當前位置:育文網(wǎng)>教學文檔>教案> 圓的面積教案

圓的面積教案

時間:2022-08-08 12:33:58 教案 我要投稿

圓的面積教案錦集六篇

  作為一名教學工作者,時常需要用到教案,通過教案準備可以更好地根據(jù)具體情況對教學進程做適當?shù)谋匾恼{(diào)整。如何把教案做到重點突出呢?以下是小編整理的圓的面積教案6篇,僅供參考,歡迎大家閱讀。

圓的面積教案錦集六篇

圓的面積教案 篇1

  教學目標

  1.使學生理解圓面積公式的推導過程,掌握求圓面積的方法并能正確計算;

  2.培養(yǎng)學生動手操作的能力,啟發(fā)思維,開闊思路;

  3.滲透初步的辯證唯物主義思想。

  教學重點和難點

  圓面積公式的推導方法。

  教學過程設計

  (一)復習準備

  我們已經(jīng)學習了圓的認識和圓的周長,誰能說說圓周長、直徑和半徑三者之間的關系?

  已知半徑,圓周長的一半怎么求?

 。ǔ鍪疽粋整圓)哪部分是圓的面積?(指名用手指一指。)

  這節(jié)課我們一起來學習圓的面積怎么計算。

  (板書課題:圓的`面積)

  (二)學習新課

  1.我們以前學過的三角形、平行四邊形和梯形的面積公式,都是轉化成已知學過的圖形推導出來的,怎樣計算圓的面積呢?我們也要把圓轉化成已學過的圖形,然后推導出圓面積的計算公式。

  決定圓的大小的是什么?(半徑)所以,分割圓時要保留這個數(shù)據(jù),沿半徑把圓分成若干等份。

  展示曲變直的變化圖。

  2.動手操作學具,推導圓面積公式。

  為了研究方便,我們把圓等分成16份。圓周部分近似看作線段,其用自己的學具(等分成16份的圓)拼擺成一個你熟悉的、學過的平面圖形。

  思考:

 。1)你擺的是什么圖形?

 。2)所擺的圖形面積與圓面積有什么關系?

 。3)圖形的各部分相當于圓的什么?

 。4)你如何推導出圓的面積?

 。▽W生開始動手擺,小組討論。)

  指名發(fā)言。(在幻燈前邊說邊擺。)

 、倨闯鲩L方形,學生敘述,老師板書:

 、谶能不能拼出其它圖形?

  學生可以拼出:

  剛才,我們用不同思路都能推導出圓面積的公式是:S=r2。這幾種思路的共同特點都是將圓轉化成已學過的圖形,并根據(jù)轉化后的圖形與圓面積的關系推導出面積公式。

  例1 一個圓的半徑是4厘米,它的面積是多少平方厘米?

  S=r2=3.1442=3.1416=50.24(平方厘米)

  答:它的面積是50.24平方厘米。

  想一想;求圓面積S應知道什么?如果給d和C,又怎樣求圓面積?

圓的面積教案 篇2

  教學內(nèi)容:課本例3,第115頁練習二十七的第1~5題。

  教學目的通過教學建立圓面積的概念,理解圓面積計算公式的推導過程,掌握圓面積的計算公式;能正確地應用圓面積的計算公式進行圓面積的計算并能解答有關圓面積的實際問題。

  點:圓面積計算公式。

  難點:圓面積計算公式的推導。

  教具、學具:圓的面積演示教具及平行四邊形拼割教具;厚紙做的圓及剪刀與膠布。

  教學過程():

  一、復習。

  1.口算:

  2.已知圓的半徑是2.5分米,它的周長是多少?

  3.一個長方形的長是6.2米,寬是4米,它的面積是多少?

  4.說出平行四邊形的面積公式是怎樣推導出來的?

