):
一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系:
在某個區(qū)間(a,b)內(nèi),如果f(x)0,那么函數(shù)yf(x)在這個區(qū)間單調(diào)遞增;如果f(x)0,那么函數(shù)yf(x)在這個區(qū)間單調(diào)遞減.2.函數(shù)的極值與導(dǎo)數(shù)
極值反映的是函數(shù)在某一點附近的大小情況.求函數(shù)yf(x)的極值的方法是:
(1)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極大值;(2)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極小值;4.函數(shù)的最大(小)值與導(dǎo)數(shù)
函數(shù)極大值與最大值之間的關(guān)系.
求函數(shù)yf(x)在[a,b]上的最大值與最小值的步驟(1)求函數(shù)yf(x)在(a,b)內(nèi)的極值;
。2)將函數(shù)yf(x)的各極值與端點處的函數(shù)值f(a),f(b)比較,其中最大的是一個
最大值,最小的是最小值.
四.生活中的優(yōu)化問題
利用導(dǎo)數(shù)的知識,,求函數(shù)的最大(小)值,從而解決實際問題
第二章推理與證明
考點一合情推理與類比推理
根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理,歸納是從特殊到一般的過程,它屬于合情推理
根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質(zhì)的推理,叫做類比推理.
類比推理的一般步驟:
(1)找出兩類事物的相似性或一致性;
(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想);
(3)一般的,事物之間的各個性質(zhì)并不是孤立存在的,而是相互制約的如果兩個事物在某
些性質(zhì)上相同或相似,那么他們在另一寫性質(zhì)上也可能相同或類似,類比的結(jié)論可能是真的
(4)一般情況下,如果類比的相似性越多,相似的`性質(zhì)與推測的性質(zhì)之間越相關(guān),那么類比
得出的命題越可靠.
考點二演繹推理(俗稱三段論)
由一般性的命題推出特殊命題的過程,這種推理稱為演繹推理.
考點三數(shù)學(xué)歸納法
1.它是一個遞推的數(shù)學(xué)論證方法.
2.步驟:A.命題在n=1(或n0)時成立,這是遞推的基礎(chǔ);B.假設(shè)在n=k時命題成立C.證明n=k+1時命題也成立,
完成這兩步,就可以斷定對任何自然數(shù)(或n>=n0,且nN)結(jié)論都成立。考點三證明1.反證法:2.分析法:3.綜合法:
第一章數(shù)系的擴充和復(fù)數(shù)的概念考點一:復(fù)數(shù)的概念
(1)復(fù)數(shù):形如abi(aR,bR)的數(shù)叫做復(fù)數(shù),a和b分別叫它的實部和虛部.
(2)分類:復(fù)數(shù)abi(aR,bR)中,當(dāng)b0,就是實數(shù);b0,叫做虛數(shù);當(dāng)a0,b0時,
叫做純虛數(shù).
(3)復(fù)數(shù)相等:如果兩個復(fù)數(shù)實部相等且虛部相等就說這兩個復(fù)數(shù)相等.
(4)共軛復(fù)數(shù):當(dāng)兩個復(fù)數(shù)實部相等,虛部互為相反數(shù)時,這兩個復(fù)數(shù)互為共軛復(fù)數(shù).(5)復(fù)平面:建立直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實軸,y軸除去原點的部
分叫做虛軸。
(6)兩個實數(shù)可以比較大小,但兩個復(fù)數(shù)如果不全是實數(shù)就不能比較大小。
考點二:復(fù)數(shù)的運算
1.復(fù)數(shù)的加,減,乘,除按以下法則進(jìn)行設(shè)z1abi,z2cdi(a,b,c,dR)則
z1z2(ac)(bd)iz1z2(acbd)(adbc)i
z1z2(acbd)(adbc)icd22(z20)
2,幾個重要的結(jié)論
2222(1)|z1z2||z1z2|2(|z1||z2|)
(2)zz|z|2|z|2(3)若z為虛數(shù),則|z|z3.運算律
(1)zmznzmn;(2)(z)zmnmnnnn;(3)(z1z2)z1z2(m,nR)
224.關(guān)于虛數(shù)單位i的一些固定結(jié)論:
。1)i1(2)ii(3)i1(2)ii234nn2in3in
擴展閱讀:高中數(shù)學(xué)文科選修1-2知識點總結(jié)
高中數(shù)學(xué)選修1-2知識點總結(jié)
第一章統(tǒng)計案例
1.線性回歸方程①變量之間的兩類關(guān)系:函數(shù)關(guān)系與相關(guān)關(guān)系;②制作散點圖,判斷線性相關(guān)關(guān)系
③線性回歸方程:ybxa(最小二乘法)
nxiyinxyi1bn2其中,2xinxi1aybx注意:線性回歸直線經(jīng)過定點(x,y).
