當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說課稿> 《三角形內(nèi)角和》說課稿

《三角形內(nèi)角和》說課稿

時間:2024-06-10 07:43:15 說課稿 我要投稿

《三角形內(nèi)角和》說課稿(優(yōu)選15篇)

  作為一名優(yōu)秀的教育工作者,很有必要精心設(shè)計(jì)一份說課稿,借助說課稿可以讓教學(xué)工作更科學(xué)化。那么大家知道正規(guī)的說課稿是怎么寫的嗎?下面是小編收集整理的《三角形內(nèi)角和》說課稿,希望對大家有所幫助。

《三角形內(nèi)角和》說課稿(優(yōu)選15篇)

《三角形內(nèi)角和》說課稿1

  《三角形內(nèi)角和》說課稿

  一、說課內(nèi)容:北師大版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材小學(xué)數(shù)學(xué)四年級下冊第二單元第三節(jié)----《三角形的內(nèi)角和》一課。

  二、教材分析:

  在這一環(huán)節(jié)我要闡述四方面的內(nèi)容:

  1、三角形的內(nèi)角和”是三角形的一個重要性質(zhì),是“空間與圖形”領(lǐng)域的重要內(nèi)容之一,學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,教材呈現(xiàn)教學(xué)內(nèi)容時,安排了一系列的實(shí)驗(yàn)操作活動。讓學(xué)生通過探索,發(fā)現(xiàn)三角形的內(nèi)角和是180度。

  2、學(xué)情分析:

  學(xué)生已經(jīng)知道了三角形的概念、分類,熟悉了各角的特點(diǎn),掌握了量角的方法。也可能有部分學(xué)生知道了三角形內(nèi)角和是180°的結(jié)論。

  3、教學(xué)目標(biāo):

  A、讓學(xué)生親自動手,發(fā)現(xiàn),證實(shí)三角形的內(nèi)角和等于180度。并能初步運(yùn)用這一性質(zhì)解決有一些實(shí)際問題。

  B、在經(jīng)歷“觀察、測量、撕拼、折疊”的驗(yàn)證的過程中培養(yǎng)學(xué)生觀察能力,歸納能力、合作能力和創(chuàng)造能力。

  4、教學(xué)重難點(diǎn):

  經(jīng)歷三角形的內(nèi)角和是180度這一知識的形成,發(fā)展和應(yīng)用的全過程。

  5、教學(xué)難點(diǎn):

  讓學(xué)生用不同方法驗(yàn)證三角形的內(nèi)角和是180度。

  三、教學(xué)準(zhǔn)備:

  在備課過程中,我閱讀了農(nóng)遠(yuǎn)光盤中多位名師的教學(xué)案例來完善自己的教學(xué)設(shè)計(jì),并收集了農(nóng)遠(yuǎn)光盤中的多媒體課件,用課件適時播放。

  四、教法分析

  為了使教學(xué)目標(biāo)得以落實(shí),談?wù)劚菊n的教法和學(xué)法。新課程標(biāo)準(zhǔn)強(qiáng)調(diào)“教學(xué)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程。要激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機(jī)會,讓他們積極主動地探索,解決數(shù)學(xué)問題,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,獲得數(shù)學(xué)經(jīng)驗(yàn);而教師只是學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者和合作者。我采用了趣味教學(xué)法、情境教學(xué)法、引導(dǎo)發(fā)現(xiàn)法、合作探究法和直觀演示法。

  五、學(xué)法分析

  在學(xué)法指導(dǎo)上,我把學(xué)習(xí)的主動權(quán)交給學(xué)生,引導(dǎo)學(xué)生通過動手、動腦、動口,積極參與知識形成的全過程。體現(xiàn)了學(xué)生動手實(shí)踐、合作交流,自主探索的學(xué)習(xí)方式。

  六:教學(xué)流程:

 。ㄒ唬┎旅约とぃ瑥(fù)習(xí)舊知。,

  興趣是最好的.老師,開課我出示了一則謎語。調(diào)動學(xué)生學(xué)習(xí)的積極性。

  形狀是似座山,穩(wěn)定性能堅(jiān)。三竿首尾連,學(xué)問不簡單。(打一平面圖形)

  由謎底又得出了一個對三角形你們有哪些了解的問題,喚醒學(xué)生頭腦中有關(guān)三角形的知識,同時很自然引出對“三角形內(nèi)角和”一詞的講解,為后面的探索奠定基礎(chǔ)。

  (二)創(chuàng)設(shè)情境,巧引新知(課件出示)

 。ㄈ(yàn)證猜想,主動探究。

  本環(huán)節(jié)是學(xué)生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導(dǎo)學(xué)生主動參與實(shí)踐活動、經(jīng)歷知識的形成過程。

  “你能運(yùn)用已有的知識和身邊的學(xué)具想辦法驗(yàn)證你的猜想嗎?”學(xué)生思考片刻后,我出示學(xué)習(xí)提綱:

  A、先獨(dú)立思考,你想怎樣驗(yàn)證?

  B、再小組合作探究,運(yùn)用多種方法驗(yàn)證。

  C、最后匯報,展示你的驗(yàn)證方法。

  課程標(biāo)準(zhǔn)指出:數(shù)學(xué)教學(xué)應(yīng)該由簡單的問答式教學(xué)向獨(dú)立思考基礎(chǔ)上的合作學(xué)習(xí)轉(zhuǎn)變。所以,先讓他們獨(dú)立思考,形成獨(dú)特的個人見解。等有了合作的需要時,再合作探究。此時的合作,學(xué)生才會有展示自己的方法的強(qiáng)烈欲望,才會在不同意見的相互碰撞中產(chǎn)生富有創(chuàng)意的思維火花。在足夠的討論之后,進(jìn)入了匯報展示過程。學(xué)生可能出現(xiàn)以下幾種方法

  1.量角求和

  這個驗(yàn)證方法應(yīng)是全班同學(xué)都能想到的,因此,在這一環(huán)節(jié)我設(shè)計(jì)了小組活動的形式。讓小組成員在練習(xí)本上任意地畫幾個三角形進(jìn)行測量并記錄。學(xué)生通過畫、量、算,最后發(fā)現(xiàn)三角形的三個內(nèi)角和都是180度。

  2.拼角求和

  通過討論,有的小組可能會想到把三個角撕開,再拼在一起,剛好拼成了一個平角,由于學(xué)生在以前學(xué)過平角是180度,很快就發(fā)現(xiàn)這三個三角形的內(nèi)角和都是180度。為了讓全班學(xué)生能夠真切,清晰地看到撕拼的過程,我利用了多媒體課件進(jìn)行了演示。(課件出示)課件播放后學(xué)生一目了然,攻克了本課的一個教學(xué)重點(diǎn)。