  我們已經(jīng)學會的圓周長的有關計算,這節(jié)課我們要學習圓的面積的有關知識。(板書課題:圓的面積)

  二、新授。

  1.圓的面積的含義。

  問:面積所指的是什么?(物體的表面或圍成的平面圖形的大小,叫做它們的面積。)

  以前學過長方形面積的含義是指長方形所圍成平面的大小。那么,圓的.面積的是指什么?(圓所圍成平面的大小,叫做圓的面積。)

  2.圓的面積公式的推導。

  怎樣求圓的面積呢?如果用面積單位直接去度量顯然是行不通的。但我們可以仿照求平行四邊形面積的方法——也就是割補法,把圓的圖形轉化為已學過的圖形——長方形。怎樣分割呢?教師拿出圓的面積教具進行演示:

  先把一個圓平均分成二份,再把每一個等份分成八等份,一共16份,每份是一個近似等腰三角形,并寫上號數(shù),然后把這16份拼成一個近似的平行四邊形。(學生試操作,把學具圓拼成一個平行四邊形。)

  再把第1份平均分成2份,拿出其中的1份(即原來的半份)移到平行四邊形的右邊,這樣就拼成一個近似長方形。

  向?qū)W生說明:如果分的等份越多所拼的圖形就越接近長方形。

  教師邊提問邊完成圓面積公式的推導:

  拼成的圖形近似于什么圖形?

  原來圓的面積與這個長方形的面積是否相等?

  長方形的長相當于圓的哪部分的長?

  長方形的寬是圓的哪部分?

  長方形的面積=長×寬

  圓的面積 = ×

  = ×

  = ×

  =

  用S表示圓的面積,那么圓的面積可以寫成:

  3.圓面積公式的應用。

  出示例1:一個圓的半徑是4厘米。它的面積是多少平方厘米?

  學生讀題,問:要求圓的面積的條件是否具備?怎樣列式?學生回答,教師板書:

  =3.14×

  =3.14×16

  =50.24(平方厘米)

  答:它的面積是50.24平方厘米。

  三、鞏固練習。

  1.根據(jù)下面所給的條件,求圓的面積。

  半徑2分米。

  直徑10厘米。(先提問:題目只告訴圓的直徑,你能求出圓的面積嗎?怎樣算?)

  2.練習二十七的第1~4題。

  強調(diào)書寫格式,運算順序與單位名稱。

  總結:通過這節(jié)課學習理解圓面積計算公式的推導,掌握了圓面積計算公式,并知道要求圓的面積必須知道半徑,如果題目只告訴直徑也就先求出半徑再按公式 計算。

  四、作業(yè)。

  練習二十七第5、6題。

圓的面積教案 篇3

  教學目標:

  1.使學生經(jīng)歷操作、觀察、驗證和討論歸納等數(shù)學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題。

  2.使學生進一步體會轉化方法的價值,培養(yǎng)運用已學知識解決新問題的能力,發(fā)展空間觀念和初步的推理能力。

  3體會數(shù)學來自于生活實際的需要,感受數(shù)學與生活的聯(lián)系,進一步產(chǎn)生對數(shù)學的好奇心和興趣。

  教學重點:

  探索并掌握圓的面積公式,能正確計算圓的面積。

  教學難點:

  理解圓的面積公式的推導過程。

  教學準備:

  圓的面積公式的推導圖。

  一、回顧舊知,引入新知

  1.師:四年級時,我們學習了求長方形和正方形的面積的方法,誰來說一說它們的面積的計算方法。

  學生回答,教師予以肯定。

  2.提問:圓的周長怎么計算?已知圓的周長,如何計算它的直徑或半徑?

  3.引入:我們已經(jīng)研究了圓的周長和直徑、半徑的計算方法,今天這節(jié)課我們來研究圓的面積是如何計算的。

 。ò鍟簣A的面積)

  設計意圖 通過復習,促進學生對周長和已知周長求直徑或半徑的理解,喚起學生求長方形和正方形面積的經(jīng)驗,為新課的學習做好準備。

  二、合作交流,探究新知

  1.教學例7。

  (l)初步猜想:圓的'面積可能與什么有關?說說你猜想的依據(jù)。

 。2)圓的面積和半徑或直徑究竟有著怎樣的關系呢?我們可以做一個實驗。

  (3)出示例7第一幅圖。思考:圖中正方形的邊長與圓的半徑有什么關系?圖中正方形的面積和圓的半徑有什么關系?

