- 相關(guān)推薦
高三數(shù)學(xué)說(shuō)課稿之楊輝三角與二項(xiàng)式系數(shù)性質(zhì)
作為一無(wú)名無(wú)私奉獻(xiàn)的教育工作者,通常需要準(zhǔn)備好一份說(shuō)課稿,是說(shuō)課取得成功的前提。說(shuō)課稿應(yīng)該怎么寫(xiě)才好呢?以下是小編整理的高三數(shù)學(xué)說(shuō)課稿之楊輝三角與二項(xiàng)式系數(shù)性質(zhì),歡迎閱讀與收藏。
一、教材背景分析
1.教材的地位和作用
《“楊輝三角”與二項(xiàng)式系數(shù)的性質(zhì)》是全日制普通高級(jí)中學(xué)教科書(shū)人教A版選修2-3第1章第3節(jié)第2課時(shí).教科書(shū)將二項(xiàng)式系數(shù)性質(zhì)的討論與“楊輝三角”結(jié)合起來(lái),是因?yàn)椤皸钶x三角”蘊(yùn)含了豐富的內(nèi)容,由它可以直觀看出二項(xiàng)式系數(shù)的性質(zhì),“楊輝三角”是我國(guó)古代數(shù)學(xué)重要成就之一,顯示了我國(guó)古代人民的卓越智慧和才能,應(yīng)抓住這一題材,對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育,激勵(lì)學(xué)生的民族自豪感.
本節(jié)內(nèi)容以前面學(xué)習(xí)的二項(xiàng)式定理為基礎(chǔ),由于二項(xiàng)式系數(shù)組成的數(shù)列就是一個(gè)離散函數(shù),引導(dǎo)學(xué)生從函數(shù)的角度研究二項(xiàng)式系數(shù)的性質(zhì),便于建立知識(shí)的前后聯(lián)系,使學(xué)生體會(huì)用函數(shù)知識(shí)研究問(wèn)題的方法,可以畫(huà)出它的圖象,利用幾何直觀、數(shù)形結(jié)合、特殊到一般的數(shù)學(xué)思想方法進(jìn)行思考,這對(duì)發(fā)現(xiàn)規(guī)律,形成證明思路等都有好處.這一過(guò)程不僅有利于培養(yǎng)學(xué)生的思維能力、理性精神和實(shí)踐能力,也有利于學(xué)生理解本節(jié)課的核心數(shù)學(xué)知識(shí),發(fā)展其數(shù)學(xué)應(yīng)用意識(shí).
研究二項(xiàng)式系數(shù)這組特定的組合數(shù)的性質(zhì),對(duì)鞏固二項(xiàng)式定理,建立相關(guān)知識(shí)之間的聯(lián)系,進(jìn)一步認(rèn)識(shí)組合數(shù)、進(jìn)行組合數(shù)的計(jì)算和變形都有重要的作用,對(duì)后續(xù)學(xué)習(xí)微分方程等也具有重要地位.
2.學(xué)情分析
知識(shí)結(jié)構(gòu):學(xué)生已學(xué)習(xí)兩個(gè)計(jì)數(shù)原理和二項(xiàng)式定理,再讓學(xué)生課前探究“楊輝三角”包含的規(guī)律,結(jié)合“楊輝三角”,并從函數(shù)的角度研究二項(xiàng)式系數(shù)的性質(zhì).
心理特征:高二的學(xué)生已經(jīng)具備了一定的分析、探究問(wèn)題的能力,恰時(shí)恰點(diǎn)的問(wèn)題引導(dǎo)就能建立知識(shí)之間的相互聯(lián)系,解決相關(guān)問(wèn)題.
3.教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):體會(huì)用函數(shù)知識(shí)研究問(wèn)題的方法,理解二項(xiàng)式系數(shù)的性質(zhì).
難點(diǎn):結(jié)合函數(shù)圖象,理解增減性與最大值時(shí),根據(jù)n的奇偶性確定相應(yīng)的分界點(diǎn);利用賦值法證明二項(xiàng)式系數(shù)的性質(zhì).
關(guān)鍵:函數(shù)思想的滲透.
二、教學(xué)目標(biāo)
1.通過(guò)課前組織學(xué)生開(kāi)展“了解楊輝三角、探究與發(fā)現(xiàn)楊輝三角包含的規(guī)律”的學(xué)習(xí)活動(dòng),讓學(xué)生感受我國(guó)古代數(shù)學(xué)成就及其數(shù)學(xué)美,激發(fā)學(xué)生的民族自豪感.
2.通過(guò)學(xué)生從函數(shù)的角度研究二項(xiàng)式系數(shù)的性質(zhì),建立知識(shí)的前后聯(lián)系,體會(huì)用函數(shù)知識(shí)研究問(wèn)題的方法,培養(yǎng)學(xué)生的觀察能力和歸納推理能力.