  3.折角求和

  有的小組還可能想到把三個角折在一起,也剛好形成一個平角。但如何折才能夠使三個內(nèi)角剛好組成平角呢?這一驗(yàn)證方法是本課教學(xué)的一個難點(diǎn)。

  在學(xué)生展示完驗(yàn)證方法后,我又讓每位學(xué)生選擇自己喜歡的方法,再去驗(yàn)證剛才的發(fā)現(xiàn)。最后歸納出結(jié)論:所有三角形的內(nèi)角和都是180度。

  (四)應(yīng)用新知,解決問題。

  數(shù)學(xué)離不開練習(xí)。本節(jié)課我把圖像、動畫等引入課件,使練習(xí)的內(nèi)容具有簡單的背景與情節(jié),使學(xué)生對解題產(chǎn)生了濃厚的興趣。

  我設(shè)計(jì)了四個層次的練習(xí):有序而多樣。

  1)基本練習(xí):讓學(xué)生通過這一習(xí)題,掌握求未知角的一般方法。

  2)實(shí)踐運(yùn)用:這一習(xí)題的設(shè)計(jì)是為了讓學(xué)生知道生活中到處都有數(shù)學(xué),數(shù)學(xué)能解決生活實(shí)際問題,真切體驗(yàn)到學(xué)的是有價值的數(shù)學(xué)。

  3)鞏固提高:使學(xué)生了解在間接條件下求未知角的方法。

  4)拓展延伸。讓學(xué)生體會到數(shù)學(xué)中輔助線的橋梁作用,在潛移默化中滲透一個重要數(shù)學(xué)思想―――轉(zhuǎn)化,為以后學(xué)習(xí)數(shù)學(xué)打下堅(jiān)實(shí)的基礎(chǔ)。

  (五)全課小結(jié)完善新知

  1、這節(jié)課我們學(xué)到了什么知識?2、你有什么收獲?

  通過學(xué)生談這節(jié)課的收獲,對所學(xué)知識和學(xué)習(xí)方法進(jìn)行系統(tǒng)的整理歸納。

 。┌鍟O(shè)計(jì)

  三角形的內(nèi)角和

  量角撕拼折角拼圖

  三角形的內(nèi)角和是180度。

  六、說效果預(yù)測:

  本課中,學(xué)生通過動手操作,測量、撕拼、折疊等實(shí)驗(yàn)活動,得到的不僅是三角形內(nèi)角和的知識,也使學(xué)生學(xué)到了怎么由已知探究未知的思維方式與方法,培養(yǎng)了他們主動探索的精神。促進(jìn)學(xué)生良好思維品質(zhì)的形成,達(dá)到預(yù)想的教學(xué)目的。使學(xué)生在探索中學(xué)習(xí),在探索中發(fā)現(xiàn),在探索中成長!

《三角形內(nèi)角和》說課稿2

  一、說教材

  1、說課內(nèi)容

  今天我說課的內(nèi)容是人教版九年義務(wù)教育小學(xué)數(shù)學(xué)四年級下冊第五單元第67頁的《三角形的內(nèi)角和》。

  2、教材分析

  《三角形的內(nèi)角和》是探索型的教材。是在學(xué)生學(xué)習(xí)了三角形、長方形等基本圖形,以及角的度量、三角形的特征、分類的基礎(chǔ)上進(jìn)行教學(xué)的,學(xué)生對這一知識的理解和掌握又將為進(jìn)一步學(xué)習(xí)幾何知識打下堅(jiān)實(shí)的基礎(chǔ)。

  教材的知識它是分成3個部分來呈現(xiàn)的。第一部分是讓學(xué)生通過量一量、算一算,初步感知三角形的內(nèi)角和是180°;第二部分是通過拼角的實(shí)驗(yàn)來探究并歸納三角形內(nèi)角和的規(guī)律,第三部分是運(yùn)用規(guī)律、解決問題。教材這樣編排由發(fā)現(xiàn)問題,到驗(yàn)證問題,再到運(yùn)用規(guī)律,充分體現(xiàn)了知識結(jié)構(gòu)的有序性和強(qiáng)烈的數(shù)學(xué)建模思想,既符合四年級學(xué)生的認(rèn)知規(guī)律,又突出了本課教學(xué)的重點(diǎn)。

  3、教學(xué)目標(biāo)

  根據(jù)小學(xué)數(shù)學(xué)教學(xué)大綱對四年級學(xué)生的具體要求,結(jié)合教材特點(diǎn)及學(xué)生年齡特征,將本節(jié)課的目標(biāo)制定為以下幾點(diǎn):

  知識與技能:學(xué)生動手操作,在猜想后通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)"三角形內(nèi)角和等于180度"的規(guī)律。

  過程與方法:在操作實(shí)驗(yàn)中,讓學(xué)生感受圖形的轉(zhuǎn)化過程及數(shù)學(xué)建模思想,初步培養(yǎng)學(xué)生的空間思維觀念。解決問題:在運(yùn)用知識解決問題的過程中,感受所學(xué)知識的重要性,初步培養(yǎng)學(xué)生的應(yīng)用意識。

  情感態(tài)度:通過各種實(shí)驗(yàn)活動,激發(fā)學(xué)習(xí)興趣,體驗(yàn)學(xué)習(xí)成功感,并在教學(xué)中,感受生活與數(shù)學(xué)的密切聯(lián)系。

  4、教學(xué)重點(diǎn)難點(diǎn)

  根據(jù)本節(jié)課的教學(xué)目標(biāo)及對編者意圖的理解。將運(yùn)用各種實(shí)驗(yàn)方法探究三角形內(nèi)角和為180度的過程并掌握規(guī)律,運(yùn)用規(guī)律解決實(shí)際問題確定為本節(jié)課的教學(xué)重點(diǎn)。而同時學(xué)生難以理解不易掌握的探究規(guī)律的全過程則是本節(jié)課的教學(xué)難點(diǎn)。

  5、教學(xué)具準(zhǔn)備

  每個4人小組準(zhǔn)備三個不同的三角形(銳角三角形、鈍角三角形、直角三角形的紙片一個,且要求大小不一)、實(shí)驗(yàn)報告單一份;量角器、白板。

  二、說教法學(xué)法我要說的第二塊是教法學(xué)法。

  新課程標(biāo)準(zhǔn)的基本理念就是要讓學(xué)生"人人學(xué)有價值的數(shù)學(xué)"。強(qiáng)調(diào)"教學(xué)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程"。

  因此,我運(yùn)用猜想驗(yàn)證,自主探究,動手操作,直觀演示的教學(xué)法,讓學(xué)生大膽猜想,自主探索三角形的內(nèi)角和是多少度?再通過測量、拼折、驗(yàn)證等方式讓學(xué)生確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了學(xué)生的觀察能力和歸納概括能力,又體現(xiàn)了學(xué)生動手實(shí)踐、合作交流,自主探索的學(xué)習(xí)方式。

