高一數(shù)學(xué)說課稿(集錦15篇)
作為一無名無私奉獻(xiàn)的教育工作者,總歸要編寫說課稿,借助說課稿我們可以快速提升自己的教學(xué)能力。那要怎么寫好說課稿呢?以下是小編為大家整理的高一數(shù)學(xué)說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。
高一數(shù)學(xué)說課稿1
一、指數(shù)函數(shù)及其性質(zhì)教學(xué)設(shè)計(jì)說明
新課標(biāo)指出:學(xué)生是教學(xué)的主體,教師的教應(yīng)本著從學(xué)生的認(rèn)知規(guī)律出發(fā),以學(xué)生活動(dòng)為主線,在原有知識(shí)的基礎(chǔ)上,建構(gòu)新的知識(shí)體系。我將以此為基礎(chǔ)對(duì)教學(xué)設(shè)計(jì)加以說明。
數(shù)學(xué)本質(zhì):
探究指數(shù)函數(shù)的性質(zhì)從“數(shù)”的角度用解析式不易解決,轉(zhuǎn)而由“形”——圖象突破,體會(huì)數(shù)形結(jié)合的思想。通過分類討論,通過研究兩個(gè)具體的指數(shù)函數(shù)引導(dǎo)學(xué)生通過觀察圖象發(fā)現(xiàn)指數(shù)函數(shù)的圖象規(guī)律,從而歸納指數(shù)函數(shù)的一般性質(zhì),經(jīng)歷一個(gè)由特殊到一般的探究過程。引導(dǎo)學(xué)生探究出指數(shù)函數(shù)的一般性質(zhì),從而對(duì)指數(shù)函數(shù)進(jìn)行較為系統(tǒng)的研究。
二、教材的地位和作用:
本節(jié)課是全日制普通高中標(biāo)準(zhǔn)實(shí)驗(yàn)教課書《數(shù)學(xué)必修1》第二章2.1.2節(jié)的內(nèi)容,研究指數(shù)函數(shù)的定義,圖像及性質(zhì)。是在學(xué)生已經(jīng)較系統(tǒng)地學(xué)習(xí)了函數(shù)的概念,將指數(shù)擴(kuò)充到實(shí)數(shù)范圍之后學(xué)習(xí)的一個(gè)重要的基本初等函數(shù)。它既是對(duì)函數(shù)的概念進(jìn)一步深化,又是今后學(xué)習(xí)對(duì)數(shù)函數(shù)與冪函數(shù)的基礎(chǔ)。因此,在教材中占有極其重要的地位,起著承上啟下的作用。
此外,《指數(shù)函數(shù)》的知識(shí)與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細(xì)胞_、貸款利率的計(jì)算和考古中的年代測算等方面,因此學(xué)習(xí)這部分知識(shí)還有著廣泛的現(xiàn)實(shí)意義。
三、教學(xué)目標(biāo)分析:
根據(jù)本節(jié)課的內(nèi)容特點(diǎn)以及學(xué)生對(duì)抽象的指數(shù)函數(shù)及其圖象缺乏感性認(rèn)識(shí)的實(shí)際情況,確定在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和由圖象得出的性質(zhì)為本節(jié)教學(xué)重點(diǎn)。本節(jié)課的難點(diǎn)是指數(shù)函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程。
為此,特制定以下的教學(xué)目標(biāo):
1)知識(shí)目標(biāo)(直接性目標(biāo)):理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)的圖像、性質(zhì)及其簡單應(yīng)用、能根據(jù)單調(diào)性解決基本的比較大小的問題.
2)能力目標(biāo)(發(fā)展性目標(biāo)):通過教學(xué)培養(yǎng)學(xué)生觀察、分析、歸納等思維能力,體會(huì)數(shù)形結(jié)合和分類討論思想,增強(qiáng)學(xué)生識(shí)圖用圖的能力。
3)情感目標(biāo)(可持續(xù)性目標(biāo)):通過學(xué)習(xí),使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性與一般性之間的關(guān)系,用聯(lián)系的觀點(diǎn)看問題。體會(huì)研究函數(shù)由特殊到一般再到特殊的研究學(xué)習(xí)過程;體驗(yàn)研究函數(shù)的一般思維方法。引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的對(duì)稱美、簡潔美。善于探索的思維品質(zhì)。
教學(xué)問題診斷分析:
學(xué)生知識(shí)儲(chǔ)備:
通過初中學(xué)段的學(xué)習(xí)和高中對(duì)集合、函數(shù)等知識(shí)的系統(tǒng)學(xué)習(xí),學(xué)生對(duì)函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認(rèn)知結(jié)構(gòu)。
學(xué)情分析:
由于我所教學(xué)生數(shù)學(xué)的理解能力、運(yùn)算能力、思維能力等方面有一部分是較好的,但整體是水平參差不齊。高一這個(gè)年齡段的學(xué)生思維活躍,求知欲強(qiáng),能夠勇于表現(xiàn)自我,展現(xiàn)自我,愿意合作交流。但在思維習(xí)慣上與方法上還有待教師引導(dǎo)。
可能存在的問題與策略:
問題1.
學(xué)生能夠從具體的問題中抽象出數(shù)學(xué)的模型但對(duì)于指數(shù)函數(shù)的定義中底數(shù)的取值范圍和指數(shù)函數(shù)形式的判斷有困難。
教學(xué)策略:
類比著二次函數(shù),對(duì)于底數(shù)的范圍的取值,引導(dǎo)學(xué)生回顧指數(shù)冪中當(dāng)指數(shù)為全體實(shí)數(shù)時(shí),底數(shù)怎樣取值才能一直有意義,以問題的形式引發(fā)學(xué)生思考底數(shù)能否取負(fù)數(shù)、正數(shù)、0、1?從而得到底數(shù)的范圍。
學(xué)生對(duì):1)y=-3_2)y=31/_3)y=31+_
4)y=(-3)_5)y=3-_=(1/3)_
幾種形式的函數(shù)的判斷,加強(qiáng)對(duì)指數(shù)函數(shù)形解析式的理解和辨別:
問題2.
學(xué)生初中階段就接觸過函數(shù),但對(duì)于學(xué)生而言,指數(shù)函數(shù)是完全陌生的函數(shù)。學(xué)生列表時(shí),數(shù)值的選取上可能會(huì)少取或是數(shù)值的選取不能照顧到全體實(shí)數(shù),畫圖時(shí),又容易受以前學(xué)過的函數(shù)圖像的影響,把指數(shù)函數(shù)的圖像畫成已經(jīng)學(xué)過的圖像的形象。
教學(xué)策略:在列表格時(shí)自變量的取值以及如何畫出指數(shù)函數(shù)的圖像的問題上,采用啟發(fā)式教學(xué)法,類比學(xué)過的函數(shù)圖形的畫法,引導(dǎo)學(xué)生畫圖,畫完圖后,又利用實(shí)物投影儀展示一位同學(xué)的圖像,由全班同學(xué)進(jìn)行提出意見糾錯(cuò)來補(bǔ)充畫圖的不足。
另外為了讓學(xué)生增強(qiáng)識(shí)圖、用圖的能力可以讓學(xué)生根據(jù)觀察到的.指數(shù)函數(shù)的圖像,來畫出底數(shù)不同取值范圍內(nèi)的的草圖,以便于探究性質(zhì)。
問題3.
函數(shù)定義給出后,底數(shù)a如何分類討論的情況學(xué)生難以做到,如果處理不好,這對(duì)于指數(shù)函數(shù)質(zhì)探究時(shí)的分類討論有很重要的意義。
教學(xué)策略:在定義中對(duì)于底數(shù)的取值范圍的討論后,得出了底數(shù)a>0且a≠1。此時(shí),在數(shù)軸上把a(bǔ)的范圍表示出來,這樣學(xué)生很容易從數(shù)軸上的區(qū)間圖看出底數(shù)分為兩類情況進(jìn)行討論。這樣為指數(shù)函數(shù)質(zhì)探究時(shí)的分類討論埋下了伏筆。
問題4.
通過兩個(gè)具體的特殊的指數(shù)函數(shù)圖像,來探究得出指數(shù)函數(shù)的性質(zhì)。如何使學(xué)生能經(jīng)歷從特殊到一般的過程,這種由特殊到一般再到特殊的思想的領(lǐng)會(huì),如何完成?
教學(xué)策略:教師利用幾何畫板分別畫出了底數(shù)大于1的和底數(shù)在0到1之間的若干個(gè)不同的指數(shù)函數(shù)的圖像,展現(xiàn)不同的底數(shù)的變化時(shí)圖像的不同情況,從而讓學(xué)生經(jīng)歷由特殊到一般的過程。
問題5.
指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)基本概念和性質(zhì)以后接觸到得第一個(gè)具體函數(shù),學(xué)生可能找不到研究問題的方法和方向.
教學(xué)策略:在這部分的安排上,我更注意學(xué)生思維習(xí)慣的養(yǎng)成,即應(yīng)從哪些方面,哪些角度去探索一個(gè)具體函數(shù)。
問題6.
學(xué)生得到的性質(zhì)特點(diǎn)可能是雜亂的,如何梳理突出主要的性質(zhì)?
教學(xué)策略:在學(xué)生識(shí)圖、用圖、合作探究的過程后,利用兩個(gè)表格的填寫,讓學(xué)生感受由圖象特征來得到函數(shù)的性質(zhì)的過程。表格主要呈現(xiàn)五個(gè)方面的性質(zhì)與特點(diǎn)。
四、教法分析:
為充分貫徹新課程理念,使教學(xué)過_正成為學(xué)生學(xué)習(xí)過程,讓學(xué)生體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,本節(jié)課擬采用直觀教學(xué)法、啟發(fā)發(fā)現(xiàn)法、課堂討論法等教學(xué)方法。以多媒體演示為載體,啟發(fā)學(xué)生觀察思考,分析討論為主,教師適當(dāng)引導(dǎo)點(diǎn)撥,以動(dòng)手操作、合作交流,自主探究的方式來讓學(xué)生始終處在教學(xué)活動(dòng)的中心。
五、預(yù)期效果分析:
1、教學(xué)環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動(dòng),在教師的整體調(diào)控下,學(xué)生通過動(dòng)手操作,動(dòng)眼觀察,動(dòng)腦思考,親身經(jīng)歷了知識(shí)的生成和發(fā)展過程,使學(xué)生對(duì)知識(shí)的理解逐步深入。
2、簡單實(shí)例的引入,順利完成了知識(shí)的遷移,從得出指數(shù)函數(shù)的模型,符合學(xué)生認(rèn)知規(guī)律的最近發(fā)展區(qū)。
3、而作業(yè)中完成指數(shù)函數(shù)性質(zhì)的探究報(bào)告,彌補(bǔ)課堂時(shí)間有限探究和展示的局限性,帶領(lǐng)學(xué)生進(jìn)入對(duì)指數(shù)函數(shù)更進(jìn)一步的思考和研究之中,從而達(dá)到知識(shí)在課堂以外的延伸。4、在整個(gè)教學(xué)過程中,由于學(xué)生是自覺主動(dòng)地發(fā)現(xiàn)結(jié)果,對(duì)所學(xué)知識(shí)應(yīng)該能夠較快接受。因此,我認(rèn)為可以達(dá)到預(yù)定的教學(xué)目標(biāo)。
高一數(shù)學(xué)說課稿2
今天我說課的內(nèi)容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)《棱錐》的第一課時(shí):《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個(gè)方面對(duì)本課的教學(xué)設(shè)計(jì)進(jìn)行說明。
一、說教材
1、本節(jié)在教材中的地位和作用:
本節(jié)是棱柱的后續(xù)內(nèi)容,又是學(xué)習(xí)球的必要基礎(chǔ)。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎(chǔ)知識(shí),同時(shí)培養(yǎng)學(xué)生猜想、類比、比較、轉(zhuǎn)化的能力。著名的生物學(xué)家達(dá)爾文說:“最有價(jià)值的知識(shí)是關(guān)于方法和能力的知識(shí)”,因此,應(yīng)該利用這節(jié)課培養(yǎng)學(xué)生學(xué)習(xí)方法、提高學(xué)習(xí)能力。
2. 教學(xué)目標(biāo)確定:
(1)能力訓(xùn)練要求
①使學(xué)生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高的概念。
、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。
(2)德育滲透目標(biāo)
、倥囵B(yǎng)學(xué)生善于通過觀察分析實(shí)物形狀到歸納其性質(zhì)的能力。
②提高學(xué)生對(duì)事物的感性認(rèn)識(shí)到理性認(rèn)識(shí)的能力。
、叟囵B(yǎng)學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀點(diǎn)。
3. 教學(xué)重點(diǎn)、難點(diǎn)確定:
重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。
難 點(diǎn):培養(yǎng)學(xué)生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。
二、說教學(xué)方法和手段
1、教法:
“以學(xué)生參與為標(biāo)志,以啟迪學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)新能力為核心”。
在教學(xué)中根據(jù)高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導(dǎo)法,講練結(jié)合,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位。
2、教學(xué)手段:
根據(jù)《教學(xué)大綱》中“堅(jiān)持啟發(fā)式,反對(duì)注入式”的教學(xué)要求,針對(duì)本節(jié)課概念性強(qiáng),思維量大,整節(jié)課以啟發(fā)學(xué)生觀察思考、分析討論為主,采用“多媒體引導(dǎo)點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導(dǎo)思考”為核心,設(shè)計(jì)課件展示,并引導(dǎo)學(xué)生沿著積極的思維方向,逐步達(dá)到即定的教學(xué)目標(biāo),發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營造的“可探索”的環(huán)境里,積極參與,生動(dòng)活潑地獲取知識(shí),掌握規(guī)律、主動(dòng)發(fā)現(xiàn)、積極探索。
三、說學(xué)法:
這節(jié)課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導(dǎo)思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認(rèn)識(shí)規(guī)律,啟發(fā)學(xué)生反復(fù)思考,不斷內(nèi)化成為自己的認(rèn)知結(jié)構(gòu)。
四、 學(xué)程序:
[復(fù)習(xí)引入新課]
1.棱柱的性質(zhì):(1)側(cè)棱都相等,側(cè)面是平行四邊形
(2)兩個(gè)底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側(cè)棱的截面是平行四邊形
2.幾個(gè)重要的四棱柱:平行六面體、直平行六面體、長方體、正方體
思考:如果將棱柱的上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會(huì)是什么樣的體呢?
[講授新課]
1、棱錐的基本概念
(1).棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高、對(duì)角面的概念
(2).棱錐的'表示方法、分類
2、棱錐的性質(zhì)
(1). 截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。
證明:(略)
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐
的側(cè)面積比也等于它們對(duì)應(yīng)高的平方比、等于它們的底面積之比。
(2).正棱錐的定義及基本性質(zhì):
正棱錐的定義:①底面是正多邊形
、陧旤c(diǎn)在底面的射影是底面的中心
、俑鱾(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
、诶忮F的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形;
棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形
引申: ①正棱錐的側(cè)棱與底面所成的角都相等;
、谡忮F的側(cè)面與底面所成的二面角相等;
(3)正棱錐的各元素間的關(guān)系
下面我們結(jié)合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來研究。
引申:
、儆^察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點(diǎn)?