2.相關(guān)系數(shù)(判定兩個變量線性相關(guān)性):r(xi1nix)(yiy)2
(xi1nix)(yi1niy)2注:⑴r>0時,變量x,y正相關(guān);r第二章框圖
1.流程圖
流程圖是由一些圖形符號和文字說明構(gòu)成的圖示.流程圖是表述工作方式、工藝流程的一種常用手段,它的特點是直觀、清晰.3.結(jié)構(gòu)圖
一些事物之間不是先后順序關(guān)系,而是存在某種邏輯關(guān)系,像這樣的關(guān)系可以用結(jié)構(gòu)圖來描述.常用的結(jié)構(gòu)圖一般包括層次結(jié)構(gòu)圖,分類結(jié)構(gòu)圖及知識結(jié)構(gòu)圖等.
第三章推理與證明
1.推理⑴合情推理:
歸納推理和類比推理都是根據(jù)已有事實,經(jīng)過觀察、分析、比較、聯(lián)想,在進(jìn)行歸納、類比,然后提出猜想的推理,我們把它們稱為合情推理。①歸納推理
由某類食物的部分對象具有某些特征,推出該類事物的全部對象都具有這些特征的推理,或者有個別事實概括出一般結(jié)論的推理,稱為歸納推理,簡稱歸納。歸納推理是由部分到整體,由個別到一般的推理。②類比推理
由兩類對象具有類似和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理,稱為類比推理,簡稱類比。類比推理是特殊到特殊的推理。⑵演繹推理
從一般的原理出發(fā),推出某個特殊情況下的結(jié)論,這種推理叫演繹推理。演繹推理是由一般到特殊的推理。
“三段論”是演繹推理的一般模式,包括:⑴大前提---------已知的一般結(jié)論;⑵小前提---------所研究的特殊情況;⑶結(jié)論---------根據(jù)一般原理,對特殊情況得出的判斷。
2
2.證明
(1)直接證明①綜合法
一般地,利用已知條件和某些數(shù)學(xué)定義、定理、公理等,經(jīng)過一系列的推理論證,最后推導(dǎo)出所要證明的結(jié)論成立,這種證明方法叫做綜合法。綜合法又叫順推法或由因?qū)Ч。②分析?/p>
一般地,從要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個明顯成立的條件(已知條件、定義、定理、公理等),這種證明的方法叫分析法。分析法又叫逆推證法或執(zhí)果索因法。(2)間接證明……反證法
一般地,假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯誤,從而證明原命題成立,這種證明方法叫反證法。
第四章復(fù)數(shù)
1.復(fù)數(shù)的有關(guān)概念
(1)把平方等于-1的數(shù)用符號i表示,規(guī)定i2=-1,把i叫作虛數(shù)單位.
(2)形如a+bi的數(shù)叫作復(fù)數(shù)(a,b是實數(shù),i是虛數(shù)單位).通常表示為z=a+bi(a,b∈R).(3)對于復(fù)數(shù)z=a+bi,a與b分別叫作復(fù)數(shù)z的______與______,并且分別用Rez與Imz表示.2.數(shù)集之間的關(guān)系
復(fù)數(shù)的全體組成的集合叫作_____________,記作C.3.復(fù)數(shù)的分類
實數(shù)(b=0)
復(fù)數(shù)a+bi
純虛數(shù)(a=0)(a,b∈R)虛數(shù)(b≠0)
非純虛數(shù)(a≠0)
4.兩個復(fù)數(shù)相等的充要條件
設(shè)a,b,c,d都是實數(shù),則a+bi=c+di,當(dāng)且僅當(dāng)_________
3
5.復(fù)平面
(1)定義:當(dāng)用__________________的點來表示復(fù)數(shù)時,我們稱這個直角坐標(biāo)平面為復(fù)平面.(2)實軸:_______稱為實軸.虛軸:_________稱為虛軸.6.復(fù)數(shù)的模
若z=a+bi(a,b∈R),則_______________.7.共軛復(fù)數(shù)
(1)定義:當(dāng)兩個復(fù)數(shù)的實部________,虛部互為___________時,這樣的兩個復(fù)數(shù)叫作互為共軛復(fù)數(shù).復(fù)數(shù)z的共軛復(fù)數(shù)用______表示,即若z=a+bi,則z-=__________.2)性質(zhì):==___________.