  在整個教學(xué)設(shè)計(jì)上力求充分體現(xiàn)"以學(xué)生發(fā)展為本"教育理念,將教學(xué)思路擬定為"故事設(shè)疑導(dǎo)入--猜想驗(yàn)證{自主探究}--鞏固新知—數(shù)學(xué)文化—課堂總結(jié)",努力構(gòu)建探索型的課堂教學(xué)模式。當(dāng)然,一堂課的效果如何,還要看課堂結(jié)構(gòu)是否合理。接下來,我就來說說我的教學(xué)程序設(shè)計(jì)。

  三、說教學(xué)流程

  根據(jù)我對教材的把握和對學(xué)情的了解,設(shè)計(jì)了5個環(huán)節(jié)展開教學(xué)。

  四、創(chuàng)設(shè)情境,發(fā)現(xiàn)問題

  一天,圖形王國舉行了一場盛大的宴會,正在大家聊得熱火朝天的時候,突然下面?zhèn)鱽砹艘魂嚦臭[聲,圖形王國的國王“點(diǎn)”來到爭吵的地方一看,原來是三角形家族在爭吵,只聽一個鈍角三角形說:“我有一個內(nèi)角是最大的,所以我的三角和也是最大的!保@時候一個銳角三角形說“我長得比你大,所以說我的內(nèi)角和才是最大的!”,這時,一個直角三角形弱弱的說了一句:“誰長的大,誰的內(nèi)角和就最大,這不公平。!”,于是他們就讓國王來評理,聽到這里國王的也糊涂了:“你們說的都是什么呀?什么是三角形的.內(nèi)角,什么是三角形的內(nèi)角和呀?”

  五、合作交流,引導(dǎo)探究

 。1)學(xué)生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。

  (2)教師要組織學(xué)生進(jìn)行小組合作每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形)的三個內(nèi)角并計(jì)算出它們的總和是多少?

 。3)記錄小組測量結(jié)果及討論結(jié)果

  實(shí)驗(yàn)名稱:三角形內(nèi)角和

  實(shí)驗(yàn)?zāi)康模禾骄咳切蝺?nèi)角和是多少度。

  實(shí)驗(yàn)材料:量角器,銳角三角形紙片,直角三角形紙片,鈍角三角形紙片。

 。4)學(xué)生匯報量的方法,師請同學(xué)評價這種方法。

  師小結(jié):直接量的方法挺好,雖然測量有誤差,不準(zhǔn),但我們能知道,三角形的內(nèi)角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?

 。ㄒ唬┘羝捶

  學(xué)生匯報后師小結(jié):能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學(xué)生剪一剪、拼一拼)

  師:把三角形的三個內(nèi)角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產(chǎn)生誤差,有時會差一點(diǎn)點(diǎn),誰還有別的方法確定三角形的內(nèi)角和一定是180°?

  (二)折拼法

  學(xué)生匯報后師小結(jié):我們要研究三角形的內(nèi)角和,實(shí)際上就是想辦法把三角形的三個內(nèi)角湊到一起,像剪和折的方法,看三個內(nèi)角拼到一起是不是180度,都是借助我們學(xué)過的平角解決的問題。

  這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學(xué)過的哪種圖形,想辦法說明三角形的內(nèi)角和一定是180度?

 。ㄈ┭堇[推理法

 。ń柚鷮W(xué)過的長方形,把一個長方形沿對角線分成兩個三角形。)

  師:你認(rèn)為這種方法好不好?我們看看是不是這么回事。

 。ㄑ菔菊n件:兩個完全相同的三角形內(nèi)角和等于360°,一個三角形內(nèi)角和等于180°)

  師小結(jié):這種方法避免了在剪拼過程中由于操作出現(xiàn)的誤差,非常準(zhǔn)確的說明了三角形的內(nèi)角和一定是180度。

 。▽W(xué)生通過小組合作的方式學(xué)到方法,分享經(jīng)驗(yàn),更重要的是領(lǐng)悟到科學(xué)研究問題的方法。就學(xué)生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價值。)

  學(xué)生用的方法會非常多,但它們的思維水平是不平行的。

  直接測量法是學(xué)生利用已有的知識,測量出每個角的度數(shù),再用加法求和;

  拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;而演繹推理法,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考。

  前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數(shù)。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因?yàn)閮蓚三角形的內(nèi)角和是原來長方形的四個內(nèi)角之和360度,所以一個三角形的內(nèi)角和就是360°÷2=180°,這種方法從科學(xué)證明的角度闡述了三角形的內(nèi)角和,它有嚴(yán)密性和精確性。

  六、訓(xùn)練提高

  使用課本兩道題,以及以下習(xí)題

 。1)∠1=35°∠2=47°∠3=()

 。2)∠1=50°∠2=40°∠3=()

 。3)∠1=20°∠2=45°∠3=()

  按著難易程度逐漸提高,鞏固新知。

  七、數(shù)學(xué)文化

  帕斯卡(BlaisePascal,1623~1662),法國數(shù)學(xué)家、物理學(xué)家、近代概率論的奠基者。早在300多年前這位法國著名的科學(xué)家就已經(jīng)發(fā)現(xiàn)了任何三角形的內(nèi)角和是180度,而他當(dāng)時才12歲。

  八、課堂總結(jié)

  我們用三角形內(nèi)角和的知識知道了六邊形內(nèi)角和,那么五邊形、七邊形……這些多邊形的內(nèi)角和是多少度?有沒有什么規(guī)律可循,你能用學(xué)到的知識和方法去探究問題,相信你還會有一些精彩的發(fā)現(xiàn)。

  九、反思

  整節(jié)課都在比較愉快的氛圍中展開的,但在小組合作中因?yàn)橐蟛粔蛎鞔_,導(dǎo)致在合作中出現(xiàn)了問題,不過好在由于我給孩子們足夠的時間,他們能說出:所有三角形都是180度,證明孩子們是學(xué)會了的。所以,如果你給孩子足夠的時間,他們會給你意想不到的驚喜。

《三角形內(nèi)角和》說課稿3

各位老師:

  下午好!

  今天我們相聚在云周小學(xué),共同行走在“生本”課堂的道路上。作為一名新教師,我也是抱著一種學(xué)習(xí)的心態(tài)來評課。應(yīng)老師的這節(jié)《三角形內(nèi)角和》,無論是他的設(shè)計(jì),還是他對課的演繹,都充分體現(xiàn)了“以生為本”的理念。

  這節(jié)課有以下幾點(diǎn)值得我們?nèi)ヌ接懀?/p>

  一、學(xué)生的起點(diǎn)在哪里?