(可證得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側(cè)面全是直角三角形。)
②若分別假設(shè)正棱錐的高SO= h,斜高SM= h’,底面邊長的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM= r,側(cè)棱SB=L,側(cè)面與底面的二面角∠SMO= α ,側(cè)棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數(shù))請?jiān)囃ㄟ^三角形得出以上各元素間的關(guān)系式。
(課后思考題)
[例題分析]
例1.若一個(gè)正棱錐每一個(gè)側(cè)面的頂角都是600,則這個(gè)棱錐一定不是( )
A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐
(答案:D)
例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。
解析及圖略
例3.已知正四棱錐的棱長和底面邊長均為a,求:
(1)側(cè)面與底面所成角α的余弦(2)相鄰兩個(gè)側(cè)面所成角β的余弦
解析及圖略
【課堂練習(xí)】
1、 知一個(gè)正六棱錐的高為h,側(cè)棱為L,求它的底面邊長和斜高。
解析及圖略
2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。
解析及圖略
【課堂小結(jié)】
一:棱錐的基本概念及表示、分類
二:棱錐的性質(zhì)
1. 截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對(duì)應(yīng)高的平方比、等于它們的底面積之比。
2.正棱錐的定義及基本性質(zhì)
正棱錐的定義:①底面是正多邊形
、陧旤c(diǎn)在底面的射影是底面的中心
(1)各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高
相等,它們叫做正棱錐的斜高;
(2)棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形;棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形
引申: ①正棱錐的側(cè)棱與底面所成的角都相等;
、谡忮F的側(cè)面與底面所成的二面角相等;
③正棱錐中各元素間的關(guān)系
【課后作業(yè)】
1:課本P52 習(xí)題9.8 : 2、 4
2:課時(shí)訓(xùn)練:訓(xùn)練一
高一數(shù)學(xué)說課稿3
各位評(píng)委、老師:
大家好,我說課的內(nèi)容是人教A版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書A版數(shù)學(xué)必修一》第二章2.2.2《對(duì)數(shù)函數(shù)及其性質(zhì)》。
我說課的程序主要有教材分析、學(xué)情分析、教法與學(xué)法、教學(xué)過程、板書設(shè)計(jì)等五個(gè)部分。
一、教材分析
本節(jié)內(nèi)容是在學(xué)習(xí)了指數(shù)函數(shù)和對(duì)數(shù)概念后,通過具體實(shí)例了解對(duì)數(shù)函數(shù)模型的實(shí)際背景,學(xué)習(xí)對(duì)數(shù)函數(shù)概念進(jìn)而研究對(duì)數(shù)函數(shù)的圖象和性質(zhì)。學(xué)生已掌握的指數(shù)函數(shù)的圖象和性質(zhì)為類比學(xué)習(xí)對(duì)數(shù)函數(shù)提供了前提,同時(shí)對(duì)數(shù)函數(shù)作為常用數(shù)學(xué)模型在人口、考古等生活生產(chǎn)中有廣泛的應(yīng)用,為學(xué)生進(jìn)一步學(xué)習(xí)、參加生產(chǎn)和實(shí)際生活提供必要的基礎(chǔ)知識(shí)。而本節(jié)蘊(yùn)含的歸納、類比、數(shù)形結(jié)合的思想為培養(yǎng)學(xué)生探究、發(fā)現(xiàn)的能力奠定基礎(chǔ)。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》要求通過具體實(shí)例初步理解對(duì)數(shù)函數(shù)的概念,體會(huì)對(duì)數(shù)函數(shù)是一類重要的函數(shù)模型,能借助計(jì)算器或計(jì)算機(jī)畫出具體對(duì)數(shù)函數(shù)的圖象,探究并了解對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。依據(jù)以上標(biāo)準(zhǔn)和學(xué)生學(xué)習(xí)發(fā)展方面的要求,我制定了如下教學(xué)目標(biāo):
知識(shí)與技能:理解對(duì)數(shù)函數(shù)的概念、掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì);培養(yǎng)學(xué)生觀察、分析、歸納、類比的能力。
過程與方法:類比指數(shù)函數(shù)的學(xué)習(xí),從特殊到一般,通過對(duì)不同底數(shù)的對(duì)數(shù)函數(shù)圖象的分析、歸納出對(duì)數(shù)函數(shù)的性質(zhì)。
情感態(tài)度價(jià)值觀:培養(yǎng)學(xué)生對(duì)待知識(shí)的科學(xué)態(tài)度、勇于探索和創(chuàng)新的精神.
結(jié)合教學(xué)內(nèi)容和教學(xué)目標(biāo),考慮到學(xué)生對(duì)抽象事物的理解可能存在困難,制定如下的教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì);
難點(diǎn):對(duì)數(shù)函數(shù)的圖象、性質(zhì),底數(shù)a對(duì)對(duì)數(shù)函數(shù)的圖象和性質(zhì)的影響;
二、學(xué)情分析
對(duì)于高一的學(xué)生來說,剛進(jìn)入一個(gè)新的學(xué)習(xí)階段,有較強(qiáng)的好奇心,且在之前指數(shù)函數(shù)的學(xué)習(xí)中已初步掌握了研究函數(shù)的方法,但對(duì)抽象事物的理解有所欠缺,對(duì)對(duì)數(shù)概念的理解還不夠透徹。
三、教學(xué)與學(xué)法
教學(xué)過程是教師和學(xué)生共同參與的過程,要啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動(dòng)學(xué)生的積極性、主動(dòng)性,通過指數(shù)函數(shù)的圖象、性質(zhì)類比學(xué)習(xí)對(duì)數(shù)函數(shù)的圖象、性質(zhì),在教學(xué)中引導(dǎo)學(xué)生圍繞圖象思考,數(shù)形結(jié)合,加強(qiáng)直觀教學(xué),同時(shí)在例題的講解中,由易到難,由具體到抽象。為有效地滲透數(shù)學(xué)思想方法,結(jié)合所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用以引導(dǎo)探究為主,啟發(fā)學(xué)生思考、分析、歸納,在提出猜想后通過投影儀演示底數(shù)變化對(duì)對(duì)數(shù)函數(shù)圖象的影響。
老師的教是為學(xué)生更好地學(xué),學(xué)生是活動(dòng)的主體,我確定學(xué)法為自主探究法,學(xué)生在老師的引導(dǎo)下通過觀察、分析做出歸納。
四.教學(xué)過程
教學(xué)過程分為以下環(huán)節(jié):
實(shí)例引入、直觀感知——總結(jié)類比、形成概念——類比探究、分析歸納——知識(shí)應(yīng)用、提升能力——師生交流、歸納小結(jié)——作業(yè)布置
(一)實(shí)例引入、直觀感知
1、在某細(xì)胞分裂過程中,細(xì)胞個(gè)數(shù)y是分裂次數(shù)x的函數(shù) ,因此,知道x的值(輸入值是分裂次數(shù))就能求出y的值(輸出值為細(xì)胞的個(gè)數(shù)),這樣就建立了一個(gè)細(xì)胞個(gè)數(shù)和分裂次數(shù)x之間的函數(shù)關(guān)系式.
問題一:這是一個(gè)怎樣的函數(shù)模型類型呢? 設(shè)計(jì)意圖:復(fù)習(xí)指數(shù)函數(shù)
問題二:如果知道了細(xì)胞個(gè)數(shù)y,如何求分裂的次數(shù)x呢?這將會(huì)是我們研究的哪類問題? 設(shè)計(jì)意圖:為了引出對(duì)數(shù)函數(shù)
問題三:在關(guān)系式 每輸入一個(gè)細(xì)胞的個(gè)數(shù)y的值,是否一定都能得到唯一一個(gè)分裂次數(shù)x的值呢?
設(shè)計(jì)意圖:既為了更好地理解函數(shù),也是為了讓學(xué)生更好地理解對(duì)數(shù)函數(shù)的概念.
2、 在2.2.1的例6中,考古學(xué)家利用 估算出土文物或古遺址的年代,對(duì)于每一個(gè)C14含量P,通過關(guān)系式,都有唯一確定的`年代與之對(duì)應(yīng).同理,對(duì)于每一個(gè)對(duì)數(shù)式 中的 ,任取一個(gè)正的實(shí)數(shù)值,均有唯一的值與之對(duì)應(yīng),所以 的函數(shù)。
問題三:你能在以前的學(xué)習(xí)中找到類似以上兩個(gè)函數(shù)的例子嗎?(促進(jìn)學(xué)生思考這種函數(shù)的特點(diǎn))
問題四:你能類比指數(shù)函數(shù)得到此類函數(shù)的一般式嗎?
設(shè)計(jì)意圖:體現(xiàn)了類比和特殊到一般的數(shù)學(xué)思想
(二)總結(jié)類比、形成概念
問題五:你能根據(jù)指數(shù)函數(shù)的定義給出對(duì)數(shù)函數(shù)的定義嗎?
。◣熒餐瑲w納出對(duì)數(shù)函數(shù)的定義)
問題六: 與 中的x,y的相同之處是什么?不同之處是什么?
設(shè)計(jì)意圖:促進(jìn)學(xué)生更好地理解對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的聯(lián)系,從而得到對(duì)數(shù)函數(shù)的定義域
。ㄈ╊惐忍骄、分析歸納
問題:有了研究指數(shù)函數(shù)的經(jīng)歷,你會(huì)如何研究對(duì)數(shù)函數(shù)的性質(zhì)?
設(shè)計(jì)意圖:提示學(xué)生進(jìn)行類比學(xué)習(xí)
合作探究1;在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象,并觀察圖象,探求他們之間的關(guān)系。
,
合作探究2:結(jié)合指數(shù)函數(shù)的學(xué)習(xí)經(jīng)驗(yàn),你有什么猜想?在同一坐標(biāo)系中畫出 與 驗(yàn)證。
設(shè)計(jì)意圖:體現(xiàn)“從特殊到一般”、“從具體到抽象”的方法。
教師通過幾何畫板動(dòng)態(tài)演示對(duì)數(shù)函數(shù)圖象隨底數(shù)變化的規(guī)律,進(jìn)一步促進(jìn)學(xué)生理解對(duì)數(shù)函數(shù)的圖象特點(diǎn)。
合作探究3:對(duì)照指數(shù)函數(shù)的性質(zhì),總結(jié)歸納對(duì)數(shù)函數(shù)的性質(zhì).
(學(xué)生討論并交流各自的發(fā)現(xiàn)成果,教師結(jié)合學(xué)生的交流,適時(shí)歸納總結(jié),并板書對(duì)數(shù)函數(shù)的性質(zhì))
(四)知識(shí)應(yīng)用、提升能力
例1:求下列函數(shù)的定義域
(1) ( ) (2) ( )
。ㄔ擃}主要考查對(duì)數(shù)函數(shù) 的定義域 ,可在此總結(jié)函數(shù)定義域的限制)
例2:利用對(duì)數(shù)函數(shù)的性質(zhì),比較下列各組數(shù)中兩個(gè)數(shù)的大小:
。1) , (2) ,
。3) , (4) , ,
設(shè)計(jì)意圖:學(xué)生通過回顧利用指數(shù)函數(shù)的有關(guān)性質(zhì)比較大小的步驟和方法,完成前3小題,第四題可通過教師的適當(dāng)點(diǎn)撥完成解答,最后進(jìn)行歸納總結(jié)比較數(shù)的大小常用的方法
思考鞏固:已知 ,比較m,n的大小
設(shè)計(jì)意圖:該題不僅運(yùn)用了對(duì)數(shù)函數(shù)的圖象和性質(zhì),還培養(yǎng)了學(xué)生數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想,但有一定難度
。ㄎ澹⿴熒涣、歸納小結(jié)
由學(xué)生小結(jié),相互補(bǔ)充完善,教師再次強(qiáng)調(diào)對(duì)數(shù)函數(shù)在生活生產(chǎn)中的應(yīng)用,既首尾呼應(yīng)又為后續(xù)學(xué)習(xí)對(duì)數(shù)函數(shù)的應(yīng)用鋪墊。
。┎贾米鳂I(yè)
教材P73 練習(xí)1,2
設(shè)計(jì)意圖:練習(xí)難度不大,是對(duì)本節(jié)知識(shí)的鞏固。
高一數(shù)學(xué)說課稿4
尊敬的各位評(píng)委、各位老師:
大家好!
我說課的題目是《函數(shù)的單調(diào)性》,我將從四個(gè)方面來闡述我對(duì)這節(jié)課的設(shè)計(jì)。
一、教材分析
函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)。從知識(shí)的網(wǎng)絡(luò)結(jié)構(gòu)上看,函數(shù)的單調(diào)性既是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)的單調(diào)性等內(nèi)容的基礎(chǔ),在研究各種具體函數(shù)的性質(zhì)和應(yīng)用、解決各種問題中都有著廣泛的應(yīng)用。函數(shù)單調(diào)性概念的建立過程中蘊(yùn)涵諸多數(shù)學(xué)思想方法,對(duì)于進(jìn)一步探索、研究函數(shù)的其他性質(zhì)有很強(qiáng)的啟發(fā)與示范作用。
根據(jù)函數(shù)單調(diào)性在整個(gè)教材內(nèi)容中的地位與作用,本節(jié)課教學(xué)應(yīng)實(shí)現(xiàn)如下教學(xué)目標(biāo):
知識(shí)與技能使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;
過程與方法引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運(yùn)用函數(shù)單調(diào)性概念解決簡單的問題;使學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
情感態(tài)度與價(jià)值觀在函數(shù)單調(diào)性的學(xué)習(xí)過程中,使學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
根據(jù)上述教學(xué)目標(biāo),本節(jié)課的教學(xué)重點(diǎn)是函數(shù)單調(diào)性的概念形成和初步運(yùn)用。雖然高一學(xué)生已經(jīng)有一定的抽象思維能力,但函數(shù)單調(diào)性概念對(duì)他們來說還是比較抽象的因此,本節(jié)課的學(xué)習(xí)難點(diǎn)是函數(shù)單調(diào)性的概念形成。
二、教法學(xué)法
為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了:
1、通過學(xué)生熟悉的實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)學(xué)生求知欲,調(diào)動(dòng)學(xué)生主體參與的積極性。
2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學(xué)生的主體參與,正確地形成概念。
3、在鼓勵(lì)學(xué)生主體參與的同時(shí),不可忽視教師的主導(dǎo)作用,要教會(huì)學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并順利地完成書面表達(dá)。
在學(xué)法上我重視了:
1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識(shí)到理性思維的質(zhì)的飛躍。
2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
三、教學(xué)過程
函數(shù)單調(diào)性的概念產(chǎn)生和形成是本節(jié)課的難點(diǎn),為了突破這一難點(diǎn),在教學(xué)設(shè)計(jì)上采用了下列四個(gè)環(huán)節(jié)。
。ㄒ唬﹦(chuàng)設(shè)情境,提出問題
。▎栴}情境)(播放中央電視臺(tái)天氣預(yù)報(bào)的音樂)。如圖為某地區(qū)20xx年元旦這一天24小時(shí)內(nèi)的氣溫變化圖,觀察這張氣溫變化圖:
[教師活動(dòng)]引導(dǎo)學(xué)生觀察圖象,提出問題:
問題1:說出氣溫在哪些時(shí)段內(nèi)是逐步升高的或下降的?
問題2:怎樣用數(shù)學(xué)語言刻畫上述時(shí)段內(nèi)“隨著時(shí)間的增大氣溫逐漸升高”這一特征?
