- 二次根式教案 推薦度:
- 二次根式教案 推薦度:
- 實(shí)用的二次根式教案 推薦度:
- 相關(guān)推薦
二次根式教案范文6篇
作為一名優(yōu)秀的教育工作者,很有必要精心設(shè)計(jì)一份教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動學(xué)生學(xué)習(xí)的積極性。教案應(yīng)該怎么寫呢?以下是小編精心整理的二次根式教案6篇,僅供參考,希望能夠幫助到大家。
二次根式教案 篇1
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的概念.
2.內(nèi)容解析
本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運(yùn)算的基礎(chǔ)上,來學(xué)習(xí)二次根式的概念. 它不僅是對前面所學(xué)知識的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運(yùn)算打基礎(chǔ).
教材先設(shè)置了三個實(shí)際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學(xué)生對二次根式的定義的理解.
本節(jié)課的教學(xué)重點(diǎn)是:了解二次根式的概念;
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
。1)體會研究二次根式是實(shí)際的需要.
。2)了解二次根式的概念.
2. 教學(xué)目標(biāo)解析
(1)學(xué)生能用二次根式表示實(shí)際問題中的數(shù)量和數(shù)量關(guān)系,體會研究二次根式的必要性.
。2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的.概念,知道被開方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個非負(fù)數(shù),會求二次根式中被開方數(shù)字母的取值范圍.
三、教學(xué)問題診斷分析
對于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解 “ 的雙重非負(fù)性,”即被開方數(shù) ≥0是非負(fù)數(shù), 的算術(shù)平方根 ≥0也是非負(fù)數(shù).教學(xué)時注意引導(dǎo)學(xué)生回憶在實(shí)數(shù)一章所學(xué)習(xí)的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運(yùn)用被開方數(shù)是非負(fù)數(shù)這一條件進(jìn)行二次根式有意義的判斷.
本節(jié)課的教學(xué)難點(diǎn)為:理解二次根式的雙重非負(fù)性.
四、教學(xué)過程設(shè)計(jì)
1.創(chuàng)設(shè)情境,提出問題
問題1你能用帶有根號的的式子填空嗎?
。1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.
。2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.
(3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.
師生活動:學(xué)生獨(dú)立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評價.
【設(shè)計(jì)意圖】讓學(xué)生在填空過程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會研究二次根式的必要性.
問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?
師生活動:教師引導(dǎo)學(xué)生說出各式的意義,概括它們的共同特征:都表示一個非負(fù)數(shù)(包括字母或式子表示的非負(fù)數(shù))的算術(shù)平方根.
【設(shè)計(jì)意圖】為概括二次根式的概念作鋪墊.
2.抽象概括,形成概念
問題3 你能用一個式子表示一個非負(fù)數(shù)的算術(shù)平方根嗎?
師生活動:學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.
【設(shè)計(jì)意圖】讓學(xué)生體會由特殊到一般的過程,培養(yǎng)學(xué)生的概括能力.
追問:在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”?
師生活動:教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負(fù)數(shù)的理由.
【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對二次根式被開方數(shù)必須是非負(fù)數(shù)的理解.
3.辨析概念,應(yīng)用鞏固
例1 當(dāng) 時怎樣的實(shí)數(shù)時, 在實(shí)數(shù)范圍內(nèi)有意義?
師生活動:引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對二次根式的被開方數(shù)為非負(fù)數(shù)的理解.
例2 當(dāng) 是怎樣的實(shí)數(shù)時, 在實(shí)數(shù)范圍內(nèi)有意義? 呢?
師生活動:先讓學(xué)生獨(dú)立思考,再追問.
【設(shè)計(jì)意圖】在辨析中,加深學(xué)生對二次根式被開方數(shù)為非負(fù)數(shù)的理解.
問題4 你能比較 與0的大小嗎?
師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導(dǎo)學(xué)生得出 ≥0的結(jié)論,強(qiáng)化學(xué)生對二次根式本身為非負(fù)數(shù)的理解,
【設(shè)計(jì)意圖】通過這一活動的設(shè)計(jì),提高學(xué)生對所學(xué)知識的遷移能力和應(yīng)用意識;培養(yǎng)學(xué)生分類討論和歸納概括的能力.