  既然是生本課堂,那我們在備課之前,就要做到備學(xué)生,找起點(diǎn)。新課導(dǎo)入時,應(yīng)老師花了一些時間復(fù)習(xí)三角形的分類和平角的知識,充分喚醒學(xué)生對三角形的認(rèn)知,分類是為了抓住三角形的本質(zhì),縮小驗(yàn)證時選材的范圍,而三個角拼成一個平角的練習(xí),則為學(xué)生之后的驗(yàn)證搭好一個腳手架,降低他們學(xué)習(xí)的難度。但從課堂上來看,部分學(xué)生已經(jīng)知道三角形內(nèi)角和是180°,而且當(dāng)出示平角那道題時,學(xué)生立刻說出180°是三角形內(nèi)角和,而沒有想到平角,這需要我們來反思這個環(huán)節(jié)的必要性。為什么學(xué)生會聯(lián)想到內(nèi)角和呢?我想可能是應(yīng)老師在此之前詢問了:“三角形有幾個角?如果告訴你兩個角,會求第三個角嗎?”同樣是為了復(fù)習(xí),卻產(chǎn)生了負(fù)遷移,反而沒有達(dá)成預(yù)定的效果。再此之后又介紹“內(nèi)角”等概念,這樣難免有回課嫌疑。課堂選材要有取舍,我覺得這個環(huán)節(jié)可以刪除。

  二、既然量正確了,為什么還要拼?

  有位老師說過:“數(shù)學(xué)老師和語文老師就是不一樣,語文老師會發(fā)散,將一句簡單的話復(fù)雜化;而數(shù)學(xué)老師會收斂,將復(fù)雜的例題、方法融匯成一句話!彼詳(shù)學(xué)課上必須讓學(xué)生親身經(jīng)歷知識的發(fā)展過程。在探究過程中,應(yīng)老師放手讓學(xué)生想方法驗(yàn)證猜想,學(xué)生首先會想到量出內(nèi)角并相加,從反饋來看,學(xué)生量得的結(jié)果都是180°,既然得到想要的結(jié)果了,再拼不是多此一舉了嗎?課堂上應(yīng)老師也對學(xué)生的精確結(jié)果趕到意外,究竟量角的誤差在哪里?

  學(xué)生的心里總是不敢犯錯的,這就會讓很多數(shù)據(jù)失真。其實(shí)誤差不僅僅只是存在于內(nèi)角總和,還存在于每個內(nèi)角的度數(shù)。課堂反饋上,對于同樣的銳角,學(xué)生量出了“60°,40°,80°和55°,45°,80°”同樣一個三角形,為什么內(nèi)角度數(shù)會有所不同,此時通過對比,讓學(xué)生明白量角時有誤差,容易改變角度,看來量不是最準(zhǔn)確的方法,而撕角拼角則不會改變它的大小。我想這就是我們?yōu)槭裁磳⒘饣ㄔ诩羝捶ㄉ狭恕?/p>

  三、如何凸顯內(nèi)角和的本質(zhì)?

  通過各種方法的驗(yàn)證,我們知道了三角形的內(nèi)角和是180°,難道點(diǎn)到即止嗎?應(yīng)老師巧妙借助幾何畫板,改變?nèi)切蔚男螤詈痛笮,并引?dǎo)學(xué)生觀察什么變了,什么不變?這一簡單的演示卻寓意深遠(yuǎn),無論形狀大小如何改變,三角形內(nèi)角和永遠(yuǎn)是180°,這也從另一個角度說明了三角形為什么具有穩(wěn)定性,只要確定兩個角,第三個角永遠(yuǎn)的唯一的。結(jié)論只是靜態(tài)的文字,而課件是動態(tài)的演示,這種動靜結(jié)合的美渲染了我們的眼球,同時也凸顯了內(nèi)角和的本質(zhì),讓結(jié)論更具說服力。

  四、練習(xí)設(shè)計(jì)的創(chuàng)新點(diǎn)在哪里?

  練習(xí)是一節(jié)課的精髓,這節(jié)課的`練習(xí)主要分三層,一算二辨三延伸。應(yīng)老師在練習(xí)的設(shè)計(jì)上很注重一材多用,而且非常有坡度性,這也是本節(jié)課最大的亮點(diǎn)。在“只知道一個角”的環(huán)節(jié)中,應(yīng)老師設(shè)計(jì)了只露出一個70°角的等腰三角形,求另兩個角。大多數(shù)學(xué)生只想到一種情況后,便沾沾自喜,不會更深入思考問題,因?yàn)樵趯W(xué)生潛意識中總認(rèn)為正確答案只有一個。這也給了我們一個啟示,關(guān)注答案,更要關(guān)注學(xué)生解題的意識,引導(dǎo)學(xué)生從多維角度思考問題。

  這里我有一個的想法,這個想法也來源于作業(yè)本的習(xí)題。能不能把70°角改成40°,當(dāng)學(xué)生算出答案后,詢問學(xué)生,如果按角分,這是一個什么三角形?溝通按角分和按邊分三角形的橫向聯(lián)系,在練習(xí)中溫故而知新。再設(shè)計(jì)已知一個角是140°的等腰三角形的練習(xí),打破學(xué)生的思維定勢,并不是所有等腰三角形都有兩種可能。之后再詢問:“一個角都不知道,如何求內(nèi)角!弊尵毩(xí)更具層次性。

  應(yīng)老師這節(jié)課還有很多值得我們學(xué)習(xí)的地方,比如應(yīng)老師自如的教態(tài)、親切的語言讓學(xué)生倍感溫暖;精心準(zhǔn)備的教具讓課堂不再沉悶;精彩的練習(xí)讓知識落到實(shí)處。以上是我對這節(jié)課一些不成熟的想法,希望各位老師給予批評和指正。

《三角形內(nèi)角和》說課稿4

  今天我說課的內(nèi)容是人教版九年義務(wù)教育小學(xué)數(shù)學(xué)四年級下冊第五單元第67頁的《三角形的內(nèi)角和》。根據(jù)xxx教授的授課七步法,即說教材,說學(xué)情,說目標(biāo),說模式,說方法,說設(shè)計(jì),說板書,我將進(jìn)行本課的說課。

  一、說教材

  “三角形的內(nèi)角和”是新課標(biāo)人教版四年級下冊第五單元第三節(jié)的內(nèi)容。本節(jié)課是在學(xué)生學(xué)過角的度量、三角形的特征和分類等知識的基礎(chǔ)上進(jìn)行教學(xué)的,“三角形的內(nèi)角和”是三角形的一個重要性質(zhì),學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)幾何的基礎(chǔ)。