[設(shè)計(jì)意圖]問題是數(shù)學(xué)的心臟,問題是學(xué)生思維的開始,問題是學(xué)生興趣的開始。這里,通過兩個(gè)問題,引發(fā)學(xué)生的進(jìn)一步學(xué)習(xí)的好奇心。
。ǘ┨骄堪l(fā)現(xiàn)建構(gòu)概念
[學(xué)生活動(dòng)]對(duì)于問題1,學(xué)生容易給出答案。問題2對(duì)學(xué)生來說較為抽象,不易回答。
[教師活動(dòng)]為了引導(dǎo)學(xué)生解決問題2,先讓學(xué)生觀察圖象,通過具體情形,例如,“t1=8時(shí),f(t1)=1,t2=10時(shí),f(t2)=4”這一情形進(jìn)行描述。引導(dǎo)學(xué)生回答:對(duì)于自變量8<10,對(duì)應(yīng)的函數(shù)值有1<4。舉幾個(gè)例子表述一下。然后給出一個(gè)鋪墊性的問題:結(jié)合圖象,請你用自己的語言,描述“在區(qū)間[4,14]上,氣溫隨時(shí)間增大而升高”這一特征。
在學(xué)生對(duì)于單調(diào)增函數(shù)的特征有一定直觀認(rèn)識(shí)時(shí),進(jìn)一步提出:
問題3:對(duì)于任意的t1、t2∈[4,16]時(shí),當(dāng)t1 [學(xué)生活動(dòng)]通過觀察圖象、進(jìn)行實(shí)驗(yàn)(計(jì)算機(jī))、正反對(duì)比,發(fā)現(xiàn)數(shù)量關(guān)系,由具體到抽象,由模糊到清晰逐步歸納、概括、抽象出單調(diào)增函數(shù)概念的本質(zhì)屬性,并嘗試用符號(hào)語言進(jìn)行初步的表述。 [教師活動(dòng)]為了獲得單調(diào)增函數(shù)概念,對(duì)于不同學(xué)生的表述進(jìn)行分析、歸類,引導(dǎo)學(xué)生得出關(guān)鍵詞“區(qū)間內(nèi)”、“任意”、“當(dāng)時(shí),都有”。告訴他們“把滿足這些條件的函數(shù)稱之為單調(diào)增函數(shù)”,之后由他們集體給出單調(diào)增函數(shù)概念的數(shù)學(xué)表述。提出: 問題4:類比單調(diào)增函數(shù)概念,你能給出單調(diào)減函數(shù)的概念嗎? 最后完成單調(diào)性和單調(diào)區(qū)間概念的整體表述。 [設(shè)計(jì)意圖]數(shù)學(xué)概念的形成來自解決實(shí)際問題和數(shù)學(xué)自身發(fā)展的需要。但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實(shí)際的學(xué)習(xí)活動(dòng)中去,從自己的經(jīng)驗(yàn)和已有的知識(shí)基礎(chǔ)出發(fā),經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的活動(dòng)過程。剛升入高一的學(xué)生已經(jīng)具備了一定的幾何形象思維能力,但抽象思維能力不強(qiáng)。從日常的描述性語言概念升華到用數(shù)學(xué)符號(hào)語言精確刻畫概念是本節(jié)課的難點(diǎn)。 (三)自我嘗試運(yùn)用概念 1.為了理解函數(shù)單調(diào)性的概念,及時(shí)地進(jìn)行運(yùn)用是十分必要的. [教師活動(dòng)]問題5: (1)你能找出氣溫圖中的單調(diào)區(qū)間嗎? (2)你能說出你學(xué)過的函數(shù)的單調(diào)區(qū)間嗎?請舉例說明. [學(xué)生活動(dòng)]對(duì)于(1),學(xué)生容易看出:氣溫圖中分別有兩個(gè)單調(diào)減區(qū)間和一個(gè)單調(diào)增區(qū)間。對(duì)于(2),學(xué)生容易舉出具體函數(shù)如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并畫出函數(shù)的草圖,根據(jù)函數(shù)的`圖象說出函數(shù)的單調(diào)區(qū)間。 [教師活動(dòng)]利用實(shí)物投影儀,投影出學(xué)生畫出的草圖和標(biāo)出的單調(diào)區(qū)間,并指出學(xué)生回答問題時(shí)可能出現(xiàn)的錯(cuò)誤,如:在敘述函數(shù)的單調(diào)區(qū)間時(shí)寫成并集。 [設(shè)計(jì)意圖]在學(xué)生已有認(rèn)知結(jié)構(gòu)的基礎(chǔ)上提出新問題,使學(xué)生明了,過去所研究的函數(shù)的相關(guān)特征,就是現(xiàn)在所學(xué)的函數(shù)的單調(diào)性,從而加深對(duì)函數(shù)單調(diào)性概念的理解。 2.對(duì)于給定圖象的函數(shù),借助于圖象,我們可以直觀地判定函數(shù)的單調(diào)性,也能找到單調(diào)區(qū)間.而對(duì)于一般的函數(shù),我們怎樣去判定函數(shù)的單調(diào)性呢? [教師活動(dòng)]問題6:證明在區(qū)間(0,+∞)上是單調(diào)減函數(shù). [學(xué)生活動(dòng)]學(xué)生相互討論,嘗試自主進(jìn)行函數(shù)單調(diào)性的證明,可能會(huì)出現(xiàn)不知如何比較f(x1)與f(x2)的大小、不會(huì)正確表述、變形不到位或根本不會(huì)變形等困難。 [教師活動(dòng)]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問題的進(jìn)展過程,投影學(xué)生的證明過程,糾正出現(xiàn)的錯(cuò)誤,規(guī)范書寫的格式。 [學(xué)生活動(dòng)]學(xué)生自我歸納證明函數(shù)單調(diào)性的一般方法和操作流程:取值、作差變形、定號(hào)、判斷。 [設(shè)計(jì)意圖]有效的數(shù)學(xué)學(xué)習(xí)過程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過程更是如此。利用學(xué)生自己提出的問題,讓學(xué)生在解題過程中親身經(jīng)歷和實(shí)踐體驗(yàn),師生互動(dòng)學(xué)習(xí),生生合作交流,共同探究。 。ㄋ模┗仡櫡此忌罨拍 [教師活動(dòng)]給出一組題: 1、定義在R上的單調(diào)函數(shù)f(x)滿足f(2)>f(1),那么函數(shù)f(x)是R上的單調(diào)增函數(shù)還是單調(diào)減函數(shù)? 2、若定義在R上的單調(diào)減函數(shù)f(x)滿足f(1+a)的取值范圍嗎? [學(xué)生活動(dòng)]學(xué)生互相討論,探求問題的解答和問題的解決過程,并通過問題,歸納總結(jié)本節(jié)課的內(nèi)容和方法。 [設(shè)計(jì)意圖]通過學(xué)生的主體參與,使學(xué)生深切體會(huì)到本節(jié)課的主要內(nèi)容和思想方法,從而實(shí)現(xiàn)對(duì)函數(shù)單調(diào)性認(rèn)識(shí)的再次深化。 [教師活動(dòng)]作業(yè)布置: 。1)閱讀課本P34—35例2 (2)書面作業(yè): 必做:教材P431、7、11 選做:二次函數(shù)y=x2+bx+c在[0,+∞)是增函數(shù),滿足條件的實(shí)數(shù)的值唯一嗎? 探究:函數(shù)y=x在定義域內(nèi)是增函數(shù),函數(shù)有兩個(gè)單調(diào)減區(qū)間,由這兩個(gè)基本函數(shù)構(gòu)成的函數(shù)的單調(diào)性如何?請證明你得到的結(jié)論。 [設(shè)計(jì)意圖]通過兩方面的作業(yè),使學(xué)生養(yǎng)成先看書,后做作業(yè)的習(xí)慣;诤瘮(shù)單調(diào)性內(nèi)容的特點(diǎn)及學(xué)生實(shí)際,對(duì)課后書面作業(yè)實(shí)施分層設(shè)置,安排基本練習(xí)題、鞏固理解題和深化探究題三層。學(xué)生完成作業(yè)的形式為必做、選做和探究三種,使學(xué)生在完成必修教材基本學(xué)習(xí)任務(wù)的同時(shí),拓展自主發(fā)展的空間,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成。 四、教學(xué)評(píng)價(jià) 學(xué)生學(xué)習(xí)的結(jié)果評(píng)價(jià)當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評(píng)價(jià)。教師應(yīng)當(dāng)高度重視學(xué)生學(xué)習(xí)過程中的參與度、自信心、團(tuán)隊(duì)精神、合作意識(shí)、獨(dú)立思考習(xí)慣的養(yǎng)成、數(shù)學(xué)發(fā)現(xiàn)的能力,以及學(xué)習(xí)的興趣和成就感。學(xué)生熟悉的問題情境可以激發(fā)學(xué)生的學(xué)習(xí)興趣,問題串的設(shè)計(jì)可以讓更多的學(xué)生主動(dòng)參與,師生對(duì)話可以實(shí)現(xiàn)師生合作,適度的研討可以促進(jìn)生生交流以及團(tuán)隊(duì)精神,知識(shí)的生成和問題的解決可以讓學(xué)生感受到成功的喜悅,縝密的思考可以培養(yǎng)學(xué)生獨(dú)立思考的習(xí)慣。讓學(xué)生在教師評(píng)價(jià)、學(xué)生評(píng)價(jià)以及自我評(píng)價(jià)的過程中體驗(yàn)知識(shí)的積累、探索能力的長進(jìn)和思維品質(zhì)的提高,為學(xué)生的可持續(xù)發(fā)展打下基礎(chǔ)。 一、說教材 。1)說教材的內(nèi)容和地位 本次說課的內(nèi)容是人教版高一數(shù)學(xué)必修一第一單元第一節(jié)《集合》(第一課時(shí))。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握以及使用數(shù)學(xué)語言的基礎(chǔ)。從知識(shí)結(jié)構(gòu)上來說是為了引入函數(shù)的定義。因此在高中數(shù)學(xué)的模塊中,集合就顯得格外的舉足輕重了。 。2)說教學(xué)目標(biāo) 根據(jù)教材結(jié)構(gòu)和內(nèi)容以及教材地位和作用,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,依據(jù)新課標(biāo)制定如下教學(xué)目標(biāo): 1.知識(shí)與技能:掌握集合的基本概念及表示方法。了解“屬于”關(guān)系的意義,掌握集合元素的特征。 2.過程與方法:通過情景設(shè)置提出問題,揭示課題,培養(yǎng)學(xué)生主動(dòng)探究新知的習(xí)慣,并通過“自主、合作與探究”實(shí)現(xiàn)“一切以學(xué)生為中心”的理念。 3.情感態(tài)度與價(jià)值觀:感受數(shù)學(xué)的人文價(jià)值,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,由集合的學(xué)習(xí)感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美。同時(shí)通過自主探究領(lǐng)略獲取新知識(shí)的喜悅。 。3)說教學(xué)重點(diǎn)和難點(diǎn) 依據(jù)課程標(biāo)準(zhǔn)和學(xué)生實(shí)際,我確定本課的教學(xué)重點(diǎn)為教學(xué)重點(diǎn):集合的基本概念及元素特征。 教學(xué)難點(diǎn):掌握集合元素的三個(gè)特征,體會(huì)元素與集合的屬于關(guān)系。 二、說教法和學(xué)法 接下來則是說教法、學(xué)法。 教法與學(xué)法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來相應(yīng)的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點(diǎn),就本節(jié)課而言,我采用“生活實(shí)例與數(shù)學(xué)實(shí)例”相結(jié)合,“師生互動(dòng)與課堂布白”相輔助的方法。通過不同層次的練習(xí)體驗(yàn),憑借有趣、實(shí)用的教學(xué)手段,突出重點(diǎn),突破難點(diǎn)。然而,學(xué)生是學(xué)習(xí)的主人,以學(xué)生為主體,創(chuàng)造條件讓學(xué)生參與探究活動(dòng),不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習(xí)的技能和激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,本次活動(dòng)采用的學(xué)法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)等。 總之,不管采取什么教法和學(xué)法,每節(jié)課都應(yīng)不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng)造和諧的課堂氛圍。 三、說教學(xué)過程 接著我來說一下最重要的部分,本節(jié)課的教學(xué)過程: 這節(jié)課的流程主要分為六個(gè)環(huán)節(jié):創(chuàng)設(shè)情境(引入目標(biāo))、自主探究(感知目標(biāo))、討論辨析(理解目標(biāo))、變式訓(xùn)練(鞏固目標(biāo))、課堂小結(jié)(自我評(píng)價(jià))、作業(yè)布置(反饋矯正)。 上述六個(gè)環(huán)節(jié)由淺入深,層層遞進(jìn). 多層次、多角度地加深對(duì)概念的理解. 提高學(xué)生學(xué)習(xí)的興趣,以達(dá)到良好的教學(xué)效果。 第一環(huán)節(jié):創(chuàng)設(shè)問題情境,引入目標(biāo) 課堂開始我將提出兩個(gè)問題: 問題1:班級(jí)有20名男生,16名女生,問班級(jí)一共多少人? 問題2:某次運(yùn)動(dòng)會(huì)上,班級(jí)有20人參加田賽,16人參加徑賽,問一共多少人參加比賽? 這里我會(huì)讓學(xué)生以小組討論的形式進(jìn)行討論問題,事實(shí)上小組合作的形式是本節(jié)課主要形式。 待學(xué)生討論完畢以后我將作歸納總結(jié):問題2已無法用學(xué)過的知識(shí)加以解釋,這是與集合有關(guān)的問題,因此需用集合的語言加以描述(同時(shí)我將板書標(biāo)題:集合)。 安排這一過程的意圖是為了從實(shí)際問題引入,讓學(xué)生了解數(shù)學(xué)來源于實(shí)際。從而激發(fā)學(xué)生參與課堂學(xué)習(xí)的欲望。 很自然地進(jìn)入到第二環(huán)節(jié):自主探究讓學(xué)生閱讀教材,并思考下列問題: 。1)有那些概念? 。2)有那些符號(hào)? 。3)集合中元素的特性是什么? 安排這一過程的意圖是給學(xué)生提供活動(dòng)空間,讓主體主動(dòng)建構(gòu)自己的知識(shí)結(jié)構(gòu)。培養(yǎng)學(xué)生的探究能力。 讓學(xué)生自主探究之后將進(jìn)入第三環(huán)節(jié):討論辨析 小組合作探究(1) 讓學(xué)生觀察下列實(shí)例 。1)1~20以內(nèi)的'所有質(zhì)數(shù); 。2)所有的正方形; (3)到直線 的距離等于定長 的所有的點(diǎn); (4)方程 的所有實(shí)數(shù)根; 通過以上實(shí)例,辨析概念: (1)集合含義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡稱集。而 集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素。 。2)表示方法:集合通常用大括號(hào){ }或大寫的拉丁字母A,B,C?表示,而元素用小 寫的拉丁字母a,b,c?表示。 小組合作探究(2)——集合元素的特征 問題3:任意一組對(duì)象是否都能組成一個(gè)集合?集合中的元素有什么特征? 問題4:某單位所有的“帥哥”能否構(gòu)成一個(gè)集合?由此說明什么? 集合中的元素必須是確定的 問題5:在一個(gè)給定的集合中能否有相同的元素?由此說明什么? 集合中的元素是不重復(fù)出現(xiàn)的 問題6:咱班的全體同學(xué)組成一個(gè)集合,調(diào)整座位后這個(gè)集合有沒有變化?由此說明什么? 集合中的元素是沒有順序的 我如此設(shè)計(jì)的意圖是因?yàn)椋簡栴}是數(shù)學(xué)的心臟,感受問題是學(xué)習(xí)數(shù)學(xué)的根本動(dòng)力。 