必背結(jié)論
1.(1)z=a+bi∈Rb=0(a,b∈R)z=zz2≥0;(2)z=a+bi是虛數(shù)b≠0(a,b∈R);
(3)z=a+bi是純虛數(shù)a=0且b≠0(a,b∈R)z+z=0(z≠0)z2
高中數(shù)學(xué)知識點總結(jié)8
1.概率與統(tǒng)計:包括概率、統(tǒng)計、概率的意義、一維和二維正態(tài)分布、樣本和抽樣分布、參數(shù)估計、假設(shè)檢驗、方差分析、回歸分析等。
2.微積分:包括極限、導(dǎo)數(shù)、微分、不定積分、定積分、常微分方程、偏微分方程、差分方程等。
3.線性代數(shù):包括矩陣、向量、線性方程組、矩陣的相似對角化、二次型、線性空間、線性變換、矩陣的行列式、矩陣的逆矩陣、矩陣的秩、向量組的相關(guān)性、向量組的極大線性無關(guān)組等。
4.概率論與數(shù)理統(tǒng)計:包括隨機事件與概率、概率的基本性質(zhì)與運算法則、古典概型、條件概率、獨立性、隨機變量與分布函數(shù)、正態(tài)分布、二維隨機變量與分布函數(shù)、條件概率與相互獨立性、期望、方差、協(xié)方差與相關(guān)系數(shù)、矩、中心極限定理等。
5.平面幾何:包括點和距離、平行和垂直、三角形、四邊形、圓和扇形、平面圖形和空間圖形等。
6.平面解析幾何:包括點與線的坐標(biāo)、直線的方程與性質(zhì)、圓的標(biāo)準(zhǔn)方程與性質(zhì)、橢圓的標(biāo)準(zhǔn)方程與性質(zhì)、雙曲線的標(biāo)準(zhǔn)方程與性質(zhì)、拋物線的標(biāo)準(zhǔn)方程與性質(zhì)、參數(shù)方程與極坐標(biāo)方程等。
7.集合與函數(shù):包括集合與集合運算、函數(shù)與映射、函數(shù)圖像與性質(zhì)、指數(shù)與指數(shù)冪、對數(shù)與對數(shù)運算、函數(shù)圖像變換等。
8.三角函數(shù):包括三角函數(shù)的概念與圖像、同角三角函數(shù)基本關(guān)系式、正弦函數(shù)和余弦函數(shù)的圖像與性質(zhì)、正切函數(shù)的圖像與性質(zhì)、兩角和與差的正弦、余弦和正切函數(shù)、二倍角公式等。
9.數(shù)列:包括數(shù)列的'概念與表示、等差數(shù)列與等比數(shù)列的概念與性質(zhì)、數(shù)列的通項公式與通項公式求法、數(shù)列的求和公式、數(shù)列的極限等。
10.立體幾何:包括多面體和旋轉(zhuǎn)體的體積和表面積、平面基本性質(zhì)、直線和平面、平面和平面、直線、平面之間的位置關(guān)系、平行和垂直的判定和性質(zhì)、以及角度和平面角、距離等。
以上是高中數(shù)學(xué)知識點總結(jié),具體的學(xué)習(xí)方法和應(yīng)對考試技巧需要根據(jù)個人情況來制定。
高中數(shù)學(xué)知識點總結(jié)9
(一)導(dǎo)數(shù)第一定義
設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內(nèi) ) 時,相應(yīng)地函數(shù)取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導(dǎo),并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導(dǎo)數(shù)記為 f'(x0) ,即導(dǎo)數(shù)第一定義
(二)導(dǎo)數(shù)第二定義
設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時,相應(yīng)地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導(dǎo),并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導(dǎo)數(shù)記為 f'(x0) ,即 導(dǎo)數(shù)第二定義
(三)導(dǎo)函數(shù)與導(dǎo)數(shù)