  仔細(xì)分析教材的知識結(jié)構(gòu),它是分成3個部分來呈現(xiàn)的。第一部分是讓學(xué)生通過量一量、算一算,初步感知三角形的內(nèi)角和是180°;第二部分是通過拼角的實(shí)驗(yàn)來探究并歸納三角形內(nèi)角和的規(guī)律,第三部分是運(yùn)用規(guī)律、解決問題。教材這樣編排由發(fā)現(xiàn)問題,到驗(yàn)證問題,再到運(yùn)用規(guī)律,充分體現(xiàn)了知識結(jié)構(gòu)的有序性和強(qiáng)烈的數(shù)學(xué)建模思想,既符合四年級學(xué)生的認(rèn)知規(guī)律,又突出了本課教學(xué)的重點(diǎn)。

  二、說學(xué)情

 。薄⑼ㄟ^前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與基礎(chǔ)技能。

  2、學(xué)生的生活經(jīng)驗(yàn)是可利用的教學(xué)資源。我在課前了解到,已經(jīng)有不少學(xué)生知道了三角形內(nèi)角和是180度,但卻不知道怎樣才能得出這個結(jié)論,因此學(xué)生在這節(jié)課上的主要目標(biāo)是驗(yàn)證三角形的內(nèi)角和是180度。

  三、說目標(biāo)

  根據(jù)小學(xué)數(shù)學(xué)教學(xué)大綱對四年級學(xué)生的具體要求,結(jié)合教材特點(diǎn)及學(xué)生年齡特征,將本節(jié)課的目標(biāo)制定為以下幾點(diǎn):

  認(rèn)知技能:學(xué)生動手操作,在猜想后通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)"三角形內(nèi)角和等于180度"的規(guī)律。

  數(shù)學(xué)思考:在操作實(shí)驗(yàn)中,讓學(xué)生感受圖形的轉(zhuǎn)化過程及數(shù)學(xué)建模思想,初步培養(yǎng)學(xué)生的空間思維觀念。

  解決問題:在運(yùn)用知識解決問題的過程中,感受所學(xué)知識的重要性,初步培養(yǎng)學(xué)生的應(yīng)用意識。

  情感態(tài)度:通過各種實(shí)驗(yàn)活動,激發(fā)學(xué)習(xí)興趣,體驗(yàn)學(xué)習(xí)成功感,并在教學(xué)中,感受生活與數(shù)學(xué)的密切聯(lián)系。

  將運(yùn)用各種實(shí)驗(yàn)方法探究三角形內(nèi)角和為180度的過程并掌握規(guī)律,運(yùn)用規(guī)律解決實(shí)際問題確定為本節(jié)課的教學(xué)重點(diǎn)。而同時學(xué)生難以理解不易掌握的探究規(guī)律的'全過程則是本節(jié)課的教學(xué)難點(diǎn)。

  四、說模式

  “三角形的內(nèi)角和”一課,知識與技能目標(biāo)并不難,我認(rèn)為本節(jié)課更重要的是通過自主探索與合作交流使學(xué)生經(jīng)歷知識的形成過程,領(lǐng)悟轉(zhuǎn)化思想在解決問題中的應(yīng)用,以及在探索過程中,培養(yǎng)學(xué)生實(shí)事求是、敢于質(zhì)疑的科學(xué)態(tài)度,同時合作交流中,開拓思維、提升能力。基于以上理念,本節(jié)課,我準(zhǔn)備引導(dǎo)學(xué)生采用自主探究、猜想驗(yàn)證、合作探究的學(xué)習(xí)模式。體現(xiàn)“以學(xué)生的發(fā)展為本”這一教育理念。

  五、說方法

  本節(jié)課主要是通過教師的精心引導(dǎo)和點(diǎn)撥,學(xué)生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗(yàn)證三角形的內(nèi)角和是180度。

  因?yàn)椤墩n程標(biāo)準(zhǔn)》明確指出:“要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀察,操作,猜想,培養(yǎng)學(xué)生初步的思維能力”。四年級學(xué)生經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點(diǎn)引導(dǎo)學(xué)生從“猜測――驗(yàn)證”展開學(xué)習(xí)活動,讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。

  六、說設(shè)計(jì)

  根據(jù)我對教材的把握和對學(xué)情的了解,設(shè)計(jì)了4個環(huán)節(jié)展開教學(xué)。

  一、創(chuàng)設(shè)情境,發(fā)現(xiàn)問題

  小游戲:猜一猜藏在信封后面的是什么三角形。

  師:我們在猜三角形的時候,看到一個直角,就能斷定它一定是直角三角形;看到一個鈍角,就能斷定他一定是鈍角三角形;但只看到一個銳角,就判斷不出來是哪種三角形。看來在一個三角形中,只能有一個直角或一個鈍角,為什么畫不出有兩個直角或兩個鈍角的三角形呢?

  三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。

 。▌(chuàng)設(shè)的不是生活中的情境,而是數(shù)學(xué)化的情境。有的孩子認(rèn)為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現(xiàn)出學(xué)生在認(rèn)知上的矛盾,學(xué)生用已經(jīng)學(xué)的三角形的特征只能解釋"不能是這樣",而不能解釋"為什么不能是這樣"。這樣引入問題恰好可以利用學(xué)生的這種認(rèn)知沖突,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生在疑問與猜想中尋找驗(yàn)證的方法。)

  教學(xué)進(jìn)入第二環(huán)節(jié)——引導(dǎo)探究

  二、動手操作,探究規(guī)律

  1.介紹內(nèi)角、內(nèi)角和,并提出猜想

  師:我們現(xiàn)在研究三角形的三個角,都是它的內(nèi)角。

  課件演示:三角形的三個內(nèi)角

  師:今天我們就來一起探究《三角形的內(nèi)角和》。猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

  2.確定研究范圍

  師:研究三角形的內(nèi)角和,是不是應(yīng)該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學(xué)生反對)

  請你想個辦法吧!

  (通過引導(dǎo)學(xué)生分析,"研究哪幾類三角形,就能代表所有的三角形"這個問題,來滲透研究問題要全面,也就是完全歸納法的數(shù)學(xué)思想)

  3.建立模型,解決問題

 。ㄒ唬y量法:

  (1)學(xué)生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。

 。2)教師要組織學(xué)生進(jìn)行小組合作每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形)的三個內(nèi)角并計(jì)算出它們的總和是多少?

 。3)記錄小組測量結(jié)果及討論結(jié)果

  實(shí)驗(yàn)名稱三角形內(nèi)角和

  實(shí)驗(yàn)?zāi)康奶骄咳切蝺?nèi)角和是多少度。

  實(shí)驗(yàn)材料尺子剪刀量角器銳角三角形紙片直角三角形紙片鈍角三角形紙片

  方法一三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角的

  方法二

  我的發(fā)現(xiàn)

 。4)學(xué)生匯報量的方法,師請同學(xué)評價這種方法。

  師小結(jié):直接量的方法挺好,雖然測量有誤差,不準(zhǔn),但我們能知道,三角形的內(nèi)角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?