小組合作探究(3)——元素與集合的關(guān)系 問題7:設(shè)集合A表示“1~20以內(nèi)的所有質(zhì)數(shù)”,那么3,4,5,6這四個(gè)元素哪些在集合A中?哪些不在集合A中? 問題8:如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)? a屬于集合A,記作a∈A 問題9:如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)? a不屬于集合A,記作a?A 小組合作探究(4)——常用數(shù)集及其表示方法 問題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實(shí)數(shù)集等一些常用數(shù)集,分別用什么符號(hào)表示? 自然數(shù)集(非負(fù)整數(shù)集):記作 N 正整數(shù)集:記作 N或 N? 整數(shù)集:記作 Z 有理數(shù)集:記作 Q 實(shí)數(shù)集:記作 R 設(shè)計(jì)意圖:由于不同的人對(duì)同一問題有不同的體驗(yàn)和理解。讓學(xué)生通過合作交流相互得到啟發(fā),從而不斷完善自己的知識(shí)結(jié)構(gòu)。 第四環(huán)節(jié):理論遷移 變式訓(xùn)練 1.下列指定的對(duì)象,能構(gòu)成一個(gè)集合的是 、 很小的數(shù) 、 不超過30的非負(fù)實(shí)數(shù) ③ 直角坐標(biāo)平面內(nèi)橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn) 、 π的近似值 ⑤ 所有無理數(shù) A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④ 第五環(huán)節(jié):課堂小結(jié),自我評(píng)價(jià) 1.這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么? 2.這節(jié)課主要解釋了什么數(shù)學(xué)思想? 設(shè)計(jì)意圖:引導(dǎo)學(xué)生對(duì)所學(xué)知識(shí)、思想方法進(jìn)行小結(jié),形成知識(shí)系統(tǒng).教師用激勵(lì)性的語言加一點(diǎn)評(píng),讓學(xué)生的思想敞亮的發(fā)揮出來。 第六環(huán)節(jié):作業(yè)布置,反饋矯正 1.必做題 課本習(xí)題1.1—1、2、3。 2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實(shí)數(shù)a 的值。 設(shè)計(jì)意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗(yàn)。 四、板書設(shè)計(jì) 好的板書就像一份微型教案,為了讓學(xué)生直觀易懂的看筆記,板書應(yīng)設(shè)計(jì)得有條理性、概括性、指導(dǎo)性,所以我設(shè)計(jì)的板書如下: 集 合 1.集合的概念 4.范例研究 2.集合元素的特征 。▽W(xué)生板演) 3.常見集合的表示? 以上,我是從教材、教法和學(xué)法、教學(xué)過程和板書設(shè)計(jì)四個(gè)方面對(duì)本課進(jìn)行了說明,我的說課到此結(jié)束,謝謝各位評(píng)委老師,并請各位評(píng)委老師指正! 一、本節(jié)課內(nèi)容的數(shù)學(xué)本質(zhì) 本節(jié)課的主要任務(wù)是探究二分法基本原理,給出用二分法求方程近似解的基本步驟,使學(xué)生學(xué)會(huì)借助計(jì)算器用二分法求給定精確度的方程的近似解。通過探究讓學(xué)生體驗(yàn)從特殊到一般的認(rèn)識(shí)過程,滲透逐步逼近和無限逼近思想(極限思想),體會(huì)“近似是普遍的、精確則是特殊的”辯證唯物主義觀點(diǎn)。引導(dǎo)學(xué)生用聯(lián)系的觀點(diǎn)理解有關(guān)內(nèi)容,通過求方程的近似解感受函數(shù)、方程、不等式以及算法等內(nèi)容的有機(jī)結(jié)合,使學(xué)生體會(huì)知識(shí)之間的聯(lián)系。 所以本節(jié)課的本質(zhì)是讓學(xué)生體會(huì)函數(shù)與方程的思想、近似的思想、逼近的思想和初步感受程序化地處理問題的算法思想。 二、本節(jié)課內(nèi)容的地位、作用 “二分法”的理論依據(jù)是“函數(shù)零點(diǎn)的存在性(定理)”,本節(jié)課是上節(jié)學(xué)習(xí)內(nèi)容《方程的根與函數(shù)的零點(diǎn)》的自然延伸;是數(shù)學(xué)必修3算法教學(xué)的一個(gè)前奏和準(zhǔn)備;同時(shí)滲透數(shù)形結(jié)合思想、近似思想、逼近思想和算法思想等。 三、學(xué)生情況分析 學(xué)生已初步理解了函數(shù)圖象與方程的根之間的關(guān)系,具備一定的用數(shù)形結(jié)合思想解決問題的能力,這為理解函數(shù)零點(diǎn)附近的函數(shù)值符號(hào)提供了知識(shí)準(zhǔn)備。但學(xué)生僅是比較熟悉一元二次方程解與函數(shù)零點(diǎn)的關(guān)系,對(duì)于高次方程、超越方程與對(duì)應(yīng)函數(shù)零點(diǎn)之間的聯(lián)系的認(rèn)識(shí)比較模糊,計(jì)算器的使用不夠熟練,這些都給學(xué)生學(xué)習(xí)本節(jié)內(nèi)容造成一定困難。 四、教學(xué)目標(biāo)定位 根據(jù)教材內(nèi)容和學(xué)生的實(shí)際情況,本節(jié)課的教學(xué)目標(biāo)設(shè)定如下: 通過具體實(shí)例理解二分法的概念及其適用條件,了解二分法是求方程近似解的一種方法,會(huì)用二分法求某些具體方程的近似解,從中體會(huì)函數(shù)與方程之間的.聯(lián)系,體會(huì)程序化解決問題的思想。 借助計(jì)算器用二分法求方程的近似解,讓學(xué)生充分體驗(yàn)近似的思想、逼近的思想和程序化地處理問題的思想及其重要作用,并為下一步學(xué)習(xí)算法做知識(shí)準(zhǔn)備. 通過探究、展示、交流,養(yǎng)成良好的學(xué)習(xí)品質(zhì),增強(qiáng)合作意識(shí)。 通過具體問題體會(huì)逼近過程,感受精確與近似的相對(duì)統(tǒng)一。 五、教學(xué)診斷分析 “二分法”的思想方法簡便而又應(yīng)用廣泛,所需的數(shù)學(xué)知識(shí)較少,算法流程比較簡潔,便于編寫計(jì)算機(jī)程序;利用計(jì)算器和多媒體輔助教學(xué),直觀明了;學(xué)生在生活中也有相關(guān)體驗(yàn),所以易于被學(xué)生理解和掌握。 但“二分法”不能用于求方程偶次重根的近似解,精確度概念不易理解。 六、教學(xué)方法和特點(diǎn) 本節(jié)課采用的是問題驅(qū)動(dòng)、啟發(fā)探究的教學(xué)方法。 通過分組合作、互動(dòng)探究、搭建平臺(tái)、分散難點(diǎn)的學(xué)習(xí)指導(dǎo)方法把問題逐步推進(jìn)、拾級(jí)而上,并輔以多媒體教學(xué)手段,使學(xué)生自主探究二分法的原理。 本節(jié)課特點(diǎn)主要有以下幾方面: 1、以問題驅(qū)動(dòng)教學(xué),激發(fā)學(xué)生的求知欲,體現(xiàn)了以學(xué)生為主的教學(xué)理念。 2、注重與現(xiàn)實(shí)生活中案例相結(jié)合,讓學(xué)生體會(huì)數(shù)學(xué)來源于現(xiàn)實(shí)生活又可以解決現(xiàn)實(shí)生活中的問題。 以李詠主持的幸運(yùn)52猜商品價(jià)格來創(chuàng)設(shè)情境,不僅激發(fā)學(xué)生學(xué)習(xí)興趣,學(xué)生也在猜測的過程中體會(huì)二分法思想。 3、注重學(xué)生參與知識(shí)的形成過程,使他們“聽”有所思,“學(xué)”有所獲。 本節(jié)課中的每一個(gè)問題都是在師生交流中產(chǎn)生,在學(xué)生合作探究中解決,使學(xué)生經(jīng)歷了完整的學(xué)習(xí)過程,培養(yǎng)合作交流意識(shí)。 4、恰當(dāng)?shù)乩矛F(xiàn)代信息技術(shù),幫助學(xué)生揭示數(shù)學(xué)本質(zhì)。 本節(jié)課中利用計(jì)算器進(jìn)行了多次計(jì)算,逐步縮小實(shí)數(shù)解所在范圍,精確度的確定就顯得非常自然,突破了教學(xué)上的難點(diǎn),提高了探究活動(dòng)的有效性。整個(gè)課件都以PowerPoint為制作平臺(tái),演示Excel 程序求方程的近似解,界畫活潑,充分體現(xiàn)了信息技術(shù)與數(shù)學(xué)課程有機(jī)整合。 七、預(yù)期效果分析 以方程的根與函數(shù)的零點(diǎn)知識(shí)作基礎(chǔ),通過對(duì)求方程近似解的探究討論,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng);采用多媒體技術(shù),大容量信息的呈現(xiàn)和生動(dòng)形象的演示,激發(fā)學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維,掌握二分法的本質(zhì),完成教學(xué)目標(biāo)。 另外盡管使用了科學(xué)計(jì)算器,但求一個(gè)方程的近似解也是很費(fèi)時(shí)的,學(xué)生容易出現(xiàn)計(jì)算錯(cuò)誤和產(chǎn)生急躁情緒;況且問題探究式教學(xué)跟學(xué)生的學(xué)習(xí)程度有很大關(guān)系,各小組的探究時(shí)間存在差異,教師要適時(shí)指導(dǎo)。 一、教材分析 1、教材的地位與作用 模擬方法是北師大版必修3第三章概率第3節(jié),也是必修3最后一節(jié),本節(jié)內(nèi)容是在學(xué)習(xí)了古典概型的基礎(chǔ)上,用模擬方法估計(jì)一些用古典概型解決不了的實(shí)際問題的概率,使學(xué)生初步體會(huì)幾何概型的意義;而模擬試驗(yàn)是培養(yǎng)學(xué)生動(dòng)手能力、小組合作能力、和試驗(yàn)分析能力的好素材。 2、教學(xué)重點(diǎn)與難點(diǎn) 教學(xué)重點(diǎn):借助模擬方法來估計(jì)某些事件發(fā)生的概率; 幾何概型的概念及應(yīng)用 體會(huì)隨機(jī)模擬中的統(tǒng)計(jì)思想:用樣本估計(jì)總體。 教學(xué)難點(diǎn):設(shè)計(jì)和操作一些模擬試驗(yàn),對(duì)從試驗(yàn)中得出的數(shù)據(jù)進(jìn)行統(tǒng)計(jì)、分析; 應(yīng)用隨機(jī)數(shù)解決各種實(shí)際問題。 二、教學(xué)目標(biāo): 1、知識(shí)目標(biāo):使學(xué)生了解模擬方法估計(jì)概率的實(shí)際應(yīng)用,初步體會(huì)幾何概型的意義;并能夠運(yùn)用模擬方法估計(jì)概率。 2、能力目標(biāo):培養(yǎng)學(xué)生實(shí)踐能力、協(xié)調(diào)能力、創(chuàng)新意識(shí)和處理數(shù)據(jù)能力以及應(yīng)用數(shù)學(xué)意識(shí)。 3、情感目標(biāo):鼓勵(lì)學(xué)生動(dòng)手試驗(yàn),探索、發(fā)現(xiàn)規(guī)律并解決實(shí)際問題,激發(fā)學(xué)生學(xué)習(xí)的興趣。 三、過程分析 1、創(chuàng)設(shè)良好的學(xué)習(xí)情境,激發(fā)學(xué)生學(xué)習(xí)的欲望 從學(xué)生的生活經(jīng)驗(yàn)和已有知識(shí)背景出發(fā),提出用學(xué)過知識(shí)不能解決的問題:房間的紗窗破了一個(gè)小洞,隨機(jī)向紗窗投一粒小石子,估計(jì)小石子從小洞穿過的概率。能用古典概型解決嗎?為什么?從而引起認(rèn)知矛盾,激發(fā)學(xué)生學(xué)習(xí)、探究的興趣。 2、以實(shí)驗(yàn)和問題引導(dǎo)學(xué)習(xí)活動(dòng),使學(xué)生經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的過程 通過兩個(gè)實(shí)驗(yàn):(1)取一個(gè)矩形,在面積為四分之一的部分畫上陰影,隨機(jī)地向矩形中撒一把豆子(我們數(shù)100粒),統(tǒng)計(jì)落在陰影內(nèi)的豆子數(shù)與落在矩形內(nèi)的總豆子數(shù),觀察它們有怎樣的比例關(guān)系?(2)反過來,取一個(gè)已知長和寬的矩形,隨機(jī)地向矩形中撒一把豆子,統(tǒng)計(jì)落在陰影內(nèi)的豆子數(shù)與落在矩形內(nèi)的總豆子數(shù),你能根據(jù)豆子數(shù)得到什么結(jié)論? 讓學(xué)生分組合作,利用課前準(zhǔn)備的材料進(jìn)行試驗(yàn)、討論、分析,使學(xué)生主動(dòng)進(jìn)入探究狀態(tài),充分調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,使他們感受到探討數(shù)學(xué)問題的樂趣,培養(yǎng)學(xué)生與他人合作交流的能力以及團(tuán)隊(duì)精神。根據(jù)各小組試驗(yàn)結(jié)果,提出問題,引導(dǎo)學(xué)生進(jìn)行猜想,得出結(jié)論: 使學(xué)生了解結(jié)論產(chǎn)生的背景,輕易地理解了這個(gè)結(jié)論,并培養(yǎng)學(xué)生數(shù)據(jù)分析能力、抽象概括能力。讓他們感覺到數(shù)學(xué)定理、結(jié)論其實(shí)離他們很近,增強(qiáng)學(xué)生學(xué)習(xí)的動(dòng)力和信心。 3、類比遷移,注重?cái)?shù)學(xué)與實(shí)際聯(lián)系,發(fā)展學(xué)生應(yīng)用意識(shí)和能力 (1)求不規(guī)則圖形面積 如圖,曲線y=-x2+1與x軸,y軸圍成區(qū)域A, 如何求陰影部分面積? 通過把不規(guī)則圖形放在規(guī)則的、 易求面積的圖形中,利用模擬方法 求不規(guī)則圖形面積,在解決問題時(shí) 學(xué)生提出了借助不同圖形,教師要 引導(dǎo)學(xué)生用最佳圖形。讓學(xué)生把不熟 悉的問題轉(zhuǎn)化為熟悉的'問題情 境,引導(dǎo)學(xué)生利用已有知識(shí)解決新 的問題,培養(yǎng)學(xué)識(shí)知識(shí)應(yīng)用、類比遷移的能力。 本例通過介紹用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù)來模擬,使學(xué)生了解現(xiàn)代信息技術(shù)的應(yīng)用,了解另一種模擬方法。 (2)估計(jì)圓周率π的值 讓學(xué)生設(shè)計(jì)模擬試驗(yàn),估計(jì)圓周率π的值,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),使學(xué)習(xí)過程成為學(xué)生的再創(chuàng)造過程。達(dá)到本課的目標(biāo),使學(xué)生了解模擬方法估計(jì)概率的實(shí)際應(yīng)用,能夠運(yùn)用模擬方法估計(jì)概率。通過設(shè)計(jì)和操作模擬試驗(yàn),對(duì)得出數(shù)據(jù)進(jìn)行統(tǒng)計(jì)、分析,解決本課難點(diǎn)。讓學(xué)生體驗(yàn)數(shù)學(xué)的發(fā)現(xiàn)和創(chuàng)造過程,發(fā)展他們的創(chuàng)新意識(shí)。同時(shí)通過對(duì)介紹古代數(shù)學(xué)家祖沖之,對(duì)學(xué)生進(jìn)行愛國主義教育,培養(yǎng)學(xué)生愛國情操。 (3)幾何概型概率計(jì)算方法 ①通過問題:如果正方形面積不變,但形狀改變,所得比例發(fā)生變化嗎? 引出幾何概型的概念、特點(diǎn)和計(jì)算公式 把試驗(yàn)的結(jié)論上升到理論,使學(xué)生的認(rèn)識(shí)有一個(gè)從試驗(yàn)到理論的升華,使學(xué)生掌握基本概念,并運(yùn)用理論解決問題,使學(xué)生的認(rèn)識(shí)有一個(gè)質(zhì)的飛躍, 、诶喝鐖D,在墻上掛著一塊邊長為16cm的正方形木板, 上面畫了小、中、大三個(gè)同心圓,半徑分別為2cm、4cm、 6cm,某人站在3m處向此板投鏢,設(shè)投鏢擊中線上或沒有 投中木板時(shí)都不算,可重投。 