4.綜合運(yùn)用,鞏固提高
練習(xí)1 完成教科書第3頁的練習(xí).
練習(xí)2 當(dāng)x 是什么實(shí)數(shù)時,下列各式有意義.
。1) ;(2) ;(3) ;(4) .
【設(shè)計(jì)意圖】 辨析二次根式的概念,確定二次根式有意義的條件.
【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.
5.總結(jié)反思
教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答以下問題.
。1)本節(jié)課你學(xué)到了哪一類新的式子?
。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?
。3)二次根式與算術(shù)平方根有什么關(guān)系?
師生活動:教師引導(dǎo),學(xué)生小結(jié).
【設(shè)計(jì)意圖】:學(xué)生共同總結(jié),互相取長補(bǔ)短,再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),掌握解題方法.
6.布置作業(yè):
教科書習(xí)題16.1第1,3,5, 7,10題.
五、目標(biāo)檢測設(shè)計(jì)
1. 下列各式中,一定是二次根式的是( )
A. B. C. D.
【設(shè)計(jì)意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負(fù)數(shù).
2. 當(dāng) 時,二次根式 無意義.
【設(shè)計(jì)意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.
3.當(dāng) 時,二次根式 有最小值,其最小值是 .
【設(shè)計(jì)意圖】本題主要考查二次根式被開方數(shù)是非負(fù)數(shù)的靈活運(yùn)用.
4.對于 ,小紅根據(jù)被開方數(shù)是非負(fù)數(shù),得 出的取值范圍是 ≥ .小慧認(rèn)為還應(yīng)考慮分母不為0的情況.你認(rèn)為小慧的想法正確嗎?試求出 的取值范圍.
【設(shè)計(jì)意圖】考查二次根式的被開方數(shù)為非負(fù)數(shù)和一個式子的分母不能為0,解題時需要綜合考慮.
二次根式教案 篇2
活動1、提出問題
一個運(yùn)動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運(yùn)動場的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?
問題:10+20是什么運(yùn)算?
活動2、探究活動
下列3個小題怎樣計(jì)算?
問題:1)-還能繼續(xù)往下合并嗎?
2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的`二次根式能合并,什么樣的不能合并嗎?
二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進(jìn)行合并。
活動3
練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))
創(chuàng)設(shè)問題情景,引起學(xué)生思考。
學(xué)生回答:這個運(yùn)動場要準(zhǔn)備(10+20)平方米的草皮。
教師提問:學(xué)生思考并回答教師出示課題并說明今天我們就共同來研究該如何進(jìn)行二次根式的加減法運(yùn)算。
我們可以利用已學(xué)知識或已有經(jīng)驗(yàn)來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。
教師引導(dǎo)驗(yàn)證:
①設(shè)=,類比合并同類項(xiàng)或面積法;
、趯W(xué)生思考,得出先化簡,再合并的解題思路
、巯然,再合并
學(xué)生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。
教師巡視、指導(dǎo),學(xué)生完成、交流,師生評價。
提醒學(xué)生注意先化簡成最簡二次根式后再判斷。
二次根式教案 篇3
教學(xué)目標(biāo)
1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;
2.熟練地進(jìn)行二次根式的加、減、乘、除混合運(yùn)算.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):含二次根式的式子的混合運(yùn)算.
難點(diǎn):綜合運(yùn)用二次根式的 性質(zhì)及運(yùn)算法則化簡和計(jì)算含二次根式的式子.
教學(xué)過程設(shè)計(jì)
一、復(fù)習(xí)
1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.
指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.
2.二次根式 的乘法及除法的法則是什么?用式子表示出來.
指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,
計(jì)算結(jié)果要把分母有理化.
3.在二次根式的化簡或計(jì)算中,還常用到以下兩個二次根式的關(guān)系式:
4.在含有二次根式的式子的化簡及求值等問題中,常運(yùn)用三個可逆的式子:
二、例題
例1 x取什么值時,下列各式在實(shí)數(shù)范圍內(nèi)有意義:
分析:
(1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;
(3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;
(4)題的分子是二次根式,分母是含x的`單項(xiàng)式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.
x-2且x0.