 。ǘ┘羝捶

  學(xué)生匯報后師小結(jié):能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學(xué)生剪一剪、拼一拼)

  師:把三角形的三個內(nèi)角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產(chǎn)生誤差,有時會差一點(diǎn)點(diǎn),誰還有別的方法確定三角形的內(nèi)角和一定是180°?

  (三)折拼法

  學(xué)生匯報后師小結(jié):我們要研究三角形的內(nèi)角和,實(shí)際上就是想辦法把三角形的三個內(nèi)角湊到一起,像剪和折的方法,看三個內(nèi)角拼到一起是不是180度,都是借助我們學(xué)過的平角解決的問題。

  這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學(xué)過的哪種圖形,想辦法說明三角形的內(nèi)角和一定是180度?

 。ㄋ模┭堇[推理法

 。ń柚鷮W(xué)過的長方形,把一個長方形沿對角線分成兩個三角形。)

  師:你認(rèn)為這種方法好不好?我們看看是不是這么回事。

 。ㄑ菔菊n件:兩個完全相同的三角形內(nèi)角和等于360°,一個三角形內(nèi)角和等于180°)

  師小結(jié):這種方法避免了在剪拼過程中由于操作出現(xiàn)的誤差,非常準(zhǔn)確的說明了三角形的內(nèi)角和一定是180度。

  (學(xué)生通過小組合作的方式學(xué)到方法,分享經(jīng)驗(yàn),更重要的是領(lǐng)悟到科學(xué)研究問題的方法。就學(xué)生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價值。)

  學(xué)生用的方法會非常多,但它們的思維水平是不平行的。

  直接測量法是學(xué)生利用已有的知識,測量出每個角的度數(shù),再用加法求和;

  拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;

  而演繹推理法,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考。

  前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數(shù)。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因?yàn)閮蓚三角形的內(nèi)角和是原來長方形的四個內(nèi)角之和360度,所以一個三角形的內(nèi)角和就是360°÷2=180°,這種方法從科學(xué)證明的角度闡述了三角形的內(nèi)角和,它有嚴(yán)密性和精確性。

  本節(jié)課引導(dǎo)學(xué)生經(jīng)歷從直觀到抽象、思維程度從低到高的過程,感悟數(shù)學(xué)的嚴(yán)謹(jǐn)性。讓學(xué)生在經(jīng)歷量和拼之后,逐漸會在思維發(fā)散的過程中得到集中,集中為分的方法,最后將四邊形一分為二,五邊形一分為三,六邊形一分為四……,又會發(fā)現(xiàn)一些新的規(guī)律!

  4.驗(yàn)證猜想"三角形的內(nèi)角和是180度"

  5.進(jìn)一步感受

 。1)三角形內(nèi)角和與三角形大小的關(guān)系

  教師出示一個小三角形,問學(xué)生內(nèi)角和是多少度?再出示一個大的等腰三角形,問學(xué)生它的內(nèi)角和是多少度?把這個大三角形平均分成兩份,每份內(nèi)角和是多少度?你有什么發(fā)現(xiàn)嗎?

 。2)三角形內(nèi)角和與三角形形狀的關(guān)系

 。ㄑ菔静粩嘧兓娜切。)仔細(xì)觀察,在這個過程中,什么變化了?什么沒變化?(三個角的度數(shù)都在變化,內(nèi)角和卻總是不變的)你有什么新發(fā)現(xiàn)嗎?

  如果老師把一個角一直往下拽,猜一猜會怎樣?

  (通過變化的三角形和三個內(nèi)角的數(shù)據(jù)顯示,進(jìn)一步感受三角形的內(nèi)角和與三角形的形狀、大小都沒有關(guān)系;當(dāng)把三角形的一個角一直向下拽,這個角變成了一個180度的平角,另外兩個角變成了0度角,雖然已經(jīng)不再是三角形,也能從一個側(cè)面證明三角形的內(nèi)角和是180度,使學(xué)生感受到極限的思維方法。)

  6.解釋課前問題

  用內(nèi)角和的知識解釋課前的問題,為什么在三角形中不能有兩個直角或鈍角。

  三、拓展應(yīng)用,深化創(chuàng)新

  本節(jié)課的練習(xí)由易到難,設(shè)計(jì)成三個層次。

  1、基本練習(xí)形成技能

  2、變式練習(xí)鞏固技能

  3、綜合練習(xí)發(fā)展提高技能

  介紹科學(xué)家帕斯卡(出示帕斯卡的資料)

  師:帕斯卡為科學(xué)作出了巨大的貢獻(xiàn),在我們以后學(xué)習(xí)的知識中,也有很多是帕斯卡發(fā)現(xiàn)和驗(yàn)證的,他12歲就發(fā)現(xiàn)三角形內(nèi)角和是180度,我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。

  多邊形邊形內(nèi)角和

 。ㄔO(shè)計(jì)求多邊形的內(nèi)角和,旨在把新問題轉(zhuǎn)化歸結(jié)為求幾個三角形內(nèi)角和的問題上,滲透化歸的數(shù)學(xué)學(xué)習(xí)方法。)

  四、總結(jié)全課,全面提升

  我們用三角形內(nèi)角和的知識知道了六邊形內(nèi)角和,那么五邊形、七邊形……這些多邊形的內(nèi)角和是多少度?有沒有什么規(guī)律可循,你能用學(xué)到的知識和方法去探究問題,相信你還會有一些精彩的發(fā)現(xiàn)。

  七、說設(shè)計(jì)

  三角形的內(nèi)角和是180度。

  轉(zhuǎn)化的思想:量、撕、剪、折、拼

《三角形內(nèi)角和》說課稿5

  ★教材與學(xué)情分析

  《三角形的內(nèi)角和》是人教版四年級下冊的教學(xué)內(nèi)容,這一內(nèi)容是三角形的一個重要性質(zhì)。它有助于學(xué)生理解三角形的三個內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)的基礎(chǔ)。經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),學(xué)生已具備了一些相應(yīng)的三角形知識和技能,初步的動手操作能力、主動探究能力以及合作學(xué)習(xí)的習(xí)慣,這為感受、理解、抽象“三角形的內(nèi)角和”的概念,打下了堅(jiān)實(shí)的基礎(chǔ)。

  ★教學(xué)目標(biāo)、重難點(diǎn)

  以建構(gòu)主義理論以及有效教學(xué)的理念為指導(dǎo),結(jié)合對教材的認(rèn)識以及學(xué)生的情況分析我將本節(jié)課的教學(xué)目標(biāo)定為下列幾點(diǎn):