問:(1)投中大圓內(nèi)的概率是多少? (2)投中小圓和中圓形成的圓環(huán)的概率是多少? 配套習(xí)題是知識(shí)的直接運(yùn)用,有助于學(xué)生鞏固新學(xué)的知識(shí),使學(xué)生掌握基本知識(shí)和技能。 、弁ㄟ^介紹本章開篇中“蒲豐投針”問題,利用計(jì)算機(jī)動(dòng)態(tài)顯示投針試驗(yàn),使學(xué)生對(duì)此試驗(yàn)有初步了解,開闊學(xué)生視野,體現(xiàn)數(shù)學(xué)的文化價(jià)值,留給學(xué)生課后探究的空間。 4、通過實(shí)際問題:小明家的晚報(bào)在下午5:30~6:30之間的任何一個(gè)時(shí)間隨機(jī)地被送到,小明一家人在下午6:00~7:00之間的任何一個(gè)時(shí)間隨機(jī)地開始晚餐。(1)你認(rèn)為晚報(bào)在晚餐開始之前被送到和在晚餐開始之后被送到哪一種可能性更大?(2)晚報(bào)在晚餐開始之前被送到的概率是多少? 引導(dǎo)學(xué)生利用轉(zhuǎn)盤設(shè)計(jì)試驗(yàn),并分組進(jìn)行試驗(yàn),鼓勵(lì)學(xué)生自主探索與合作交流,培養(yǎng)學(xué)生創(chuàng)新意識(shí),并使學(xué)生了解模擬形式的多樣化,并通過模擬進(jìn)一步熟悉試驗(yàn)的操作,提高動(dòng)手能力和小組協(xié)調(diào)能力。通過問題拓展,介紹用理論解決的方法,激起學(xué)生再探究的欲望,留給學(xué)生課后思考的空間。 4、課堂小結(jié) 由學(xué)生總結(jié)本節(jié)課所學(xué)習(xí)的主要內(nèi)容,讓學(xué)生對(duì)所學(xué)內(nèi)容有全面、系統(tǒng)的認(rèn)識(shí)。 四、教法、學(xué)法分析 本節(jié)課是在采用信息技術(shù)和數(shù)學(xué)知識(shí)整合的基礎(chǔ)上從生活實(shí)際中提煉數(shù)學(xué)素材,使學(xué)生在熟悉的背景下、在認(rèn)知沖突中展開學(xué)習(xí),通過試驗(yàn)活動(dòng)的開展,使學(xué)生在試驗(yàn)、探究活動(dòng)中獲取原始數(shù)據(jù),進(jìn)而通過數(shù)與形的類比,在老師的引導(dǎo)、啟發(fā)下感悟出模擬的數(shù)學(xué)結(jié)論,通過結(jié)論的運(yùn)用提升為數(shù)學(xué)模型并加以應(yīng)用,它實(shí)現(xiàn)了學(xué)生在學(xué)習(xí)過程中對(duì)知識(shí)的探究、發(fā)現(xiàn)的創(chuàng)作經(jīng)歷,調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,同學(xué)們在親身經(jīng)歷知識(shí)結(jié)論的探究中獲得了對(duì)數(shù)學(xué)價(jià)值的新認(rèn)識(shí)。 五、評(píng)價(jià)分析 本課是使學(xué)生通過試驗(yàn)掌握用模擬方法估計(jì)概率,主要是用分組合作試驗(yàn)、探究方法研究數(shù)學(xué)知識(shí),因此評(píng)價(jià)時(shí)更注重探究和解決問題的全過程,鼓勵(lì)學(xué)生的探索精神,引導(dǎo)學(xué)生對(duì)問題的正確分析與思考,關(guān)注學(xué)生提出問題、參與解決問題的全過程,關(guān)注學(xué)生的創(chuàng)新精神和實(shí)踐能力。 一、教材分析。 1、教學(xué)目標(biāo): 。1)理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想; 。2)培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。 (3)通過對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。 2、教學(xué)重點(diǎn)和難點(diǎn): 。1)等差數(shù)列的概念。 。2)等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。用不完全歸納法推導(dǎo)等差數(shù)列的通項(xiàng)公式。 二、教法分析。 采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。 三、教學(xué)程序。 本節(jié)課的教學(xué)過程由:(一)復(fù)習(xí)引入;(二)新課探究;(三)應(yīng)用例解;(四)反饋練習(xí);(五)歸納小結(jié);(六)布置作業(yè),六個(gè)教學(xué)環(huán)節(jié)構(gòu)成。 。ㄒ唬⿵(fù)習(xí)引入: 1、全國統(tǒng)一鞋號(hào)中成年女鞋的`各種尺碼(表示鞋底長,單位是cm)分別是21,22,23,24,25。 2、某劇場前10排的座位數(shù)分別是:38,40,42,44,46,48,50,52,54,56。 3、某長跑運(yùn)動(dòng)員7天里每天的訓(xùn)練量(單位:m)是:7500,8000,8500,9000,9500,10000,10500。 共同特點(diǎn):從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都等于同一個(gè)常數(shù)。 。ǘ 新課探究。 1、給出等差數(shù)列的概念: 如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列, 這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強(qiáng)調(diào): (1)“從第二項(xiàng)起”滿足條件; 。2)公差d一定是由后項(xiàng)減前項(xiàng)所得; 。3)公差可以是正數(shù)、負(fù)數(shù),也可以是0。 2、推導(dǎo)等差數(shù)列的通項(xiàng)公式:若等差數(shù)列{an }的首項(xiàng)是 ,公差是d, 則據(jù)其定義可得:— =d 即: = +d;– =d 即: = +d = +2d;– =d 即: = +d = +3d……進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:= +(n—1)d 此時(shí)指出: 這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法——————迭加法:– =d;– =d;– =d……– =d。 將這(n—1)個(gè)等式左右兩邊分別相加,就可以得到 – = (n—1) d即 = +(n—1) d 當(dāng)n=1時(shí),上面等式兩邊均為 ,即等式也是成立的,這表明當(dāng)n∈ 時(shí)上面公式都成立,因此它就是等差數(shù)列{an }的通項(xiàng)公式。 接著舉例說明:若一個(gè)等差數(shù)列{ }的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是: =1+(n—1)×2 , 即 =2n—1 以此來鞏固等差數(shù)列通項(xiàng)公式運(yùn)用 。ㄈ⿷(yīng)用舉例。 這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對(duì)通項(xiàng)公式含義的理解以及對(duì)通項(xiàng)公式的運(yùn)用,提高解決實(shí)際問題的能力。通過例1和例2向?qū)W生表明:要用運(yùn)動(dòng)變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的 、d、n、 這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另一部分量。 例1 : 。1)求等差數(shù)列8,5,2,…的第20項(xiàng); 。2)—401是不是等差數(shù)列—5,—9,—13,…的項(xiàng)?如果是,是第幾項(xiàng)? 第二問實(shí)際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項(xiàng)公式。 例2: 在等差數(shù)列{an}中,已知 =10, =31,求首項(xiàng) 與公差d。 在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對(duì)通項(xiàng)公式的鞏固。 例3: 梯子的最高一級(jí)寬33cm,最低一級(jí)寬110cm,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列。計(jì)算中間各級(jí)的寬度。 。ㄋ模┓答伨毩(xí)。 1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時(shí)間內(nèi)完成)。目的:使學(xué)生熟悉通項(xiàng)公式,對(duì)學(xué)生進(jìn)行基本技能訓(xùn)練。 2、若數(shù)列{ } 是等差數(shù)列,若 = k ,(k為常數(shù))試證明:數(shù)列{ }是等差數(shù)列。 此題是對(duì)學(xué)生進(jìn)行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時(shí)強(qiáng)化了等差數(shù)列的概念。 。ㄎ澹w納小結(jié) 。(由學(xué)生總結(jié)這節(jié)課的收獲) 1、等差數(shù)列的概念及數(shù)學(xué)表達(dá)式。 強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù) 2、等差數(shù)列的通項(xiàng)公式 = +(n—1) d會(huì)知三求一 (六) 布置作業(yè)。 1、必做題:課本P114 習(xí)題3。2第2,6 題。 2、選做題:已知等差數(shù)列{ }的首項(xiàng) = —24,從第10項(xiàng)開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求) 四、板書設(shè)計(jì)。 在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“同一常數(shù)”等幾個(gè)字用紅色粉筆標(biāo)注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書充分體現(xiàn)了精講多練的教學(xué)方法。 一、教材分析 1、教材的地位和作用: 數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對(duì)比的依據(jù)。 2、教學(xué)目標(biāo) 根據(jù)教學(xué)大綱的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標(biāo) a在知識(shí)上:理解并掌握等差數(shù)列的`概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建!钡乃枷敕椒ú⒛苓\(yùn)用。 b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。 c在情感上:通過對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。 3、教學(xué)重點(diǎn)和難點(diǎn) 根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點(diǎn)為: ①等差數(shù)列的概念。 ②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。 由于學(xué)生第一次接觸不完全歸納法,對(duì)此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項(xiàng)公式是這節(jié)課的一個(gè)難點(diǎn)。同時(shí),學(xué)生對(duì)“數(shù)學(xué)建模”的思想方法較為陌生,因此用數(shù)學(xué)思想解決實(shí)際問題是本節(jié)課的另一個(gè)難點(diǎn)。 二、學(xué)情分析 對(duì)于三中的高一學(xué)生,知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了教強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。 二、教法分析 針對(duì)高中生這一思維特點(diǎn)和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。 三、學(xué)法指導(dǎo) 在引導(dǎo)分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。 四、教學(xué)程序 本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用例解(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個(gè)教學(xué)環(huán)節(jié)構(gòu)成。 (一)復(fù)習(xí)引入: 1.從函數(shù)觀點(diǎn)看,數(shù)列可看作是定義域?yàn)開_________對(duì)應(yīng)的一列函數(shù)值,從而數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)的______ 。(N﹡;解析式) 通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備。 2. 小明目前會(huì)100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為: 100,98,96,94,92 ① 3. 小芳只會(huì)5個(gè)單詞,他決定從今天起每天背記10個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為 5,10,15,20,25 ② 通過練習(xí)2和3 引出兩個(gè)具體的等差數(shù)列,初步認(rèn)識(shí)等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識(shí)創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個(gè)數(shù)列特點(diǎn),引出等差數(shù)列的概念,對(duì)問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。 (二) 新課探究 1、由引入自然的給出等差數(shù)列的概念: 如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列, 這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強(qiáng)調(diào): ① “從第二項(xiàng)起”滿足條件; 、诠頳一定是由后項(xiàng)減前項(xiàng)所得; ③每一項(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)” ); 在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達(dá)式: an+1-an=d (n≥1) 同時(shí)為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。 1. 9 ,8,7,6,5,4,……;√ d=-1 2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01 3. 0,0,0,0,0,0,…….; √ d=0 4. 1,2,3,2,3,4,……;× 5. 1,0,1,0,1,……× 其中第一個(gè)數(shù)列公差<0,>0,第三個(gè)數(shù)列公差=0 由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0 說課的內(nèi)容是《對(duì)數(shù)函數(shù)》,現(xiàn)就教材、教法、學(xué)法、教學(xué)程序、板書五個(gè)方面進(jìn)行說明。懇請?jiān)谧母魑粚<摇⒗蠋熍u(píng)指正。 一、說教材 1、教材的地位、作用及編寫意圖 《對(duì)數(shù)函數(shù)》出現(xiàn)在職業(yè)高中數(shù)學(xué)第一冊第四章第八節(jié)。