解因?yàn)閚2-90, 9-n20,且n-30,所以n2=9且n3,所以
例3
分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.
解 因?yàn)?-a>0,3-a0,所以
a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.
這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.
問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?
分析:先把第二個式子化簡,再把兩個式子進(jìn)行通分,然后進(jìn)行計(jì)算.
注意:
所以在化簡過程中,
例6
分析:如果把兩個式子通分,或把每一個式子的分母有理化再進(jìn)行計(jì)算,這兩種方法的運(yùn)算量都較大,根據(jù)式子的結(jié)構(gòu)特點(diǎn),分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運(yùn)算變?yōu)楹喗荩?/p>
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),
三、課堂練習(xí)
1.選擇題:
A.a(chǎn)2B.a(chǎn)2
C.a(chǎn)2D.a(chǎn)<2
A .x+2 B.-x-2
C.-x+2D.x-2
A.2x B.2a
C.-2x D.-2a
2.填空題:
4.計(jì)算:
四、小結(jié)
1.本節(jié)課復(fù)習(xí)的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學(xué)們要深刻理解并牢固掌握.
2.在一次根式的化簡、計(jì)算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.
3.運(yùn)用二次根式的四個基本性質(zhì)進(jìn)行二次根式的運(yùn)算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.
4.通過例題的討論,要學(xué)會綜合、靈活運(yùn)用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項(xiàng)式的因式分解,解答有關(guān)含二次根式的式子的化簡、計(jì)算及求值等問題.
五、作業(yè)
1.x是什么值時,下列各式在實(shí)數(shù)范圍內(nèi)有意義?
2.把下列各式化成最簡二次根式:
二次根式教案 篇4
教學(xué)目的
1.使學(xué)生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;
2.會運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。
教學(xué)重點(diǎn)
最簡二次根式的定義。
教學(xué)難點(diǎn)
一個二次根式化成最簡二次根式的方法。
教學(xué)過程
一、復(fù)習(xí)引入
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學(xué)生回答:
二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
二、講解新課
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的'例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。
2.練習(xí):
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
3.例題:
例1 把下列各式化成最簡二次根式:
例2 把下列各式化成最簡二次根式:
4.總結(jié)
把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。
當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
三、鞏固練習(xí)
1.把下列各式化成最簡二次根式:
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
四、小結(jié)
本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項(xiàng)式時要進(jìn)行因式分解,被開方數(shù)為兩個分?jǐn)?shù)的和則要先通分,再化簡。
五、布置作業(yè)
下列各式化成最簡二次根式:
二次根式教案 篇5
第十六章 二次根式
代數(shù)式用運(yùn)算符號把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個的數(shù)字或單個的字母也是代數(shù)式
5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)
6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)
7.解:(1) . (2)寬:3 ;長:5 .
8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.
9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.
10.解析:在利用=|a|=化簡二次根式時,當(dāng)根號內(nèi)的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.
解:乙的解答是錯誤的.因?yàn)楫?dāng)a=時,=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.
本節(jié)課通過“觀察——?dú)w納——運(yùn)用”的模式,讓學(xué)生對知識的形成與掌握變得簡單起來,將一個一個知識點(diǎn)落實(shí)到位,適當(dāng)增加了拓展性的練習(xí),層層遞進(jìn),使不同的學(xué)生得到了不同的發(fā)展和提高.
在探究二次根式的性質(zhì)時,通過“提問——追問——討論”的形式展開,保證了活動有一定的針對性,但是學(xué)生發(fā)揮主體作用不夠.
在探究完成二次根式的性質(zhì)1后,總結(jié)學(xué)習(xí)方法,再放手讓學(xué)生自主探究二次根式的性質(zhì)2.既可以提高學(xué)習(xí)效率,又可以培養(yǎng)學(xué)生自學(xué)能力.
練習(xí)(教材第4頁)
1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.
2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.
習(xí)題16.1(教材第5頁)
1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當(dāng)a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當(dāng)a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當(dāng)a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當(dāng)a≥-時,有意義.