3.通過(guò)體驗(yàn)“發(fā)現(xiàn)規(guī)律、尋找聯(lián)系、探究證明、性質(zhì)運(yùn)用”的學(xué)習(xí)過(guò)程,使學(xué)生掌握二項(xiàng)式系數(shù)的一些性質(zhì),體會(huì)應(yīng)用數(shù)形結(jié)合、特殊到一般進(jìn)行歸納、賦值法等重要數(shù)學(xué)思想方法解決問(wèn)題的“再創(chuàng)造”過(guò)程.
4.通過(guò)恰時(shí)恰點(diǎn)的問(wèn)題引入、引申,采用學(xué)生課前自主探究、課上合作探究、課下延伸探究的學(xué)習(xí)方式,培養(yǎng)學(xué)生問(wèn)題意識(shí),提高學(xué)生思維能力,孕育學(xué)生創(chuàng)新精神,激發(fā)學(xué)生探索、研究我國(guó)古代數(shù)學(xué)的熱情.
三、教法選擇和學(xué)法指導(dǎo)
教法:?jiǎn)栴}引導(dǎo)、合作探究.
學(xué)法:從課前探究和課上展示中感知規(guī)律,結(jié)合“楊輝三角”和函數(shù)圖象性質(zhì)領(lǐng)悟性質(zhì),在探究證明性質(zhì)中理解知識(shí),螺旋上升地學(xué)習(xí)核心數(shù)學(xué)知識(shí)和滲透重要數(shù)學(xué)思想.
四、教學(xué)基本流程設(shè)計(jì)
五、教學(xué)過(guò)程
1.展示成果話楊輝
課前開(kāi)展學(xué)習(xí)活動(dòng):了解“楊輝三角”的歷史背景、地位和作用,探究與發(fā)現(xiàn)“楊輝三角”包含的規(guī)律.
(1)學(xué)生從不同的角度暢談“楊輝三角”,對(duì)它有何了解及認(rèn)識(shí).
(2)各小組展示探究與發(fā)現(xiàn)的成果——“楊輝三角”包含的一些規(guī)律.
【設(shè)計(jì)意圖】引導(dǎo)學(xué)生開(kāi)展課外學(xué)習(xí),了解“楊輝三角”,探究與發(fā)現(xiàn)“楊輝三角”包含的規(guī)律,弘揚(yáng)我國(guó)古代數(shù)學(xué)文化;展示探究與發(fā)現(xiàn)的楊輝三角的規(guī)律,為學(xué)習(xí)二項(xiàng)式系數(shù)的性質(zhì)埋下伏筆.
2.感知規(guī)律悟性質(zhì)
通過(guò)課外學(xué)習(xí),同學(xué)們觀察發(fā)現(xiàn)了楊輝三角的一些規(guī)律,并且知道楊輝三角的第行就是展開(kāi)式的二項(xiàng)式系數(shù),展開(kāi)式的二項(xiàng)式系數(shù)具有楊輝三角同行中的規(guī)律——對(duì)稱性和增減性與最大值.
【設(shè)計(jì)意圖】尋找二項(xiàng)式系數(shù)與楊輝三角的關(guān)系,從而讓學(xué)生理解二項(xiàng)式系數(shù)具有楊輝三角同行中的規(guī)律.
3.聯(lián)系舊知探新知
【問(wèn)題提出】怎樣證明展開(kāi)式的二項(xiàng)式系數(shù)具有對(duì)稱性和增減性與最大值呢?
【問(wèn)題探究】探究:(1)展開(kāi)式的二項(xiàng)式系數(shù),可以看成是以為自變量的函數(shù)嗎?它的定義域是什么?
(2)畫(huà)出和7時(shí)函數(shù)的圖象,并觀察分析他們是否具有對(duì)稱性和增減性與最大值.
(3)結(jié)合楊輝三角和所畫(huà)函數(shù)圖象說(shuō)明或證明二項(xiàng)式系數(shù)的性質(zhì).
對(duì)稱性:與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等..
增減性與最大值:,所以相對(duì)于的增減情況由決定.由可知,當(dāng)時(shí),二項(xiàng)式系數(shù)是逐漸增大的由對(duì)稱性知它的后半部分是逐漸減小的,且在中間取得最大值.當(dāng)?shù)呐紨?shù)時(shí),中間的一項(xiàng)取得最大值;當(dāng)是奇數(shù)時(shí),中間的兩項(xiàng),相等,且同時(shí)取得最大值.
【設(shè)計(jì)意圖】教師引導(dǎo)學(xué)生用函數(shù)思想探究二項(xiàng)式系數(shù)的性質(zhì),學(xué)生畫(huà)圖并觀察分析圖象性質(zhì);運(yùn)用特殊到一般、數(shù)形結(jié)合的數(shù)學(xué)思想歸納二項(xiàng)式系數(shù)的性質(zhì),升華認(rèn)識(shí);通過(guò)分組討論、自主探究、合作交流,說(shuō)明或證明二項(xiàng)式系數(shù)的對(duì)稱性和增減性與最大值,提高學(xué)生合作意識(shí).
4.合作交流議方法
【繼續(xù)探究】問(wèn)題:展開(kāi)式的各二項(xiàng)式系數(shù)的和是多少?