函數(shù)是高中數(shù)學(xué)的核心,對(duì)數(shù)函數(shù)是函數(shù)的重要分支,對(duì)數(shù)函數(shù)的知識(shí)在數(shù)學(xué)和其 他許多學(xué)科中有著廣泛的應(yīng)用;學(xué)生已經(jīng)學(xué)習(xí)了對(duì)數(shù)、反函數(shù)以及指數(shù)函數(shù)等內(nèi)容,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用;“對(duì)數(shù)函數(shù)”這節(jié)教材,指出對(duì)數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),反映了兩個(gè)變量的相互關(guān)系,蘊(yùn)含了函數(shù)與方程的數(shù)學(xué)思想與數(shù)學(xué)方法,是以后數(shù)學(xué)學(xué)習(xí)中不可缺少的部分,也是高考的必考內(nèi)容。 2、教學(xué)目標(biāo)的確定及依據(jù)。 依據(jù)教學(xué)大綱和學(xué)生獲得知識(shí)、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學(xué)目標(biāo): (1) 知識(shí)目標(biāo):理解對(duì)數(shù)函數(shù)的概念、掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì)。 (2) 能力目標(biāo):培養(yǎng)學(xué)生自主學(xué)習(xí)、綜合歸納、數(shù)形結(jié)合的能力。 (3) 德育目標(biāo):培養(yǎng)學(xué)生對(duì)待知識(shí)的科學(xué)態(tài)度、勇于探索和創(chuàng)新的精神。 (4) 情感目標(biāo):在民主、和諧的教學(xué)氣氛中,促進(jìn)師生的情感交流。 3、教學(xué)重點(diǎn)、難點(diǎn)及關(guān)鍵 重點(diǎn):對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì); 難點(diǎn):利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì); 關(guān)鍵:抓住對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng)。 二、說教法 教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動(dòng)學(xué)生的積極性、主動(dòng)性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法: (1)啟發(fā)引導(dǎo)學(xué)生思考、分析、實(shí)驗(yàn)、探索、歸納。 (2)采用“從特殊到一般”、“從具體到抽象”的'方法。 (3)體現(xiàn)“對(duì)比聯(lián)系”、“數(shù)形結(jié)合”及“分類討論”的思想方法。 (4)多媒體演示法。 三、說學(xué)法 教給學(xué)生方法比教給學(xué)生知識(shí)更重要,本節(jié)課注重調(diào)動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導(dǎo): (1)對(duì)照比較學(xué)習(xí)法:學(xué)習(xí)對(duì)數(shù)函數(shù),處處與指數(shù)函數(shù)相對(duì)照。 (2)探究式學(xué)習(xí)法:學(xué)生通過分析、探索、得出對(duì)數(shù)函數(shù)的定義。 (3)自主性學(xué)習(xí)法:通過實(shí)驗(yàn)畫出函數(shù)圖象、觀察圖象自得其性質(zhì)。 (4)反饋練習(xí)法:檢驗(yàn)知識(shí)的應(yīng)用情況,找出未掌握的內(nèi)容及其差距。 這樣可發(fā)揮學(xué)生的主觀能動(dòng)性,有利于提高學(xué)生的各種能力。 四、說教學(xué)程序 1、復(fù)習(xí)導(dǎo)入 (1)復(fù)習(xí)提問:什么是對(duì)數(shù)?如何求反函數(shù)?指數(shù)函數(shù)的圖象和性質(zhì)如何?學(xué)生回答,并利用課件展示一下指數(shù)函數(shù)的圖象和性質(zhì)。 設(shè)計(jì)意圖:設(shè)計(jì)的提問既與本節(jié)內(nèi)容有密切關(guān)系,又有利于引入新課,為學(xué)生理解新知清除了障礙,有意識(shí)地培養(yǎng)學(xué)生分析問題的能力。 。2)導(dǎo)言:指數(shù)函數(shù)有沒有反函數(shù)?如果有,如何求指數(shù)函數(shù)的反函數(shù)?它的反函數(shù)是什么? 設(shè)計(jì)意圖:這樣的導(dǎo)言可激發(fā)學(xué)生求知欲,使學(xué)生渴望知道問題的答案。 2、認(rèn)定目標(biāo)(出示教學(xué)目標(biāo)) 3、導(dǎo)學(xué)達(dá)標(biāo) 按"教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線”的原則,安排師生互動(dòng)活動(dòng). 。1)對(duì)數(shù)函數(shù)的概念 引導(dǎo)學(xué)生從對(duì)數(shù)式與指數(shù)式的關(guān)系及反函數(shù)的概念進(jìn)行分析并推導(dǎo)出,指數(shù)函數(shù)有反函數(shù),并且y=ax(a>0且a≠1)的反函數(shù)是 y=logax,見課件。 把函數(shù)y=logax叫做對(duì)數(shù)函數(shù),其中a>0且a≠1。從而引出對(duì)數(shù)函數(shù)的概念,展示課件。 設(shè)計(jì)意圖:對(duì)數(shù)函數(shù)的概念比較抽象,利用已經(jīng)學(xué)過的知識(shí)逐步分析,這樣引出對(duì)數(shù)函數(shù)的概念過渡自然,學(xué)生易于接受。 因?yàn)閷?duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),讓學(xué)生比較它們的定義域、值域、對(duì)應(yīng)法則及圖象間的關(guān)系,培養(yǎng)學(xué)生參與意識(shí),通過比較充分體現(xiàn)指數(shù)函數(shù)及對(duì)數(shù)函數(shù)的內(nèi)在聯(lián)系。 。2)對(duì)數(shù)函數(shù)的圖象 提問:同指數(shù)函數(shù)一樣,在學(xué)習(xí)了函數(shù)的定義之后,我們要畫函數(shù)的圖象,應(yīng)如何畫對(duì)數(shù)函數(shù)的圖象呢?讓學(xué)生思考并回答,用描點(diǎn)法畫圖。教師肯定,我們每學(xué)習(xí)一種新的函數(shù)都可以根據(jù)函數(shù)的解析式,列表、描點(diǎn)畫圖。再考慮一下,我們還可以用什么方法畫出對(duì)數(shù)函數(shù)的圖象呢? 讓學(xué)生回答,畫出指數(shù)函數(shù)關(guān)于直線y=x對(duì)稱的圖象,就是對(duì)數(shù)函數(shù)的圖象。 教師總結(jié):我們畫對(duì)數(shù)函數(shù)的圖象,既可用描點(diǎn)法,也可用圖象變換法,下邊我們利用兩種方法畫對(duì)數(shù)函數(shù)的圖象。 方法一(描點(diǎn)法)首先列出x,y(y=log2x,y=log x)值的對(duì)應(yīng)表,因?yàn)閷?duì)數(shù)函數(shù)的定義域?yàn)閤>0,因此可取x= , , ,1,2,4,8,請計(jì)算對(duì)應(yīng)的y值,然后在坐標(biāo)系內(nèi)描點(diǎn)、畫出它們的圖象. 方法二(圖象變換法)因?yàn)閷?duì)數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù), 圖象關(guān)于直線y=x對(duì)稱,所以只要畫出y=ax的圖象關(guān)于直線y=x對(duì)稱的曲線,就可以得到y(tǒng)=logax.的圖象。學(xué)生動(dòng)手做實(shí)驗(yàn),先描出y=2x的圖象,畫出它關(guān)于直線y=x對(duì)稱的曲線,它就是y=log2x的圖象;類似的從y=( )x 的圖象畫出y=log x的圖象,再出示課件,教師加以解釋。 設(shè)計(jì)意圖:用這種對(duì)稱變換的方法畫函數(shù)的圖象,可以加深和鞏固學(xué)生對(duì)互為反函數(shù)的兩個(gè)函數(shù)之間的認(rèn)識(shí),便于將對(duì)數(shù)函數(shù)的圖象和性質(zhì)與指數(shù)函數(shù)的圖象和性質(zhì)對(duì)照,但使用描點(diǎn)法畫函數(shù)圖象更為方便,兩種方法可同時(shí)進(jìn)行,分析畫法之后,可讓學(xué)生自由選擇畫法。 這樣可以充分調(diào)動(dòng)學(xué)生自主學(xué)習(xí)的積極性。 。3)對(duì)數(shù)函數(shù)的性質(zhì) 在理解對(duì)數(shù)函數(shù)定義的基礎(chǔ)上,掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì)是本節(jié)的重點(diǎn),關(guān)鍵在于抓住對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng),講對(duì)數(shù)函數(shù)的性質(zhì),可先在同一坐標(biāo)系內(nèi)畫出上述兩個(gè)對(duì)數(shù)函數(shù)的圖象,根據(jù)圖象讓學(xué)生列表分析它們的圖象特征和性質(zhì),然后出示課件,教師補(bǔ)充。 作了以上分析之后,再分a>1與0<a<1兩種情況列出對(duì)數(shù)函數(shù)圖象和性質(zhì)表,體現(xiàn)了從“特殊到一般”、“從具體到抽象”的方法。出示課件并進(jìn)行詳細(xì)講解,把對(duì)數(shù)函數(shù)圖象和性質(zhì)列成一個(gè)表以便讓學(xué)生對(duì)比著記憶。 設(shè)計(jì)意圖:這種講法既嚴(yán)謹(jǐn)又直觀易懂,還能讓學(xué)生主動(dòng)參與教學(xué)過程,對(duì)培養(yǎng)學(xué)生的創(chuàng)新能力有幫助,學(xué)生易于接受易于掌握,而且利用表格,可以突破難點(diǎn)。 由于對(duì)數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),它們的定義域與值域正好互換,為了揭示這兩種函數(shù)之間的內(nèi)在聯(lián)系,列出指數(shù)函數(shù)與對(duì)數(shù)函數(shù)對(duì)照表(見課件) 設(shè)計(jì)意圖:通過比較對(duì)照的方法,學(xué)生更好地掌握兩個(gè)函數(shù)的定義、圖象和性質(zhì),認(rèn)識(shí)兩個(gè)函數(shù)的內(nèi)在聯(lián)系,提高學(xué)生對(duì)函數(shù)思想方法的認(rèn)識(shí)和應(yīng)用意識(shí)。 4、鞏固達(dá)標(biāo)(見課件) 這一訓(xùn)練是為了培養(yǎng)學(xué)生利用所學(xué)知識(shí)解決實(shí)際問題的能力,通過這個(gè)環(huán)節(jié)學(xué)生可以加深對(duì)本節(jié)知識(shí)的理解和運(yùn)用,并從講解過程中找出所涉及的知識(shí)點(diǎn),予以總結(jié)。充分體現(xiàn)“數(shù)形結(jié)合”和“分類討論”的思想。 5、反饋練習(xí)(見課件) 習(xí)題是對(duì)學(xué)生所學(xué)知識(shí)的反饋過程,教師可以了解學(xué)生對(duì)知識(shí)掌握的情況。 6、歸納總結(jié)(見課件) 引導(dǎo)學(xué)生對(duì)主要知識(shí)進(jìn)行回顧,使學(xué)生對(duì)本節(jié)有一個(gè)整體的把握,因此,從三方面進(jìn)行總結(jié):對(duì)數(shù)函數(shù)的概念、對(duì)數(shù)函數(shù)的圖象和性質(zhì)、比較對(duì)數(shù)值大小的方法。 7、課外作業(yè) :(1)完成P178 A組1、2、3題 。2)當(dāng)?shù)讛?shù)a>1與0<a<1時(shí),底數(shù)不同,對(duì)數(shù)函數(shù)圖象有什么持點(diǎn)? 五、說板書 板書設(shè)計(jì)為表格式(見課件),這樣的板書簡明清楚,重點(diǎn)突出,加深學(xué)生對(duì)圖象和性質(zhì)的理解和掌握,便于記憶,有利于提高教學(xué)效果。 本節(jié)課是高中數(shù)學(xué)第二冊第七章《曲線和圓的方程》第五節(jié)《曲線和方程》,這是一節(jié)教學(xué)研討課,是在大力提倡改革課堂教學(xué)模式、提高課堂效益、開發(fā)學(xué)生智力等多方面能力的前提下開設(shè)的,目的是努力尋求一種全新的課堂教學(xué)模式,能夠讓信息技術(shù)和數(shù)學(xué)課本知識(shí)有效的融合在一起,讓學(xué)生知道,學(xué)習(xí)數(shù)學(xué),不僅僅是做題目,而且是研究題目,提高了學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣。 一、教材分析 《平面動(dòng)點(diǎn)的軌跡》這部分內(nèi)容從理論上揭示了幾何中的“形”與代數(shù)中的“數(shù)”相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,同時(shí)也體現(xiàn)解析幾何的基本思想。軌跡問題具有深厚的生活背景,求平面動(dòng)點(diǎn)的軌跡方程涉及集合、方程、三角平面幾何等基礎(chǔ)知識(shí),其中滲透著運(yùn)動(dòng)與變化、數(shù)形結(jié)合的等思想,是中學(xué)數(shù)學(xué)的重要內(nèi)容,也是歷年高考數(shù)學(xué)考查的重點(diǎn)之一。 二、對(duì)數(shù)學(xué)目標(biāo)的闡述 “以知識(shí)為載體,注重學(xué)生的能力、良好的意志品質(zhì)及合作學(xué)習(xí)精神的培養(yǎng)”是本教學(xué)設(shè)計(jì)中貫穿始終的一個(gè)重要教學(xué)理念。為此本課的知識(shí)目標(biāo)設(shè)定為三條: (1)了解解析幾何的基本思想、明確它所研究的基本問題 。2)了解用坐標(biāo)法研究幾何問題的有關(guān)知識(shí)和觀點(diǎn) 。3)初步掌握根據(jù)已知條件求曲線方程的方法,同時(shí)進(jìn)一步加深理解“曲線的方程、方程的曲線”的概念。 三、對(duì)學(xué)生能力目標(biāo)的培養(yǎng) 本節(jié)課的設(shè)計(jì)著眼點(diǎn)是讓學(xué)生集體參與、主動(dòng)參與,培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦的能力,鼓勵(lì)多向思維、積極活動(dòng)、勇于探索。知識(shí)的學(xué)習(xí)和能力的提高是同步的,從本課的設(shè)計(jì)不難看出對(duì)學(xué)生能力目標(biāo)是:通過自我思考、同桌交流、師生互議、實(shí)際探究等課堂活動(dòng),獲取知識(shí)。同時(shí),培養(yǎng)學(xué)生探究學(xué)習(xí)、合作學(xué)習(xí)的意識(shí),強(qiáng)化數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想,提高分析問題、解決問題的能力。 四、對(duì)學(xué)生個(gè)性品質(zhì)和情感教育的培養(yǎng) 設(shè)計(jì)者試圖利用動(dòng)畫演示軌跡的形成過程,使課堂氣氛活躍,讓學(xué)生感受動(dòng)點(diǎn)軌跡的動(dòng)態(tài)美,使課堂教學(xué)內(nèi)容形象化,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好教學(xué)的信心。而鼓勵(lì)學(xué)生積極思考、勇于探索,培養(yǎng)學(xué)生良好的意志品質(zhì),樹立競爭意識(shí)與合作精神,感受合作交流帶來的'成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣則是本節(jié)課要達(dá)成的個(gè)性品質(zhì)和情感目標(biāo)。 