  1、知識與技能目標(biāo):通過量、剪、拼等活動發(fā)現(xiàn)、驗(yàn)證三角形的內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實(shí)際問題。

  2、過程與方法目標(biāo):通過對三角形的內(nèi)角和轉(zhuǎn)化為平角的探究與體驗(yàn),滲透“轉(zhuǎn)化”、“變中找不變”的數(shù)學(xué)思想。

  3、情感與態(tài)度目標(biāo):體驗(yàn)成功的喜悅,激發(fā)主動學(xué)習(xí)數(shù)學(xué)的興趣。

  教學(xué)重點(diǎn):經(jīng)歷“三角形的內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。

  教學(xué)難點(diǎn):驗(yàn)證“三角形的內(nèi)角和是180°”以及對這一知識規(guī)律的靈活運(yùn)用。

  學(xué)具準(zhǔn)備:量角器、三角尺、剪刀和準(zhǔn)備一個喜歡的三角形(可以畫在紙上,也可以剪下來)

  ★教學(xué)環(huán)節(jié)

  下面向大家重點(diǎn)介紹我對這節(jié)課教學(xué)環(huán)節(jié)的設(shè)計(jì):

  建構(gòu)主義理論學(xué)習(xí)觀提倡以學(xué)生為中心,強(qiáng)調(diào)學(xué)習(xí)者對知識意義的主動建構(gòu)。本節(jié)課我設(shè)計(jì)采用支架式教學(xué)方法,以猜想→驗(yàn)證→應(yīng)用→評價四個活動環(huán)節(jié)為主線,引導(dǎo)學(xué)生通過自主探究學(xué)習(xí)實(shí)現(xiàn)對“三角形內(nèi)角和是180°”這一知識規(guī)律的數(shù)學(xué)理解。同時,每一個活動環(huán)節(jié)都讓學(xué)生嘗試扮演一種角色,激發(fā)他們投入課堂活動的興趣。

  一.大膽設(shè)疑,提出猜想(猜想家)

  在這節(jié)課之前,有不少學(xué)生通過各種渠道了解了三角形的內(nèi)角和是180°。因此,第一個環(huán)節(jié)我就讓學(xué)生根據(jù)已有的知識經(jīng)驗(yàn)進(jìn)行大膽設(shè)疑,提出猜想,做一個猜想家。

  首先,我向?qū)W生出示一個長方形,向?qū)W生講解長方形的四個內(nèi)角,從長方形的角的特征可知它的四個內(nèi)角都是直角,將這四個內(nèi)角的度數(shù)相加就算出長方形的內(nèi)角和是360°。接著,我把長方形拆成兩個三角形,讓學(xué)生指出其中一個三角形的三個內(nèi)角,設(shè)問:這個三角形的三個內(nèi)角和是多少?讓學(xué)生說說各自的看法和理由,并提出“三角形的內(nèi)角和是180°”的猜想。通過這一環(huán)節(jié),學(xué)生首先獲得對“三角形內(nèi)角和是什么”這一陳述性知識的數(shù)學(xué)理解。

  二、科學(xué)驗(yàn)證,探索規(guī)律(科學(xué)家)

  有了大膽的猜想,就要進(jìn)行科學(xué)的驗(yàn)證,第二個角色就是扮演科學(xué)家,對剛才的猜想進(jìn)行科學(xué)驗(yàn)證,自主探索規(guī)律,這也就是本節(jié)課的第二個環(huán)節(jié)。

  第二個環(huán)節(jié)的活動步驟如下:

 。1)提供實(shí)驗(yàn)活動需要操作的工具,如:量角器、三角尺、剪刀等,讓學(xué)生說說:“要知道三角形的內(nèi)角和,怎樣利用好這些工具?”

  (2)明確提出操作要求:先在自己準(zhǔn)備的三角形上作好內(nèi)角的符號,選擇合適的工具開展實(shí)驗(yàn),遇到操作困難可以與同伴商量或請老師幫助解決。

 。3)學(xué)生操作后在小組內(nèi)交流,出示交流提綱:

  A、通過實(shí)驗(yàn)操作,你發(fā)現(xiàn)三角形的內(nèi)角和有什么特點(diǎn)?你是怎樣發(fā)現(xiàn)的?

  B、你認(rèn)為三角形的內(nèi)角和與三角形的大小、形狀有關(guān)嗎?為什么?

  (4)集體交流,小結(jié)規(guī)律:

  在組織學(xué)生交流實(shí)驗(yàn)的過程與成果時,我會挑選出研究不同形狀或不同大小的三角形的學(xué)生進(jìn)行實(shí)驗(yàn)匯報,并在學(xué)生提出疑問時進(jìn)行合理的解釋與調(diào)控,最后與學(xué)生一起小結(jié)歸納出:“三角形的內(nèi)角和是180°,而且與它的大小、形狀無關(guān)”這一數(shù)學(xué)規(guī)律,從中感悟由特殊到一般的證明方法。

  建構(gòu)主義心理學(xué)認(rèn)為,學(xué)習(xí)的過程是學(xué)習(xí)者用自己的觀點(diǎn)去解讀教材的內(nèi)容,從而在自己頭腦中建構(gòu)出一個新的概念。在第二個環(huán)節(jié),學(xué)生通過動手實(shí)驗(yàn),用自己適用的方式將“三角形內(nèi)角和是180°”這一知識規(guī)律建構(gòu)起來,也就是獲得了對“三角形內(nèi)角和是多少、為什么”這些程序性知識的數(shù)學(xué)理解。

  三、聯(lián)系生活,實(shí)踐應(yīng)用(實(shí)踐家)

  俗話說的好:“熟能生巧”。數(shù)學(xué)離不開練習(xí),要掌握知識,形成技能技巧,一定要通過練習(xí)。有效教學(xué)理論指出練習(xí)要考慮它的實(shí)效性。在這個環(huán)節(jié),我設(shè)計(jì)讓學(xué)生扮演實(shí)踐家,通過三個有層次有針對性的練習(xí)實(shí)踐把探索得出的知識應(yīng)用于生活問題之中。

  第一,基本運(yùn)用。即書本中的“做一做”這個練習(xí),通過這個練習(xí)讓學(xué)生形成運(yùn)用三角形內(nèi)角和的知識求出未知角度數(shù)的基本技能。我設(shè)計(jì)讓學(xué)生先嘗試獨(dú)立完成,在匯報交流時,鼓勵學(xué)生注意傾聽、領(lǐng)會同伴的解法,從而反思自己解法。