探究:(1)計(jì)算展開(kāi)式的二項(xiàng)式系數(shù)的和(=1,2,3,4,5,6).
(2)猜想展開(kāi)式的二項(xiàng)式系數(shù)的和.
(3)怎樣證明你猜想的結(jié)論成立?
賦值法:已知,令,則.
這就是說(shuō),的展開(kāi)式的各個(gè)二項(xiàng)式系數(shù)的和等于.
元集合子集的個(gè)數(shù)(兩個(gè)計(jì)數(shù)原理).
分類(lèi)計(jì)數(shù)原理:
分步計(jì)數(shù)原理:個(gè)2相乘,即.
所以.
【問(wèn)題拓展】你能求嗎?
在展開(kāi)式中,令,則得,即,所以,在的展開(kāi)式中,奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)的和等于偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)的和.
【設(shè)計(jì)意圖】通過(guò)學(xué)生歸納猜想各二項(xiàng)式系數(shù)的和,引導(dǎo)學(xué)生驗(yàn)證猜想結(jié)論是否正確;同時(shí)為了突破利用賦值法證明二項(xiàng)式系數(shù)性質(zhì)的難點(diǎn),引導(dǎo)學(xué)生從模型化的角度出發(fā),多角度的分析問(wèn)題、探究問(wèn)題、解決問(wèn)題,將學(xué)生思維推向高潮,既加深學(xué)生對(duì)前后知識(shí)的內(nèi)在聯(lián)系的理解,又從深度和廣度上讓學(xué)生感受數(shù)學(xué)知識(shí)的串聯(lián)和呼應(yīng).
5.反饋升華撥思路
練1.的展開(kāi)式中的第四項(xiàng)和第八項(xiàng)的二項(xiàng)式系數(shù)相等,則等于.
練2.的展開(kāi)式中前項(xiàng)的二項(xiàng)式系數(shù)逐漸增大,后半部分逐漸減小,二項(xiàng)式系數(shù)取得最大值的是第項(xiàng).
練3.已知,求:
(1);(2).
【設(shè)計(jì)意圖】促進(jìn)學(xué)生進(jìn)一步掌握二項(xiàng)式系數(shù)的性質(zhì),學(xué)會(huì)用賦值法解決問(wèn)題,促進(jìn)其有意識(shí)的運(yùn)用.
6.懸念小結(jié)再求索
【課堂小結(jié)】通過(guò)本節(jié)課的學(xué)習(xí),你有什么收獲和體會(huì)(從數(shù)學(xué)和生活的角度)?還有什么疑問(wèn)嗎?
【課堂延伸】今天同學(xué)們展示了一些楊輝三角的規(guī)律,但
是作為我國(guó)古代數(shù)學(xué)重要成就之一的楊輝三角還有更多有趣的規(guī)律,相信大家一定有極高的熱情和嚴(yán)謹(jǐn)?shù)膽B(tài)度去探究與發(fā)現(xiàn)楊輝三角的奧妙之處.
【課外活動(dòng)】(研究性學(xué)習(xí))
活動(dòng)主題:楊輝三角中的奧妙.
活動(dòng)目標(biāo):探究與發(fā)現(xiàn)楊輝三角中的更多奧妙.
活動(dòng)方案步驟:查閱資料,收集信息;獨(dú)立思考,發(fā)現(xiàn)規(guī)律,猜想證明;合作探究,小組討論,形成初步結(jié)論;與指導(dǎo)老師及其他小組成員交流展示;撰寫(xiě)研究性學(xué)習(xí)報(bào)告.
【設(shè)計(jì)意圖】通過(guò)課堂的整理、總結(jié)與反思,使學(xué)生更好的掌握主干知識(shí),體會(huì)探究過(guò)程中滲透的數(shù)學(xué)思想方法,再次感受我國(guó)古代數(shù)學(xué)成就,激勵(lì)自己努力學(xué)習(xí).“楊輝三角”還有很多有趣的規(guī)律,讓學(xué)生帶著問(wèn)題走進(jìn)課堂,帶著疑問(wèn)離開(kāi)教室,培養(yǎng)學(xué)生自主研修的習(xí)慣,提高學(xué)生探究問(wèn)題、解決問(wèn)題的能力.設(shè)計(jì)研究性學(xué)習(xí)活動(dòng),誘發(fā)學(xué)生創(chuàng)造性的想象和推理.同時(shí)教會(huì)學(xué)生如何開(kāi)展研究性學(xué)習(xí).
【高三數(shù)學(xué)說(shuō)課稿之楊輝三角與二項(xiàng)式系數(shù)性質(zhì)】相關(guān)文章:
《小數(shù)的性質(zhì)》說(shuō)課稿07-19
《小數(shù)的性質(zhì)》說(shuō)課稿09-19
分?jǐn)?shù)的性質(zhì)說(shuō)課稿04-09
菱形的性質(zhì)的說(shuō)課稿12-15
《小數(shù)性質(zhì)》說(shuō)課稿12-27
《矩形性質(zhì)》說(shuō)課稿12-08