 。4)學生獨立完成填空。

 。5)猜測:圓的面積大約是正方形面積的幾倍?

  學生回笞后,明確:圓的面積小于正方形面積的4倍,有可能是3倍多一些。

 。6)出示例7后兩幅圖,按照同樣的方法進行計算并填表。

  正方形的面積

  圓的半徑

  圓的面積

  圓面積大約是正方形面積的幾倍

  (精確到十分位)

  2.交流歸納:觀察上面的表格,你有什么發(fā)現(xiàn)?

  通過交流,明確

圓的面積教案 篇4

  【教學內(nèi)容】

  北師大版小學數(shù)學第十一冊第一單元P16--18圓的面積

  【教學目標】

  1、了解圓的面積的含義,經(jīng)歷圓面積計算公式的推導過程,掌握圓面積計算公式。

  2、能正確運用圓的面積公式計算圓的面積,并能運用圓面積知識解決一些簡單實際的問題。

  3、在估一估和探究圓面積公式的活動中,體會化曲為直的思想,初步感受極限思想。

  【教學重點】

  能正確運用圓的面積公式計算圓的面積,并能運用圓面積知識解決一些簡單實際的問題。

  【教具準備】

  投影儀,CAI課件,等分好的圓形紙片。

  【學具準備】

  等分好的圓形紙片。

  【教學設計】

  【教學過程】

  【教學過程說明】

  一、 創(chuàng)設情境。提出問題

 。ㄍ队俺鍪綪16中草坪噴水插圖)

  師:請同學們觀察這幅插圖,說說從圖中你能發(fā)現(xiàn)數(shù)學知識嗎?

  學生觀察并討論,然后指名回答。

  生1:我能發(fā)現(xiàn)噴水頭轉動一周所走過的地方剛好是一個圓形。

  生2:對,這個圓形的半徑就是噴頭噴水的距離,也就是5米;周長也就是噴水所走過的路線;

  生3:我補充一點,這個圓形的中心就是噴頭所在的地方。

  師:同學們說得很好。晴大家說說這個圓形的面積指的是哪部分呢?

  生4:被噴到水的草坪大小就是這個圓形的面積。

  師:說得很好,今天這節(jié)課我們就來學習如何求噴水頭轉動一周澆灌的面積有多大。(板書:圓的面積)

  二、探究思考。解決問題

  1、估計圓面積大小

  師:請大家估計半徑為5米的圓面積大約是多大?

 。ㄗ屚瑢W們充分發(fā)揮自己感官,估計草坪面積大。

  2、用數(shù)方格的方法求圓面積大小

 、偻队俺鍪綪16方格圖,讓同學們看懂圖意后估算圓的面積,學生可以討論交流。

 、谥该鞣答伖浪憬Y果,并說明估算方法及依據(jù)。

  生1、我是根據(jù)圓里面的正方形來估計的,外面

  方格圖面積為1010=100平方米,圓里面的正方形面積大約為50平方米,那么這個圓形的面積大約在50--100平方米之間;

  生2:我是用數(shù)方格的方法來估計的。我把這個圓形平均分成4份,其中一份大約為20平方米,那么這個圓形的面積約有80平方米;

  生3:還可以通過計算來得到圓的面積。圓形外面的正方形可以看作邊長為2r的正方形,面積就是2r2r=4r2

  而圓形里面的正方形可以看作由4個小三角形拼成的正方形,三角形的直角邊長為r,則一個三角形的面積是rr2=1/2r2,;那么四個三角形的面積即是41/2r2=2r2,那么圓形面積大約為3r2,

  師:同學們的估計很有道理,但是在實際生活中往往要有一個精確的結果,我們接下來就來討論一個能計算圓面積的方法。

  三、探索規(guī)律

  1、由舊知引入新知

  師:大家還記得我們以前學習的平行四邊形、三角形、

  梯形面積分別是由哪些圖形的面積來的嗎?