五、關(guān)于教學(xué)方法與教學(xué)法手段的選用 新課程強(qiáng)調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,教師要由傳統(tǒng)意義上知識(shí)的傳授者和學(xué)生的管理者,改變成為以學(xué)生為中心,讓學(xué)生真正成為學(xué)習(xí)的主人而不是知識(shí)的奴隸,基于此,根據(jù)本節(jié)課的教學(xué)內(nèi)容和學(xué)生的實(shí)際水平,采用的是引導(dǎo)發(fā)現(xiàn)法和計(jì)算機(jī)軟件——《幾何畫板》實(shí)驗(yàn)輔助教學(xué)。 六、、關(guān)于教學(xué)程序的設(shè)計(jì) 1、創(chuàng)設(shè)情景,引入課題 平面解析幾何的核心是“坐標(biāo)法”,用代數(shù)的方法研究幾何圖的性質(zhì)。主要包括兩個(gè)部分:求曲線的方程;通過研究方程研究曲線的性質(zhì)。在傳統(tǒng)的教學(xué)中,動(dòng)點(diǎn)并不動(dòng)!稁缀萎嫲濉返奶攸c(diǎn)是“動(dòng)”。可以在動(dòng)態(tài)中觀察數(shù)學(xué)現(xiàn)象,探究幾何圖形的性質(zhì)。在《幾何畫板》支持下,“動(dòng)點(diǎn)”真的動(dòng)起來了。在動(dòng)態(tài)中觀察,觀察變動(dòng)中不變的規(guī)律觸及到問題的本質(zhì),可以更好地讓學(xué)生參與到教學(xué)過程中來。讓學(xué)生動(dòng)手操作,發(fā)現(xiàn)數(shù)學(xué)規(guī)律。 例 1、已知點(diǎn)P是圓上的一個(gè)動(dòng)點(diǎn),點(diǎn)A是X軸上的定點(diǎn),坐標(biāo)是(12、0)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PA的中點(diǎn)M的軌跡是什么? 第一步:讓學(xué)生借助畫板動(dòng)手探究軌跡 第二步:要求學(xué)生求出軌跡方程、驗(yàn)證軌跡 解法一:設(shè)M(x,y)則,由點(diǎn)p是圓上的點(diǎn)得,,化簡得: 2、問題提出,引入新課 例2、已知B是定圓A內(nèi)一定點(diǎn),C是圓上的動(dòng)點(diǎn),L是線段BC的垂直平分線。交點(diǎn)為P,M為L與直徑CD的交點(diǎn),當(dāng)點(diǎn)C在圓上運(yùn)動(dòng)時(shí),探索直線L上哪個(gè)點(diǎn)的運(yùn)行時(shí)橢圓? 設(shè)計(jì)意圖:借助數(shù)學(xué)實(shí)驗(yàn),把原本屬于教師行為的設(shè)疑激趣還原于學(xué)生,讓學(xué)生自己在實(shí)踐過程中發(fā)現(xiàn)疑問,更容易激發(fā)學(xué)生學(xué)習(xí)的熱情,促使他們主動(dòng)發(fā)現(xiàn)、主動(dòng)學(xué)習(xí)。 第一步:分解動(dòng)作,向?qū)W生提出幾個(gè)問題: 問題1:當(dāng)點(diǎn)C在圓上運(yùn)動(dòng)時(shí),直線 圍成一個(gè)橢圓,上哪個(gè)點(diǎn)在這個(gè)橢圓上?(為什么)注意觀察點(diǎn)P與點(diǎn)M 問題2:CD是圓A的直徑,直線L與CD交于M,求M的軌跡方程。 問題3、改變點(diǎn)B的位置,當(dāng)點(diǎn)B在圓外時(shí),你的結(jié)論該做怎樣的修改呢? 學(xué)生活動(dòng):第一步:利用網(wǎng)絡(luò)平臺(tái)展示學(xué)生得到的軌跡(教師有意識(shí)的整合在一起) 第二步:課堂完成學(xué)生歸納出來的問題1,問題2和3課后完成。 整個(gè)教學(xué)過程,體現(xiàn)了四個(gè)統(tǒng)一:既學(xué)習(xí)書本知識(shí)與投身實(shí)踐的統(tǒng)一、書本學(xué)習(xí)與現(xiàn)代信息技術(shù)學(xué)習(xí)的統(tǒng)一、書本知識(shí)與資源拓展的統(tǒng)一、課堂學(xué)習(xí)與課外實(shí)踐的統(tǒng)一。本節(jié)課學(xué)生精神飽滿、興趣濃厚、合作積極,與教師保持良好的互動(dòng),還不時(shí)產(chǎn)生一些爭執(zhí),給我提出了一些新的問題,折射出我不足的方面,促進(jìn)了我的進(jìn)步與提高,師生間的教與學(xué)就像一面鏡子,互相折射,共同進(jìn)步。 通過本節(jié)課的學(xué)習(xí),學(xué)生不僅掌握了動(dòng)點(diǎn)軌跡的求法,而且通過作圖掌握了《幾何畫板》這個(gè)軟件,通過方程的推導(dǎo),更加熟悉了動(dòng)點(diǎn)軌跡的求法,而且通過作圖掌握了幾何的基本思想“以數(shù)論形,數(shù)形結(jié)合”,提高了運(yùn)用數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,通過思路的探索和軌跡方程的推導(dǎo),學(xué)生的思維品質(zhì)得以優(yōu)化,學(xué)會(huì)辯證地看待問題,享受了數(shù)學(xué)的美。 一、教學(xué)背景 1、教材分析 《對(duì)數(shù)函數(shù)及其性質(zhì)》是人教版普通高中課程數(shù)學(xué)必修1第二章第二節(jié)第二部分內(nèi)容,對(duì)數(shù)函數(shù)是一類特殊的函數(shù),在實(shí)際生產(chǎn)過程中運(yùn)用很廣泛。同時(shí),通過對(duì)對(duì)數(shù)函數(shù)及其圖象和性質(zhì)的研究,既可以從具體的感性認(rèn)識(shí)上來對(duì)函數(shù)的圖象和性質(zhì)更好的理解,也可為以后研究冪函數(shù)、三角函數(shù)等其它函數(shù)的圖象和性質(zhì)起示范和鋪墊作用。 2、學(xué)情分析 剛?cè)敫咭坏膶W(xué)生,仍保留著初中生許多學(xué)習(xí)特點(diǎn),能力發(fā)展正處于形象思維向抽象思維轉(zhuǎn)折階段,但更注重形象思維。由于函數(shù)概念十分抽象,對(duì)數(shù)函數(shù)又以對(duì)數(shù)運(yùn)算為基礎(chǔ),同時(shí),初中函數(shù)教學(xué)要求降低,導(dǎo)致初中生運(yùn)算能力有所下降,這雙重問題增加了對(duì)數(shù)函數(shù)教學(xué)的難度。但在此之前,學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)函數(shù)及其性質(zhì),學(xué)生已經(jīng)初步對(duì)新函數(shù)的研究方法有所了解,為本節(jié)的學(xué)習(xí)奠定了基礎(chǔ)。 基于以上分析,我制定如下教學(xué)目標(biāo)及重、難點(diǎn): 3、教學(xué)目標(biāo) 知識(shí)與技能: 初步掌握對(duì)數(shù)函數(shù)的概念、圖象及性質(zhì),并應(yīng)用性質(zhì)解決簡單數(shù)學(xué)問題。 過程與方法: 經(jīng)歷對(duì)數(shù)函數(shù)性質(zhì)的探索過程,體會(huì)函數(shù)思想、分類討論思想和轉(zhuǎn)化思想在解決具體問題中的應(yīng)用。 情感態(tài)度與價(jià)值觀: 培養(yǎng)勇于探索的精神,培養(yǎng)學(xué)生的成功意識(shí),合作交流的學(xué)習(xí)方式,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的興趣。 4、教學(xué)重、難點(diǎn) 重點(diǎn):理解對(duì)數(shù)函數(shù)的概念,掌握對(duì)數(shù)函數(shù)的圖象及性質(zhì)。 難點(diǎn):由圖象探究函數(shù)性質(zhì),應(yīng)用性質(zhì)解決具體問題。 二、教學(xué)方法及手段 1、教法 根據(jù)建構(gòu)主義的學(xué)習(xí)理論和新課程標(biāo)準(zhǔn)理念,本節(jié)課以自主探究法和講解法為主,以練習(xí)法為輔,引導(dǎo)學(xué)生自己觀察、歸納、分析,培養(yǎng)學(xué)生采用自主探究的方法進(jìn)行學(xué)習(xí),使學(xué)生體會(huì)學(xué)習(xí)的樂趣。 2、學(xué)法 (1)類比學(xué)習(xí):通過指數(shù)函數(shù)類比學(xué)習(xí)對(duì)數(shù)函數(shù)。 (2)小組合作學(xué)習(xí):將學(xué)生分成7個(gè)小組,通過小組內(nèi)討論交流,歸納得出對(duì)數(shù)函數(shù)的圖象和性質(zhì)。 3、教學(xué)手段 采用多媒體輔助教學(xué)。 三、教學(xué)教程 1、情境引入 通過銀行的復(fù)利計(jì)算問題,逐步引出對(duì)數(shù)函數(shù)。 設(shè)計(jì)意圖:情景來源于生活,通過生活中的`實(shí)例來反應(yīng)對(duì)數(shù)函數(shù)的重要性,目的在于激發(fā)學(xué)生學(xué)習(xí)的興趣,讓每一個(gè)學(xué)生都主動(dòng)融入到學(xué)習(xí)中。 2、新知探索 通過上述模型,讓學(xué)生給對(duì)數(shù)函數(shù)下定義。 學(xué)生用描點(diǎn)法畫和的圖象,教師再借助于計(jì)算機(jī)再畫幾個(gè)對(duì)數(shù)函數(shù)的圖象,讓學(xué)生觀察并總結(jié)出一般情況。 以“你們能根據(jù)圖象歸納出對(duì)數(shù)函數(shù)的性質(zhì)嗎?”設(shè)問,引導(dǎo)學(xué)生能過圖象的特征得出對(duì)應(yīng)的性質(zhì)。 例比較下列各組數(shù)中兩個(gè)值的大小: (1)log23.4和log28.5; (2) log0.33.4和log0.38.5; (3) loga3.4和loga8.5(a>0,且a≠1); (4) log23.4和log3.42; (5) log3.42和log0.38.5。 3、鞏固練習(xí) (1)比較大。 lg6________lg8;ln1.3________ (2)比較正數(shù)m,n的大。 若,則m_____n;若,則m_____n. 4、總結(jié)提煉 (1)自主探究新知識(shí)的方法; (2)本節(jié)課應(yīng)用了哪些數(shù)學(xué)思想。 5、布置作業(yè) (1)閱讀教材P70~P72,梳理對(duì)數(shù)函數(shù)的概念、圖象、性質(zhì)等知識(shí)點(diǎn); (2)教材P74—7、8 四、板書設(shè)計(jì) 2.2.2對(duì)數(shù)函數(shù)及其性質(zhì) 一、概念例題 二、圖象 三、性質(zhì) 四、教學(xué)反思 尊敬的各位專家、評(píng)委: 下午好!我的抽簽序號(hào)是xx,今天我說課的課題是人教A版必修1第一章第二節(jié)《函數(shù)及其表示》、 我嘗試?yán)眯抡n標(biāo)的理念來指導(dǎo)教學(xué),對(duì)于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標(biāo)分析、教法學(xué)法分析、教學(xué)過程分析和評(píng)價(jià)分析五個(gè)方面來談?wù)勎覍?duì)教材的理解和教學(xué)的設(shè)計(jì),敬請各位專家、評(píng)委批評(píng)指正。 一、教材分析 。ㄒ唬┑匚慌c作用 函數(shù)是中學(xué)數(shù)學(xué)中最重要的基本概念之一,函數(shù)的學(xué)習(xí)大致可分為三個(gè)階段:第一階段在義務(wù)教育階段,學(xué)習(xí)了函數(shù)的描述性概念,接觸了正比例函數(shù),凡比例函數(shù),一次函數(shù),二次函數(shù)等;本章學(xué)習(xí)的函數(shù)的概念、基本性質(zhì)與后續(xù)將要學(xué)習(xí)的基本初等函數(shù)(i)和(iI)是函數(shù)學(xué)習(xí)的第二階段,是對(duì)函數(shù)概念的再認(rèn)識(shí)階段;第三階段在選修系列得導(dǎo)數(shù)及其應(yīng)用的學(xué)習(xí),使函數(shù)學(xué)習(xí)的進(jìn)一步深化和提高。因此函數(shù)及其表述這一節(jié)在高中數(shù)學(xué)中,起著承上啟下的作用,函數(shù)的思想貫穿高中數(shù)學(xué)的始終,學(xué)好這章不僅在知識(shí)方面,更重要的是在函數(shù)的思想、方法方面,將會(huì)讓學(xué)生在今后的學(xué)習(xí)、工作和生活中受益無窮。 本小節(jié)介紹了函數(shù)概念,及表示方法、我將本小節(jié)分為兩課時(shí),第一課時(shí)完成函數(shù)概念的教學(xué),第二課時(shí)完成函數(shù)圖象的教學(xué)。這里我主要談?wù)労瘮?shù)概念的教學(xué)。 函數(shù)的概念部分用三個(gè)實(shí)際例子設(shè)計(jì)數(shù)學(xué)情境,讓學(xué)生探尋變量和變量的對(duì)應(yīng)關(guān)系,結(jié)合初中學(xué)習(xí)的函數(shù)理論,在集合論的基礎(chǔ)上,促使學(xué)生建構(gòu)出函數(shù)的概念,體驗(yàn)結(jié)合舊知識(shí),探索新知識(shí),研究新問題的快樂。 (二)學(xué)情分析 。1)在初中,學(xué)生已經(jīng)學(xué)習(xí)過函數(shù)的概念,并且知道函數(shù)是變量之間的相互依賴關(guān)系、 。2)學(xué)生思維活潑,積極性高,已初步形成對(duì)數(shù)學(xué)問題的合作探究能力。 。3)學(xué)生層次參次不齊,個(gè)體差異比較明顯。 二、目標(biāo)分析 根據(jù)《函數(shù)的概念》在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實(shí)現(xiàn)如下教學(xué)目標(biāo): 。ㄒ唬┙虒W(xué)目標(biāo) 。1)知識(shí)與技能 1進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,○能用集合與對(duì)應(yīng)的語言刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用 2了解構(gòu)成函數(shù)的要素,○理解函數(shù)定義域和值域的概念,并會(huì)求一些簡單函數(shù)的定義域。 ③由實(shí)際問題出發(fā),培養(yǎng)學(xué)生探索知識(shí)和抽象概括知識(shí)等方面的能力。 (2)過程與方法 引導(dǎo)學(xué)生觀察,探尋變量和變量的對(duì)應(yīng)關(guān)系,通過歸納、抽象、概括,自主建構(gòu)函數(shù)概念;體驗(yàn)結(jié)合舊知識(shí)探索新知識(shí),研究新問題的快樂 。3)情感態(tài)度與價(jià)值觀 通過對(duì)函數(shù)概念形成的探究過程培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì) (二)重點(diǎn)難點(diǎn) 重點(diǎn):體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,正確理解函數(shù)的概念難點(diǎn):函數(shù)概念及符號(hào)y=f(x)的理解 三、教法、學(xué)法分析 。ㄒ唬┙谭 在本課的教學(xué)過程中采用設(shè)問、引導(dǎo)、啟發(fā)、發(fā)現(xiàn)的方法,并靈活應(yīng)用多媒體手段,以學(xué)生為主體,創(chuàng)設(shè)和諧、愉悅互動(dòng)的環(huán)境,組織學(xué)生自主、合作的探究活動(dòng),引導(dǎo)學(xué)生探索新知識(shí)。 。ǘ⿲W(xué)法 首先,學(xué)生通過研究教師在課堂上提供的實(shí)例和提出的問題,展開分析和討論,發(fā)表個(gè)人的見解,接下來采用學(xué)生評(píng)價(jià)學(xué)生的方法提煉問題的中心思想。其次,學(xué)生通過對(duì)新舊兩種函數(shù)定義的對(duì)比,在集合論的觀點(diǎn)下初步建構(gòu)出函數(shù)的概念。最后,學(xué)生在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。 四、教學(xué)過程分析 。ㄒ唬┙虒W(xué)過程設(shè)計(jì) 。1)創(chuàng)設(shè)情境,提出問題。 