如果函數(shù) y = f(x) 在開區(qū)間 I 內(nèi)每一點都可導(dǎo),就稱函數(shù)f(x)在區(qū)間 I 內(nèi)可導(dǎo)。這時函數(shù) y = f(x) 對于區(qū)間 I 內(nèi)的每一個確定的 x 值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù) y = f(x) 的導(dǎo)函數(shù),記作 y', f'(x), dy/dx, df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。
(四)單調(diào)性及其應(yīng)用
1.利用導(dǎo)數(shù)研究多項式函數(shù)單調(diào)性的一般步驟
(1)求f(x)
(2)確定f(x)在(a,b)內(nèi)符號 (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2.用導(dǎo)數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟
(1)求f(x)
(2)f(x)>0的解集與定義域的.交集的對應(yīng)區(qū)間為增區(qū)間; f(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間
學(xué)習(xí)了導(dǎo)數(shù)基礎(chǔ)知識點,接下來可以學(xué)習(xí)高二數(shù)學(xué)中涉及到的導(dǎo)數(shù)應(yīng)用的部分。
高中數(shù)學(xué)知識點總結(jié)10
選修4-4數(shù)學(xué)知識點
一、選考內(nèi)容《坐標(biāo)系與參數(shù)方程》高考考試大綱要求:
1.坐標(biāo)系:
、倮斫庾鴺(biāo)系的作用.
②了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況.
、勰茉跇O坐標(biāo)系中用極坐標(biāo)表示點的位置,理解在極坐標(biāo)系和平面直角坐標(biāo)系中表示點的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.
、苣茉跇O坐標(biāo)系中給出簡單圖形(如過極點的直線、過極點或圓心在極點的圓)的方程.通過比較這些圖形在極坐標(biāo)系和平面直角坐標(biāo)系中的方程,理解用方程表示平面圖形時選擇適當(dāng)坐標(biāo)系的意義.
2.參數(shù)方程:①了解參數(shù)方程,了解參數(shù)的意義.
、谀苓x擇適當(dāng)?shù)膮?shù)寫出直線、圓和圓錐曲線的參數(shù)方程.
二、知識歸納總結(jié):
1.伸縮變換:設(shè)點P(x,y)是平面直角坐標(biāo)系中的任意一點,在變換:yy,(0).的作用下,點P(x,y)對應(yīng)到點P(x,y),稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡稱伸縮變換。
2.極坐標(biāo)系的概念:在平面內(nèi)取一個定點O,叫做極點;自極點O引一條射線Ox叫做極軸;再選定一個長度單位、一個角度單位(通常取弧度)及其正方向(通常取逆時針方向),這樣就建立了一個極坐標(biāo)系。
3.點M的極坐標(biāo):設(shè)M是平面內(nèi)一點,極點O與點M的距離|OM|叫做點M的極徑,記為;以極軸Ox為始邊,射線OM為終邊的xOM叫做點M的極角,記為。有序數(shù)對(,)叫做點M的極坐標(biāo),記為M(,).極坐標(biāo)(,)與(,2k)(kZ)表示同一個點。極點O的坐標(biāo)為(0,)(R).
4.若0,則0,規(guī)定點(,)與點(,)關(guān)于極點對稱,即(,)與(,)表示同一點。如果規(guī)定0,02,那么除極點外,平面內(nèi)的點可用唯一的極坐標(biāo)(,)表示;同時,極坐標(biāo)(,)表示的點也是唯一確定的。
5.極坐標(biāo)與直角坐標(biāo)的互化:2x2y2,xcos,yysin,tan(x0)x
6.圓的極坐標(biāo)方程:在極坐標(biāo)系中,以極點為圓心,r為半徑的圓的極坐標(biāo)方程是r;在極坐標(biāo)系中,以C(a,0)(a0)為圓心,a為半徑的圓的極坐標(biāo)方程是2acos;在極坐標(biāo)系中,以C(a,2)(a0)為圓心,a為半徑的圓的極坐標(biāo)方程是2asin;
7.在極坐標(biāo)系中,(0)表示以極點為起點的一條射線;(R)表示過極點的一條直線.在極坐標(biāo)系中,過點A(a,0)(a0),且垂直于極軸的直線l的極坐標(biāo)方程是cosa.