 。▽W生回答,教師訂正。

  那么圓形的面積可由什么圖形面積得來呢。

  2、探索圓面積公式

  師:拿出我們剪好的圖形拼一拼,看看能成為一個什

  么圖形?并考慮你拼成的圖形與原來的圓形有什么關系?(同學們開始操作,教師巡視)

  生:我拼成的圖形接近一個平行四邊形,平行四邊形的底也就是圓形周長的一半;平行四邊形的高就是圓形的半徑。

  師:說得很好,大家看看自己拼成的圖形與剛才這個同學說的'是否一樣呢?

  生:我拼成的圖形更接近于長方形,這個長方形的長也就是圓形周長的一半,長方形的寬就是圓形的半徑。

 。▽W生在說的同時教師注意板書)

  師:現(xiàn)在請大家來觀察一下剛才兩個同學拼成的圖形,哪個更接近長方形呢?

  生:等分為32份的更接近長方形。

  師:大家想象一下,如果把一個圓等分的份數(shù)越多,拼成的圖形越接近什么圖形呢?

  生:等分的份數(shù)越多,就越接近長方形。

  師:下面請大家觀察黑板上的板書,你能否由平行四邊形或者長方形的面積公式得到圓形面積公式呢?并說出你的理由。(生說,教師板書)

  生1:因為拼成的平行四邊形的底也就是圓形周長的一半;平行四邊形的高就是圓形的半徑。而平行四邊形面積=底高,那么圓形面積公式=圓周長的1/2半徑即可。

  生2:因為拼成的長方形的長也就是圓形周長的一半,長方形的寬就是圓形的半徑。而長方形面積=長寬,那么那么圓形面積=圓周長的1/2半徑即可。

  師:用字母怎么表示圓面積公式呢?

  生:S=RR

  生:還可以寫作S=R2

  師:這說明求圓的面積只需要知道半徑即可,那我只告訴你們圓的直徑又如何求出圓的面積呢,請大家自己把這個公式寫出來。教師板書。

  3、應用圓面積公式

  師:現(xiàn)在請大家用圓面積公式計算噴水頭轉動一周可

  以澆灌多大面積的農(nóng)田。

 。▽W生獨立解答,知名回答)

  四、應用圓面積公式解決實際問題

  1、P18,NO1

  學生獨立解答,集體訂正的時候要求學生說出每一步

  計算過程和依據(jù)。

  2、P18,NO2

  讓學生理解題意后,鼓勵學生在頭腦中想象,猜一猜

  結果,然后在地上畫一個半徑是1米的圓,讓學生看看,并試著站一站。在估計半徑是10米的圓大約有幾個教室大的時候,可以讓學生先估計再算一算。

  五、小結

  師:誰能用自己的話說說圓面積的推導過程。

圓的面積教案 篇5

  教學內(nèi)容分析:

  圓的面積是學生認識了圓的特征、學會計算圓的周長以及學習過直線圍成的平面圖形面積計算公式的基礎上進行教學的。由于以前所學圖形的面積計算都是直線圖形面積的計算,而像圓這樣的曲邊圖形的面積計算,學生還是第一次接觸到,所以具有一定的難度和挑戰(zhàn)性。教學關鍵之處在于學生通過觀察猜想、動手操作、計算驗證,自主探索、推導出圓的面積公式并能靈活應用圓的面積公式解決實際問題。因此本課的教學應緊緊圍繞“轉化”思想,引導學生聯(lián)系已學知識把新知識納入已有知識中分析、研究、歸納,從而完成對新知的建構過程,建立數(shù)學模型,培養(yǎng)解決問題的綜合能力。

  學生情況分析:

  小學對幾何圖形的認識很大程度屬于直觀幾何的學習階段,而幾何本身比較抽象的。本節(jié)內(nèi)容學生從認識直線圖形發(fā)展到認識曲線圖形,又是一次飛躍,但從學生思維角度看,五年級學生具有一定的抽象和邏輯思維能力。這一學段中的學生已經(jīng)有了許多機會接觸到數(shù)與計算、空間圖形等較豐富的數(shù)學內(nèi)容,已經(jīng)具備了初步的歸納、類比和推理的數(shù)學活動經(jīng)驗,并具有了轉化的數(shù)學思想。所以在教學應注意聯(lián)系現(xiàn)實生活,組織學生利用學具開展探索性的數(shù)學活動,注重知識發(fā)現(xiàn)和探索過程,使學生感悟轉化、極限等數(shù)學思想,從中獲得數(shù)學學習的積極情感,體驗和感受數(shù)學的力量。同時在學習活動中,要使學生學會自主學習和小組合作,培養(yǎng)學生解決數(shù)學問題的能力。