2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.
3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因?yàn)閳A的半徑不能是負(fù)數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的.半徑為 . (2)設(shè)較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因?yàn)閤=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.
4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.
5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.
6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.
7.解:(1)∵x2+1>0恒成立,∴無論x取任何實(shí)數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實(shí)數(shù),都有意義. (3)∵即x>0,∴當(dāng)x>0時, 在實(shí)數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當(dāng)x>-1時,在實(shí)數(shù)范圍內(nèi)有意義.
8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負(fù)值已舍去).當(dāng)h=10時,t= =,當(dāng)h=25時,t= =.故當(dāng)h=10和h=25時,小球落地所用的時間分別為 s和 s.
9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.
10.解:V=πr2×10,r= (負(fù)值已舍去),當(dāng)V=5π時, r= =,當(dāng)V=10π時,r= =1,當(dāng)V=20π時,r= =.
如圖所示,根據(jù)實(shí)數(shù)a,b在數(shù)軸上的位置,化簡:+.
〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負(fù)情況,從而可將二次根式化簡.
解:由數(shù)軸可得:a+b<0,a-b>0,
∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.
[解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.
已知a,b,c為三角形的三條邊,則+= .
〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因?yàn)閍,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.
[解題策略] 此類化簡問題要特別注意符號問題.
化簡:.
〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.
解:當(dāng)x≥3時,=|x-3|=x-3;
當(dāng)x<3時,=|x-3|=-(x-3)=3-x.
[解題策略] 化簡時,先將它化成|a|,再根據(jù)絕對值的意義分情況進(jìn)行討論.
5
O
M
二次根式教案 篇6
1.請同學(xué)們回憶(≥0,b≥0)是如何得到的?
2.學(xué)生觀察下面的例子,并計(jì)算:
由學(xué)生總結(jié)上面兩個式的關(guān)系得:
類似地,請每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:
。ā0,b0)
使學(xué)生回憶起二次根式乘法的運(yùn)算方法的`推導(dǎo)過程.
類似地,請每個同學(xué)再舉一個例子,
請學(xué)生們思考為什么b的取值范圍變小了?
與學(xué)生一起寫清解題過程,提醒他們被開方式一定要開盡.
對比二次根式的乘法推導(dǎo)出除法的運(yùn)算方法
增強(qiáng)學(xué)生的自信心,并從一開始就使他們參與到推導(dǎo)過程中來.
對學(xué)生進(jìn)一步強(qiáng)化被開方數(shù)的取值范圍,以及分母不能為零.
強(qiáng)化學(xué)生的解題格式一定要標(biāo)準(zhǔn).
教學(xué)過程設(shè)計(jì)
問題與情境師生行為設(shè)計(jì)意圖
活動二自我檢測
活動三挑戰(zhàn)逆向思維
把反過來,就得到
(≥0,b0)
利用它就可以進(jìn)行二次根式的化簡.
例2化簡:
。1)
。2)(b≥0).
解:(1)(2)練習(xí)2化簡:
。1)(2)活動四談?wù)勀愕氖斋@
1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).
2.會利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡單的二次根式的化簡.
找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計(jì)算,然后再找學(xué)生指出不足.
二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?
找學(xué)生口述解題過程,教師將過程寫在黑板上.
請學(xué)生仿照例題自己解決這兩道小題,組長檢查本組的學(xué)習(xí)情況.
請學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.
為了更快地發(fā)現(xiàn)學(xué)生的錯誤之處,以便糾正.
此處進(jìn)行簡單處理是因?yàn)橛卸胃降某朔ü降哪嬗米骰A(chǔ)理解并不難.
讓學(xué)困生在自己做題時有一個參照.
充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.
【二次根式教案】相關(guān)文章:
二次根式教案08-21
二次根式的教案10-24
二次根式教案05-15
二次根式教案(推薦)12-27
二次根式教案優(yōu)秀10-19
二次根式教案15篇06-05
二次根式說課稿06-21
二次根式教案模板8篇08-10
【熱門】二次根式教案3篇07-25
【精華】二次根式教案4篇08-04