引入課本的三個(gè)具體實(shí)例,引發(fā)學(xué)生的探索 對(duì)于例1:可以分別讓學(xué)生計(jì)算t=1,2,5,10時(shí),炮彈距離地面多高,同時(shí)關(guān)注t和h的變化范圍,引導(dǎo)學(xué)生體會(huì)有解析式刻畫變量之間的對(duì)應(yīng)關(guān)系,啟發(fā)學(xué)生用集合與對(duì)應(yīng)的語言描述函數(shù)關(guān)系: 對(duì)于例2:可以讓學(xué)生觀察圖像,找出臭氧空洞面積的年份或者臭氧空洞面積大約為20xx萬平方千米所對(duì)應(yīng)的年份,引導(dǎo)學(xué)生體會(huì)圖像對(duì)刻畫變量之間的對(duì)應(yīng)關(guān)系,并關(guān)注t和s的范圍。啟發(fā)學(xué)生再次利用集合與對(duì)應(yīng)的語言描述函數(shù)關(guān)系: 對(duì)于例3:恩格爾系數(shù)與時(shí)間之間的關(guān)系是否和前兩個(gè)例題的兩個(gè)變量之間的關(guān)系相似?如何用集合和對(duì)應(yīng)的語言進(jìn)行描述 。2)引導(dǎo)探究,建構(gòu)概念。 。1)進(jìn)一步提問:“你覺得這三個(gè)問題有沒有共同的特點(diǎn)呢?”由于這個(gè)問題比較開放,所以學(xué)生,容易形成數(shù)學(xué)以外的或者不在本課研究范圍的觀點(diǎn)。首先采用小組合作探究的形式獲得共識(shí),并由各小組派代表發(fā)表探究成果,接著再讓其它學(xué)生根據(jù)老師的敘述,評(píng)論、提煉出重點(diǎn)。作為教學(xué)的引導(dǎo)者,我需要及時(shí)對(duì)學(xué)生的解答進(jìn)行指引。最終得出函數(shù)的概念 。2)教師概括總結(jié)學(xué)生的探究成果,形成函數(shù)概念,并進(jìn)一步解釋函數(shù)概念 I、函數(shù)的三要素 Ii函數(shù)富豪的 為深化學(xué)生對(duì)函數(shù)概念的理解,還可以用函數(shù)概念解析已經(jīng)學(xué)過的一次函數(shù),二次函數(shù),婦女比例函數(shù)等,可以設(shè)計(jì)如下表格 函數(shù)一次函數(shù)二次函數(shù)反比例函數(shù) 對(duì)應(yīng)關(guān)系 定義域 值域 由學(xué)生填寫 。3)自我嘗試,初步應(yīng)用。 例1、判斷下列圖像是否為函數(shù)圖像。考察學(xué)生對(duì)函數(shù)定義的理解 例2、采用課本例1,并增加一問若f(x)=—1,求x 目的`是引導(dǎo)學(xué)生探究求函數(shù)定義域的基本方法;對(duì)于用解析式表示的函數(shù)會(huì)用解析式求 函數(shù)值或有函數(shù)值求子變量的值,進(jìn)一步體會(huì)函數(shù)級(jí)號(hào)的含義,區(qū)分f(—1),f(a),f(x)例3、采用課本例2 目的:通過判斷函數(shù)的相等認(rèn)識(shí)到函數(shù)的整體性,并指出在三要素中,由于值域是由定義域和對(duì)應(yīng)法則決定的,所以只要兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系相同,兩個(gè)函數(shù)就相等;進(jìn)一步加深函數(shù)概念的理解 。4)當(dāng)堂訓(xùn)練,鞏固深化。 通過學(xué)生的主體參與,使學(xué)生深切體會(huì)到本節(jié)課的主要內(nèi)容和思想方法,從而實(shí)現(xiàn)對(duì)知識(shí)識(shí)的再次深化。 采用課后練習(xí)1、2、3 。5)小結(jié)歸納,回顧反思。 小結(jié)歸納不僅是對(duì)知識(shí)的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識(shí)、方法、經(jīng)驗(yàn)等方面進(jìn)行總結(jié)。我設(shè)計(jì)了三個(gè)問題:(1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識(shí)?(2)通過本節(jié)課的學(xué)習(xí),你的體驗(yàn)是什么?(3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能? 。ǘ┳鳂I(yè)設(shè)計(jì) 作業(yè)分為必做題和選做題,必做題對(duì)本節(jié)課學(xué)生知識(shí)水平的反饋,選做題是對(duì)本節(jié)課內(nèi)容的延伸與,注重知識(shí)的延伸與連貫,強(qiáng)調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成、 我設(shè)計(jì)了以下作業(yè): (1)必做題:課后習(xí)題A 1(2,3),2、5、6 。2)選做題:課后習(xí)題B 1、2 (三)板書設(shè)計(jì) 板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識(shí)結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識(shí);通過使用幻燈片輔助板書,節(jié)省課堂時(shí)間,使課堂進(jìn)程更加連貫。 五、評(píng)價(jià)分析 學(xué)生學(xué)習(xí)的結(jié)果評(píng)價(jià)當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評(píng)價(jià)。我采用及時(shí)點(diǎn)評(píng)、延時(shí)點(diǎn)評(píng)與學(xué)生互評(píng)相結(jié)合,全面考查學(xué)生在知識(shí)、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評(píng)價(jià)學(xué)生是否有積極的情感態(tài)度和頑強(qiáng)的理性精神,在概念反思過程中評(píng)價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對(duì)本節(jié)是否有一個(gè)完整的集訓(xùn),并進(jìn)行及時(shí)的調(diào)整和補(bǔ)充。 以上就是我對(duì)本節(jié)課的理解和設(shè)計(jì),敬請各位專家、評(píng)委批評(píng)指正。 謝謝! 《集合》是人教版必修1,第一章第一節(jié)的內(nèi)容。 一、教材分析(首先我們一起來探討一下教材的地位和內(nèi)容) 集合與函數(shù)的內(nèi)容歷來是高中數(shù)學(xué)課程的傳統(tǒng)內(nèi)容,也是后繼學(xué)習(xí)的基礎(chǔ)。作為現(xiàn)代數(shù)學(xué)基礎(chǔ)的集合論,它是一個(gè)具有獨(dú)特地位的數(shù)學(xué)分支。高中數(shù)學(xué)課程是將集合作為一種語言來學(xué)習(xí),它是刻畫函數(shù)概念的基礎(chǔ)知識(shí)和必備工具。 二、教學(xué)目標(biāo) 。ń酉聛砦覀兎治鲆幌卤竟(jié)的教學(xué)目標(biāo),新《課程標(biāo)準(zhǔn)》制定的學(xué)習(xí)目標(biāo)是) 。1)學(xué)習(xí)目標(biāo) 了解集合的含義與表示,理解集合間的關(guān)系和運(yùn)算,感受集合語言的意義和作用。 (2)過程與方法 啟發(fā)學(xué)生發(fā)現(xiàn)問題,提出問題,通過學(xué)生的合作學(xué)習(xí),探索出結(jié)論,并能有條理的闡述自己的觀點(diǎn)。 。3)情感態(tài)度與價(jià)值觀 通過概念的引入,讓學(xué)生感受從特殊到一般的認(rèn)知規(guī)律;激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的.興趣和積極性,陶冶學(xué)生的情操,培養(yǎng)學(xué)生堅(jiān)忍不拔的意志。 三、教學(xué)重點(diǎn)與難點(diǎn) 。ń酉聛砦覀儊砜匆幌卤竟(jié)的重點(diǎn)和難點(diǎn)是什么) 重點(diǎn):(本節(jié)的重點(diǎn)應(yīng)該是)使學(xué)生了解集合的含義與表示,理解集合間的關(guān)系和運(yùn)算,會(huì)用集合語言表達(dá)數(shù)學(xué)對(duì)象或數(shù)學(xué)內(nèi)容) 難點(diǎn):(在本節(jié)的學(xué)習(xí)過程中,學(xué)生們可能遇到的難點(diǎn)是) 。1)(要)區(qū)別較多的新概念及相應(yīng)的新符號(hào)。 (2)(如何)選擇恰當(dāng)?shù)姆椒▉頊?zhǔn)確表示具體的集合。 四、教法分析 。1)以學(xué)生為中心,重點(diǎn)采用了問題探究和啟發(fā)式相結(jié)合的教學(xué)方法。 。2)從實(shí)例、到類比、到推廣的問題探究,激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)習(xí)能力啟發(fā),引導(dǎo)學(xué)生得出概念,深化概念。 。3)利用多媒體輔助教學(xué),節(jié)省時(shí)間,增大信息量,增強(qiáng)直觀形象性。 我說課的題目是《集合》。 《集合》是人教版必修1,第一章第一節(jié)的內(nèi)容。 一.教材分析(首先我們一起來探討一下教材的地位和內(nèi)容) 集合與函數(shù)的內(nèi)容歷來是高中數(shù)學(xué)課程的傳統(tǒng)內(nèi)容,也是后繼學(xué)習(xí)的基礎(chǔ)。作為現(xiàn)代數(shù)學(xué)基礎(chǔ)的集合論,它是一個(gè)具有獨(dú)特地位的數(shù)學(xué)分支。高中數(shù)學(xué)課程是將集合作為一種語言來學(xué)習(xí),它是刻畫函數(shù)概念的基礎(chǔ)知識(shí)和必備工具。 二、教學(xué)目標(biāo)(接下來我們分析一下本節(jié)的教學(xué)目標(biāo),新《課程標(biāo)準(zhǔn)》制定的學(xué)習(xí)目標(biāo)是) (1)、學(xué)習(xí)目標(biāo) 了解集合的含義與表示,理解集合間的關(guān)系和運(yùn)算,感受集合語言的意義和作用。 (2)過程與方法 啟發(fā)學(xué)生發(fā)現(xiàn)問題,提出問題,通過學(xué)生的合作學(xué)習(xí),探索出結(jié)論,并能有 條理的闡述自己的觀點(diǎn); (3)、情感態(tài)度與價(jià)值觀 通過概念的引入,讓學(xué)生感受從特殊到一般的認(rèn)知規(guī)律; 激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,陶冶學(xué)生的情操,培養(yǎng)學(xué)生堅(jiān)忍不拔的意志; 三.教學(xué)重點(diǎn)與難點(diǎn)(接下來我們來看一下本節(jié)的重點(diǎn)和難點(diǎn)是什么) 重點(diǎn) :(本節(jié)的重點(diǎn)應(yīng)該是)使學(xué)生了解集合的含義與表示,理解集合間的關(guān)系和運(yùn)算,會(huì)用集合語言表達(dá)數(shù)學(xué)對(duì)象或數(shù)學(xué)內(nèi)容) 難點(diǎn) :(在本節(jié)的學(xué)習(xí)過程中,學(xué)生們可能遇到的難點(diǎn)是) 。1)(要)區(qū)別較多的新概念及相應(yīng)的新符號(hào); 。2)(如何)選擇恰當(dāng)?shù)姆椒▉頊?zhǔn)確表示具體的集合; 四.教法分析 1、以學(xué)生為中心,重點(diǎn)采用了問題探究和啟發(fā)式相結(jié)合的教學(xué)方法. 2、從實(shí)例、到類比、到推廣的問題探究,激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué) 習(xí)能力啟發(fā),引導(dǎo)學(xué)生得出概念,深化概念. 3、利用多媒體輔助教學(xué),節(jié)省時(shí)間,增大信息量,增強(qiáng)直觀形象性. 五.說教學(xué)過程(下面我以集合的含義與表示為例談一談我的教學(xué)設(shè)計(jì)) (那么整個(gè)教學(xué)流程分這么幾塊) “集合的含義與表示”的教學(xué)流程: 1問題引入 上體育課時(shí),體育老師喊:高一**班同學(xué)集合!聽到口令,咱班全體同學(xué)便會(huì)從四面八方聚集到體育老師身邊,而那些不是咱班的學(xué)生便會(huì)自動(dòng)走開。這樣一來,體育來說的一聲“集合”就把“某些特指的對(duì)象集在一起”了。 數(shù)學(xué)中的“集合”和體育老師的“集合”是一個(gè)概念嗎? 2構(gòu)建新知(那么構(gòu)建新知的時(shí)候,主要圍繞著以下幾點(diǎn)展開) 。1) 集合的含義 數(shù)學(xué)中的“集合”和體育老師的集合并不是同一概念。體育老師所說的“集合”是動(dòng)詞,而數(shù)學(xué)中的集合是名詞。同學(xué)們在體育老師的`集合號(hào)令下形成的整體就是數(shù)學(xué)中集合的涵義。 師:一般的,某些特定的對(duì)象集在一起就成為集合,也簡稱集,例如”我;@球隊(duì)的隊(duì)員“圖書館里所有的書”。同學(xué)們能不能再接著舉出些集合的例子呢? (自由發(fā)言,教師復(fù)述其中正確的舉例并板書出來) (1)我們班所有女生 。2)所有偶數(shù) 。3)四大洋 ······ 。2) 集合與元素的關(guān)系 師:元素與集合的關(guān)系有“屬于∈”及“不屬于? 如A={2,4,8,16},則4∈A,8∈A,32( )A.(請學(xué)生填充)。 注:1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q?? 元素通常用小寫的拉丁字母表示,如a、b、c、p、q?? 2、“∈”的開口方向,不能把a(bǔ)∈A顛倒過來寫。 。3) 集合的表示法 常用的有列舉法和描述法。 列舉法是把集合中的元素一一列舉出來的方法。 描述法是用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。 常見數(shù)集的專用符號(hào) N:非負(fù)整數(shù)集(自然數(shù)集). Q:有理數(shù)集 R:全體實(shí)數(shù)的集合 `````` 3典例精析 例1, 判斷下列對(duì)象是否能組成一個(gè)集合,并說明理由 1身材高大的人 2所有的一元二次方程 3所有的數(shù)學(xué)難題 4滿足的實(shí)數(shù)所組成的集合 。ㄔ谶@里我要重點(diǎn)講的是第四個(gè)問題,有的同學(xué)會(huì)認(rèn)為x^2<0的實(shí)數(shù)解不存在,所以這樣的集合沒有。事實(shí)上這樣的回答是錯(cuò)誤的,因?yàn)椴淮嬖谠氐募蠎?yīng)該叫做空集。 例2(對(duì)于例題2也同學(xué)們?nèi)菀族e(cuò)的題,這里主要是圍繞集合中的元素應(yīng)該具有互異性展開,因?yàn)樗哂谢プg性,所以這個(gè)三角形一定不是等腰三角形) 已知集合{a,b,c}中的三個(gè)元素可構(gòu)成某一三角形的三邊長,那么此三角形一定不是() A直角三角形B 銳角三角形C鈍角三角形D等腰三角形 例3 課本P3例1 例4 課本P4例2 例2, 例4主要是圍繞著集合的描述方法展開。對(duì)于這四道題的設(shè)計(jì),我們主要 是圍繞著本節(jié)課的重點(diǎn)知識(shí)展開。通過對(duì)于例題的解析,加深對(duì)各個(gè)知識(shí)點(diǎn)的理解。 4歸納小結(jié),布置作業(yè) 歸納小結(jié): 1、集合的概念 2“集合中的元素必須是互異的”應(yīng)理解為:對(duì)于給定的集合,它的任何兩個(gè)元素都是不同的. 3、常見數(shù)集的專用符號(hào). 設(shè)計(jì)意圖:讓學(xué)生養(yǎng)成在學(xué)習(xí)之后,能養(yǎng)成做總結(jié)的習(xí)慣,有利于新知識(shí)的構(gòu)建。 布置作業(yè): 一、課本P7,習(xí)題1.1 1 二、1、預(yù)習(xí)內(nèi)容,課本P5—P6 【高一數(shù)學(xué)說課稿】相關(guān)文章: 高一數(shù)學(xué)下冊說課稿09-21 高一數(shù)學(xué)說課稿06-07 高中高一數(shù)學(xué)說課稿06-23 高一數(shù)學(xué)等差數(shù)列說課稿07-28 高一語文的說課稿12-08 高一說課稿范文09-15高一數(shù)學(xué)說課稿5
高一數(shù)學(xué)說課稿6
高一數(shù)學(xué)說課稿7
高一數(shù)學(xué)說課稿8
高一數(shù)學(xué)說課稿9
高一數(shù)學(xué)說課稿10
高一數(shù)學(xué)說課稿11
高一數(shù)學(xué)說課稿12
高一數(shù)學(xué)說課稿13
高一數(shù)學(xué)說課稿14
高一數(shù)學(xué)說課稿15