  教學目標:

  1、讓學生經(jīng)歷操作、觀察、填表、驗證、討論和歸納等數(shù)學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題,構建數(shù)學模型。

  2、讓學生進一步體會“轉化”的數(shù)學思想方法,感悟極限思想的價值,培養(yǎng)運用已有知識解決新問題的能力,增強空間觀念,發(fā)展數(shù)學思考。

  3、讓學生進一步體驗數(shù)學與生活的聯(lián)系,感受用數(shù)學的方式解決實際問題的過程,提高學習數(shù)學的興趣。

  教學重難點

  重點:圓的面積計算公式的推導和應用。

  難點:圓的面積推導過程中,極限思想(化曲為直)的理解。

  教學準備:

  教具:多媒體課件、面積轉化教具。

  學具:書、計算器、16等份教具、作業(yè)紙。

  教學過程:

  一、創(chuàng)設情境、揭示課題

  1、師:大家看,一匹馬被拴在木樁上,它吃草的時候繃緊繩子繞了一圈。從圖中,你知道了哪些信息?

 。◤土晥A的相關特征)

  師:那馬最多能吃多大面積的草呢?

  師:圓所圍成的平面的大小就叫做圓的面積。

  師:今天我們繼續(xù)來研究圓的面積。(揭示課題)

  2、師:你想研究它的哪些問題呢?(引導學生提出疑問)

  【設計意圖:在教學過程的伊始就用這個生活中的數(shù)學問題來導入新課的學習,既可以激起學生學習的興趣,又可以為后面圓面積的學習奠定基礎,更可以讓學生從課堂上涉獵生活中的數(shù)學問題,讓學生體驗到數(shù)學來源于生活。】

  二、猜想驗證、初步感知

  1、實驗驗證

  (1)師:猜一猜,圓的面積可能會和它的什么有關系?

  師:你覺得圓的面積大約是正方形的幾倍?

  (2)師:對我們的估計需要進行?

  生:驗證。

  師:用什么方法驗證呢?

  師:下面請大家先數(shù)數(shù)圓的面積是多少。

  師:數(shù)起來感覺怎么樣?有沒有更簡潔一點的方法?

 。ㄒ龑W生發(fā)現(xiàn)可以先數(shù)出 個圓的方格數(shù),再乘4就是圓的面積)

  (讓學生在圖1中數(shù)一數(shù),用計算器算一算,填寫表格里的第1行。)

  圓的半徑

  (cm)

  圓的面積

 。╟m2)

  圓的面積

 。╟m2)

  正方形的面積

 。╟m2)

  圓的面積大約是正方形面積的幾倍

  (精確到十分位)

 。3)師:只用一個圓,還不足以驗證猜想,作業(yè)紙上老師還準備了兩個圓,同桌合作,分別用同樣的方法把研究成果填寫在表格中。(課件出示圖2和圖3)

 。▽W生完成后交流匯報。)

  師:仔細觀察表中的數(shù)據(jù),你有什么發(fā)現(xiàn)?

  生:這三個圓的半徑雖然不同,但是圓的面積都是它對應正方形面積的3倍多一些。

  3、師:正方形面積可以用r2表示,那圓的面積和它半徑平方之間有什么關系呢?

  生:圓的面積是它半徑平方的3倍多一些。

  小結:我們經(jīng)過猜測——數(shù)方格——驗證,最終發(fā)現(xiàn)圓的`面積是正方形面積也就是它半徑平方的3倍多一些。

  【設計意圖:從學生熟悉的數(shù)方格開始學習圓面積的計算,有利于學生從整體上把握平面圖形面積計算的學習,有利于充分激活學生已有的關于平面圖形面積計算的知識和經(jīng)驗,從而為進一步探索圓的面積公式作好準備。由數(shù)方格獲得的初步結論對接下來的轉化推導相互印證,使學生充分感受圓面積公式推導過程的合理性!