8.參數(shù)方程的概念:在平面直角坐標(biāo)系中,如果曲線上任意一點的坐標(biāo)x,y都是某個變數(shù)txf(t),并且對于t的每一個允許值,由這個方程所確定的點M(x,y)都在這條yg(t),曲線上,那么這個方程就叫做這條曲線的參數(shù)方程,聯(lián)系變數(shù)x,y的變數(shù)t叫做參變數(shù),的`函數(shù)簡稱參數(shù)。相對于參數(shù)方程而言,直接給出點的坐標(biāo)間關(guān)系的方程叫做普通方程。xarcos,(為參數(shù)).
9.圓(xa)(yb)r的參數(shù)方程可表示為ybrsin.xacos,x2y2(為參數(shù)).橢圓221(ab0)的參數(shù)方程可表示為abybsin.x2px2,2(t為參數(shù)).拋物線y2px的參數(shù)方程可表示為y2pt.xxotcos,經(jīng)過點MO(xo,yo),傾斜角為的直線l的參數(shù)方程可表示為(t為yyotsin.222參數(shù)).
10.在建立曲線的參數(shù)方程時,要注明參數(shù)及參數(shù)的取值范圍。在參數(shù)方程與普通方程的互化中,必須使x,y的取值范圍保持一致.
高中數(shù)學(xué)知識點總結(jié)11
:平面
1.經(jīng)過不在同一條直線上的三點確定一個面.
注:兩兩相交且不過同一點的四條直線必在同一平面內(nèi).
2.兩個平面可將平面分成3或4部分.(①兩個平面平行,②兩個平面相交)
3.過三條互相平行的直線可以確定1或3個平面.(①三條直線在一個平面內(nèi)平行,②三條直線不在一個平面內(nèi)平行)
[注]:三條直線可以確定三個平面,三條直線的公共點有0或1個.
4.三個平面最多可把空間分成8部分.(X、Y、Z三個方向)
。嚎臻g的直線與平面
、逼矫娴幕拘再|(zhì)⑴三個公理及公理三的三個推論和它們的用途.、菩倍䴗y畫法.
、部臻g兩條直線的位置關(guān)系:相交直線、平行直線、異面直線.
、殴硭(平行線的傳遞性).等角定理.
、飘惷嬷本的判定:判定定理、反證法.
⑶異面直線所成的角:定義(求法)、范圍.
、持本和平面平行直線和平面的位置關(guān)系、直線和平面平行的判定與性質(zhì).
、粗本和平面垂直
、胖本和平面垂直:定義、判定定理.
、迫咕定理及逆定理.
5.平面和平面平行
兩個平面的位置關(guān)系、兩個平面平行的判定與性質(zhì).
6.平面和平面垂直
互相垂直的平面及其判定定理、性質(zhì)定理.
(二)直線與平面的平行和垂直的證明思路(見附圖)
(三)夾角與距離
7.直線和平面所成的角與二面角
⑴平面的斜線和平面所成的角:三面角余弦公式、最小角定理、斜線和平
面所成的角、直線和平面所成的角.
⑵二面角:①定義、范圍、二面角的平面角、直二面角.
、诨ハ啻怪钡钠矫婕捌渑卸ǘɡ、性質(zhì)定理.
8.距離
、劈c到平面的距離.
、浦本到與它平行平面的距離.
、莾蓚平行平面的距離:兩個平行平面的公垂線、公垂線段.
、犬惷嬷本的距離:異面直線的公垂線及其性質(zhì)、公垂線段.
(四)簡單多面體與球
9.棱柱與棱錐
、哦嗝骟w.
⑵棱柱與它的性質(zhì):棱柱、直棱柱、正棱柱、棱柱的性質(zhì).
⑶平行六面體與長方體:平行六面體、直平行六面體、長方體、正四棱柱、
正方體;平行六面體的性質(zhì)、長方體的性質(zhì).
、壤忮F與它的性質(zhì):棱錐、正棱錐、棱錐的性質(zhì)、正棱錐的性質(zhì).
、芍崩庵驼忮F的直觀圖的畫法.