  三、實驗操作、推導公式

  1、感受轉化,滲透方法

  (課件再次出示馬吃草圖)

  師:知道了3倍多一些,就能準確算出這匹馬最多可以吃多大面積的草了嗎?

 。ㄒ龑W生發(fā)現(xiàn),3倍多一些到底多多少還不清楚,需要繼續(xù)研究能準確計算圓面積的方法。)

  2、師:大家還記得平行四邊形、三角形、梯形的面積計算公式分別是如何推導出來的嗎?

  (學生回憶后匯報,教師演示,激活轉化思路)

  3、第一輪探究——明確思路,體會轉化

  師:想想看,圓能不能轉化成學過的圖形?是否可以化曲為直呢?

  生:剪圓。

  師:怎么剪呢?沿著什么剪?

  生:沿著直徑或半徑剪開。

 。ǚ謩e演示2等份、4等份、8等份,引導學生發(fā)現(xiàn)邊越來越直,剪拼的圖形越來越平行四邊形)

  4、第二輪探究——明確方法,體驗極限

  師:剛才我們將圓分別剪成4等份、8等份再拼成新的圖形是想干什么呀?

  生:想把圓形轉化成平行四邊形。

  師:那還能更像嗎?

  生:可以將圓片平均分成16份。

 。ㄒ龑W生把16、32等份的圓拼成近似的長方形,上臺展示)

  師:從哪兒可以看出這兩幅圖更接平行四邊形了?

  生:邊更直了。

  師:是什么方法使得邊越來越直了?

  生:平均分的份數(shù)越來越多。

 。ㄒ龑W生體驗把圓平均分成64份、128份……剪拼后的圖形越來越接近長方形)

  師:如果我們平均分的份數(shù)足夠多,就化曲為直,最后拼成的圖形——就成長方形了。

  【設計意圖:通過這一環(huán)節(jié),滲透一種重要的數(shù)學思想——轉化,引導學生抽象概括出新的問題可以轉化成舊的知識,利用舊的知識解決新的問題,從而推及到圓的面積能不能轉化成以前學過的平面圖形!如果能,我們可以很容易發(fā)現(xiàn)它的計算方法了。讓學生迅速回憶,調(diào)動原有的知識,為新知識的“再創(chuàng)造”做好知識的準備。學生展開想象的翅膀,從而得出等分的份數(shù)愈多,拼成的圖形就越接平行四邊形。在想象的過程中蘊含了另一個重要數(shù)學思想的滲透——極限思想!

 。2)師:我們把圓轉化成了長方形,什么變了,什么沒變?

  生:形狀變了,面積大小沒有變。

  師:這樣就把圓的面積轉化成了?

  生:長方形的面積。

  師:要求圓的面積,只要求出?

  生:長方形的面積。

  5、第3輪探究——深化思維,推導公式

  師:仔細觀察剪拼成的長方形,看看它與原來的圓之間有什么聯(lián)系?將發(fā)現(xiàn)填寫在作業(yè)紙第2題中,然后小組內(nèi)交流一下。

  (小組討論,發(fā)現(xiàn):長方形的寬等于圓的半徑,長方形的長等于圓周長的一半。)

  師:長方形的寬和圓的半徑相等,這里的寬也可以用r表示。那么,長方形的長又可以怎么表示呢?(重點引導學生理解長:C÷2=2πr÷2=πr)

  (通過長方形面積計算方法,引出圓的面積計算方法)

  師:圓的面積是它半徑平方的3倍多一些,準確地說是它半徑平方的多少倍?

  生:π倍。

  師:有了這樣的一個公式,知道圓的什么,就可以計算圓的面積了。

  生:半徑。

  5、做“練一練”

  完成作業(yè)紙第3題,交流反饋。

  6、(課件再次出示牛吃草圖)

  師:這匹馬最多能吃多大面積的草,現(xiàn)在會求了嗎?