10.多面體歐拉定理的發(fā)現(xiàn)
、藕唵味嗝骟w的歐拉公式.
、普嗝骟w.
11.球
、徘蚝退男再|(zhì):球體、球面、球的大圓、小圓、球面距離.
⑵球的體積公式和表面積公式.
。撼S媒Y(jié)論、方法和公式
1.異面直線所成角的求法:
(1)平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;
(2)補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系;
2.直線與平面所成的角
斜線和平面所成的是一個直角三角形的銳角,它的三條邊分別是平面的垂線段、斜線段及斜線段在平面上的射影。通常通過斜線上某個特殊點作出平面的垂線段,垂足和斜足的連線,是產(chǎn)生線面角的關(guān)鍵;
3.二面角的求法
(1)定義法:直接在二面角的棱上取一點(特殊點),分別在兩個半平面內(nèi)作棱的垂線,得出平面角,用定義法時,要認(rèn)真觀察圖形的`特性;
(2)三垂線法:已知二面角其中一個面內(nèi)一點到一個面的垂線,用三垂線定理或逆定理作出二面角的平面角;
(3)垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個半平面的交線所成的角即為平面角,由此可知,二面角的平面角所在的平面與棱垂直;
(4)射影法:利用面積射影公式S射=S原cos,其中為平面角的大小,此法不必在圖形中畫出平面角;
特別:對于一類沒有給出棱的二面角,應(yīng)先延伸兩個半平面,使之相交出現(xiàn)棱,然后再選用上述方法(尤其要考慮射影法)。
4.空間距離的求法
(1)兩異面直線間的距離,高考要求是給出公垂線,所以一般先利用垂直作出公垂線,然后再進(jìn)行計算;
(2)求點到直線的距離,一般用三垂線定理作出垂線再求解;
(3)求點到平面的距離,一是用垂面法,借助面面垂直的性質(zhì)來作,因此,確定已知面的垂面是關(guān)鍵;二是不作出公垂線,轉(zhuǎn)化為求三棱錐的高,利用等體積法列方程求解;
高中數(shù)學(xué)知識點總結(jié)12
4.1.1圓的標(biāo)準(zhǔn)方程
1、圓的標(biāo)準(zhǔn)方程:(xa)2(yb)2r2
圓心為A(a,b),半徑為r的圓的方程
2、點M(x0,y0)與圓(xa)(1)(x0(3)(x02(yb)2r2的關(guān)系的判斷方法:
a)2(y0b)2>r2,點在圓外(2)(x0a)2(y0b)2=r2,點在圓上a)2(y0b)2歸海木心QQ:634102564
(4)當(dāng)l|r1r2|時,圓C1與圓C2內(nèi)切;(5)當(dāng)l|r1r2|時,圓C1與圓C2內(nèi)含;
4.2.3直線與圓的'方程的應(yīng)用
1、利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;2、過程與方法
用坐標(biāo)法解決幾何問題的步驟:
第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;第二步:通過代數(shù)運算,解決代數(shù)問題;第三步:將代數(shù)運算結(jié)果“翻譯”成幾何結(jié)論.
RM4.3.1空間直角坐標(biāo)系
1、點M對應(yīng)著唯一確定的有序?qū)崝?shù)組(x,y,z),x、上的坐標(biāo)
2、有序?qū)崝?shù)組(x,y,z),對應(yīng)著空間直角坐標(biāo)系中的一點
y、z分別是P、Q、R在x、y、z軸
xOPQM"y3、空間中任意點M的坐標(biāo)都可以用有序?qū)崝?shù)組(x,y,z)來表示,該數(shù)組叫做點M在此空間直角坐標(biāo)系中的坐標(biāo),記M(x,y,z),x叫做點M的橫坐標(biāo),坐標(biāo)。y叫做點M的縱坐標(biāo),z叫做點M的豎
z4.3.2空間兩點間的距離公式1、空間中任意一點P1(x1,y1,z1)到點P2(x2,y2,z2)之間的距離公式P1P2P1P2(x1x2)(y1y2)(z1z2)222N1xOM1MM2HN2yN
高中數(shù)學(xué)知識點總結(jié)13
1.多動腦思考
2.強化自己學(xué)習(xí)訓(xùn)練
要是想學(xué)好高中數(shù)學(xué),必須做的一件事就是做大量的題,數(shù)學(xué)不一定好,因襲要提高解題的效率,做題的.目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準(zhǔn),甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準(zhǔn)確地把握住基本知識和方法的基礎(chǔ)上做一定量的定式訓(xùn)練是必要的。盡管復(fù)習(xí)時間緊張,但我們?nèi)匀灰⒁饣貧w課本。要抓綱悟本,對著課本目錄回憶和梳理知識,把重點放在掌握例題涵蓋的知識及解題方法上,選擇一些針對性極強的題目進(jìn)行強化訓(xùn)練、復(fù)習(xí)才有實效。
3.養(yǎng)成良好的學(xué)習(xí)習(xí)慣
學(xué)習(xí)高三數(shù)學(xué)必須養(yǎng)成良好的審解題解題習(xí)慣,如仔細(xì)閱讀題目,看清數(shù)字,規(guī)范解題格式,做到審題要慢解題要快,注重過程,書寫不規(guī)范,在正規(guī)考試中即使答案對了,由于過程不完整被扣分較多,導(dǎo)致“會而不對”,或是為了保證正確率,反復(fù)驗算,浪費很多時間,影響整體得分。這些問題都很難在短時間得以解決,必須在平時下功夫努力改正。其實這是一種不良的學(xué)習(xí)習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無窮?山Y(jié)合平時解題中存在的具體問題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時作些記錄,也就是錯題本,每位學(xué)生必備的,以便以后查詢。
高中數(shù)學(xué)知識點總結(jié)14
1、命題的四種形式及其相互關(guān)系是什么?
。ɑ槟娣耜P(guān)系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應(yīng)元素的唯一性,哪幾種對應(yīng)能構(gòu)成映射?
。ㄒ粚σ,多對一,允許B中有元素?zé)o原象。)
3、函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?
。ǘx域、對應(yīng)法則、值域)
4、反函數(shù)存在的條件是什么?
(一一對應(yīng)函數(shù))
求反函數(shù)的步驟掌握了嗎?
。á俜唇鈞;②互換x、y;③注明定義域)
5、反函數(shù)的性質(zhì)有哪些?
、倩榉春瘮(shù)的'圖象關(guān)于直線y=x對稱;
、诒4媪嗽瓉砗瘮(shù)的單調(diào)性、奇函數(shù)性;
6、函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?
。╢(x)定義域關(guān)于原點對稱)
高中數(shù)學(xué)知識點總結(jié)15
函數(shù)與導(dǎo)數(shù)。主要考查集合運算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點但不是難點,主要出一些基礎(chǔ)題或中檔題。
數(shù)列及其應(yīng)用。這部分是高考的重點而且是難點,主要出一些綜合題。
不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
概率和統(tǒng)計。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
空間位置關(guān)系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
解析幾何。高考的難點,運算量大,一般含參數(shù)。
高考對數(shù)學(xué)基礎(chǔ)知識的考查,既全面又突出重點,扎實的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。
掌握分類計數(shù)原理與分步計數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題。
理解排列的意義,掌握排列數(shù)計算公式,并能用它解決一些簡單的應(yīng)用問題。
理解組合的意義,掌握組合數(shù)計算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題。
掌握二項式定理和二項展開式的性質(zhì),并能用它們計算和證明一些簡單的問題。
了解隨機事件的發(fā)生存在著規(guī)律性和隨機事件概率的意義。
了解等可能性事件的概率的意義,會用排列組合的`基本公式計算一些等可能性事件的概率。
了解互斥事件、相互獨立事件的意義,會用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。
會計算事件在n次獨立重復(fù)試驗中恰好發(fā)生k次的概率。
【高中數(shù)學(xué)知識點總結(jié)】相關(guān)文章:
高中數(shù)學(xué)知識點的總結(jié)03-07
高中數(shù)學(xué)統(tǒng)計知識點總結(jié)10-21
高中數(shù)學(xué)基本的知識點總結(jié)05-17
高中數(shù)學(xué)復(fù)數(shù)知識點總結(jié)05-10
高中數(shù)學(xué)導(dǎo)數(shù)知識點總結(jié)04-10
高中數(shù)學(xué)必修2知識點總結(jié)11-22
高中數(shù)學(xué)重點知識點總結(jié)11-18