  【設計意圖:在教師的引導下,使學生通過自己主動的觀察、思考、交流。運用已有的經(jīng)驗去探索新知,把圓轉化成已學過的長方形來推導出圓面積的計算公式。通過實驗操作,經(jīng)歷公式的推導過程,不但使學生加深對公式的理解,而且還能有效的培養(yǎng)學生的邏輯思維能力和演算推理能力,學生在求知的過程中體會到數(shù)形結合的內(nèi)在美,品嘗到成功的喜悅!

  四、解決問題、拓展應用

  1、師:在日常生活中,經(jīng)常會遇到與圓面積計算有關的實際問題。

 。ㄕn件出示例9)

  分析題意后學生獨立完成書本第105頁例9。

  (組織交流,評價反饋)

  2、完成作業(yè)紙第4題

  師:接著看,默讀題目,完成作業(yè)紙第3題。

 。▽W生獨立完成,交流反饋)

  五、全課小結、回顧反思

  師:你們對于圓面積的疑問現(xiàn)在解開了嗎?又有了哪些新的收獲?

  師:同學們,猜想驗證、操作發(fā)現(xiàn)是我們在數(shù)學學習中探索未知領域時經(jīng)常要用到的方法,用好它相信同學們會有更多的發(fā)現(xiàn)!

  【設計意圖:全課總結不僅要重視學習結果的回顧再現(xiàn),也要關注學習經(jīng)驗的反思提升。在這一過程中,學生不僅獲得了知識,更重要的是學到了科學探究的方法!

  板書設計:

  圓的面積

  轉化

  新的圖形學過的圖形

  演示圖

  長方形的面積=長×寬

  圓的面積=圓周長的一半 × 半徑

  Sπr×r

  πr2

  (1)3.14×22(2)8÷2=4(cm)

 。3.14×43.14×42

 。12.56(cm2)=3.14×16

  =50.24(cm2)

圓的面積教案 篇6

  教材分析

  圓的面積是在初步認識了圓,學習了圓的周長,以及學過幾種常見直線幾何圖形面積的基礎上進行的。學生從學習直線圖形的面積,到學習曲線圖形的面積,不論是內(nèi)容本身還是研究方法,都是一次質(zhì)的飛躍。學生掌握了圓面積的計算,不僅能解決簡單的實際問題,因為以后學習圓柱、圓錐的'知識打下基礎。學生已有了平面幾何圖形的經(jīng)驗,知道運用轉化的思想研究新的圖形的面積,在學習中要鼓勵學生大膽現(xiàn)象、勇于實踐。在操作中將圓轉化為已學過的平面圖形,從中找到圓的面積與半徑、直徑的關系。

  學情分析

  學生從認識直線圖形發(fā)展到認識曲線圖形,是一次飛躍,但是從學生思維特點的角度看,六年級學生以抽象思維為主,已具有一定的邏輯思維能力,已經(jīng)有了許多機會接觸到數(shù)與計算、空間圖形等較豐富的數(shù)學內(nèi)容,已經(jīng)具備了初步的歸納、類比、推理的數(shù)學經(jīng)驗,并具有了轉化的數(shù)學思想。所以在教學中應注意聯(lián)系現(xiàn)實生活,組織學生利用學具開展探究性的數(shù)學活動,注重知識發(fā)現(xiàn)和探索過程,使學生從中獲得數(shù)學學習的積極情感體驗和感受數(shù)學的價值。

  教學目標

  1、知道圓的面積的含義,理解和掌握圓的面積的計算公式,能夠正確的計算圓的面積。

  2、理解圓的面積公式的推導過程,理解轉化的數(shù)學思想。

  3、根據(jù)圓的半徑或者圓的直徑來計算圓的面積,解決簡單的有關圓的面積計算的實際問題。

  教學重點和難點

  重點:使學生知道圓的面積的含義,理解和掌握圓面積的計算公式,并能正確計算圓的面積。

  難點:理解圓的面積公式的推導過程,掌握轉化的數(shù)學思想。

【圓的面積教案】相關文章:

圓的面積教案03-23

圓的面積教案09-20

《圓的面積》教案03-06

圓的面積計算教案04-09

【熱】圓的面積教案03-31

人教版圓的面積教案02-19

數(shù)學圓的面積教案02-16

圓的面積教案八篇02-02

圓的面積教案五篇01-27

【精選】圓的面積教案三篇02-20