  第二,綜合運(yùn)用。即書本中練習(xí)十四的第9題,這道題目的是讓學(xué)生在求特殊三角形的未知角的度數(shù)的過程中,綜合運(yùn)用之前所學(xué)的各種三角形的`特征與三角形內(nèi)角和的知識,對知識的運(yùn)用提高了一個層次。因此做這道題時,我會先引導(dǎo)學(xué)生說說自己的看法,找出特殊三角形中隱藏的已知條件。我估計(jì)學(xué)生可能會混淆了等腰三角形的頂角和底角,因此在匯報交流時重點(diǎn)放在等腰三角形這個圖形的求解,讓學(xué)生首先明確已知的是頂角的度數(shù),因此從180°中減去頂角的度數(shù),再平分成兩份,才能得出一個底角的度數(shù)。這時,我再提出一個反例,如果知道的是底角的度數(shù),你能求出頂角是多少度嗎?以此引出練習(xí)十四的第10題。

  第三,拓展延伸。我設(shè)計(jì)了將一個大三角形拆分成兩個小三角形,其中一個三角形的內(nèi)角和是不是用180°除以2得到?然后再出示兩個三角形拼成一個大三角形,這個大三角形的內(nèi)角和是不是用180°乘2得到?以這樣的一個變式練習(xí)讓學(xué)生進(jìn)一步感悟“三角形的內(nèi)角和與它的形狀、大小沒有關(guān)系”的知識規(guī)律。

  通過三個層次的練習(xí),學(xué)生應(yīng)用“三角形內(nèi)角和是180°”這個知識規(guī)律回到現(xiàn)實(shí)問題中,用自己的思維方式對各種現(xiàn)實(shí)問題進(jìn)行解釋,這是學(xué)生不斷完善對三角形內(nèi)角和知識的內(nèi)涵與外延的數(shù)學(xué)理解,實(shí)現(xiàn)了對數(shù)學(xué)理解的提升。

  四、自我反思,評價延伸

  在這個環(huán)節(jié),我會讓學(xué)生自己說說:“這節(jié)課你有什么收獲?”“在扮演三個角色時,哪一個角色完成得最好,為什么?”“在今后的課堂活動中哪方面可以做得更好?”對學(xué)生的各種自我評價,同伴和老師都可以發(fā)表自己的看法,讓學(xué)生發(fā)現(xiàn)、總結(jié)開展本次課堂活動的經(jīng)驗(yàn)與不足,明確今后努力的方向。

  ★教學(xué)特色

  一、滲透數(shù)學(xué)思想

  通過探究活動,學(xué)生將三個內(nèi)角和轉(zhuǎn)化為一個平角,得出三角形的內(nèi)角和是180°,滲透了“轉(zhuǎn)化”的數(shù)學(xué)思想;通過實(shí)驗(yàn)小結(jié),學(xué)生發(fā)現(xiàn)無論三角形的形狀、大小怎樣變,三角形的內(nèi)角和不變,都是180°,滲透了“變中找不變”的數(shù)學(xué)思想。

  二、利用課程資源

  1、挖掘?qū)W生資源

  有效教學(xué)有時需要教師保持“無為而教”的自我克制,不過多地干擾學(xué)生的自由學(xué)習(xí)空間。在設(shè)計(jì)這節(jié)課時,我利用學(xué)生已有的知識經(jīng)驗(yàn),對三角形的內(nèi)角和進(jìn)行猜想,然后通過大膽的實(shí)驗(yàn)激起同伴之間的互相影響,作為教師,我更多的是為學(xué)生提供大量的課程資源,喚醒和激勵學(xué)生親自去接觸、體驗(yàn)知識和規(guī)律的產(chǎn)生過程。

  2、善用教材資源

  新課標(biāo)數(shù)學(xué)實(shí)驗(yàn)教材倡導(dǎo)人人學(xué)“有用”的數(shù)學(xué),它把原教材繁、難、雜、偏的內(nèi)容刪去。因此,我在設(shè)計(jì)練習(xí)鞏固時,不作無謂的浪費(fèi),直接使用教材中習(xí)題,作為基礎(chǔ)性練習(xí)和綜合性練習(xí)?紤]學(xué)生學(xué)習(xí)基礎(chǔ)、能力的差異,在練習(xí)的最后一層拓展性練習(xí),我利用三角形的拆分與組合為學(xué)生提供多層次的思考,以滿足不同層次學(xué)生均發(fā)展的需要,讓人人都獲得不同程度的提高,得到成功的體驗(yàn)。

《三角形內(nèi)角和》說課稿6

  一、說教材

  “三角形的內(nèi)角和”是三角形的一個重要性質(zhì),是“空間與圖形”領(lǐng)域的重要內(nèi)容之一,學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)幾何的基礎(chǔ)。經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),學(xué)生已經(jīng)具備一定的關(guān)于三角形的認(rèn)識的直接經(jīng)驗(yàn),已具備了一些相應(yīng)的三角形知識和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的概念,打下了堅(jiān)實(shí)的基礎(chǔ)。

  為方便教師領(lǐng)會教材編寫的意圖與理念,開展有效的教學(xué),更好的發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生的各種能力,教材在呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識形成的過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活的組織教學(xué)提供了清晰的思路。主要體現(xiàn)在:概念的形成不直接給出結(jié)論,而是提供豐富的動手實(shí)踐的素材,設(shè)計(jì)思考性較強(qiáng)的問題,讓學(xué)生通過探索、實(shí)驗(yàn)、發(fā)現(xiàn)、討論、交流等獲得。從而讓學(xué)生在動手操作,積極探索的活動過程中掌握知識,積累數(shù)學(xué)活動經(jīng)驗(yàn),發(fā)展空間觀念和推理能力,不斷提高自己的思維水平。基于對教材以上的認(rèn)識及課程標(biāo)準(zhǔn)的要求,我擬定本節(jié)課的教學(xué)目標(biāo)為:

  1、知識目標(biāo):知道三角形內(nèi)角和是180°。

  2、能力目標(biāo):①通過學(xué)生猜、測、拼、折、觀察等活動,培養(yǎng)學(xué)生探索、發(fā)現(xiàn)能力、觀察能力和動手操作能力。②能運(yùn)用三角形內(nèi)角和是180°這一規(guī)律解決實(shí)際問題。

  3、情感目標(biāo):①讓學(xué)生在探索活動中產(chǎn)生對數(shù)學(xué)的好奇心,發(fā)展學(xué)生的空間觀念;②體驗(yàn)探索的樂趣和成功的快樂,增強(qiáng)學(xué)好數(shù)學(xué)的信心。

  教學(xué)重點(diǎn):三角形內(nèi)角和是180°的實(shí)際應(yīng)用。

  教學(xué)難點(diǎn):探索三角形的內(nèi)角和是180°

  {二、教學(xué)用具}

  本節(jié)課采用課件、不同形狀的三角形、量件器等。

  三、說教法

  新課程標(biāo)準(zhǔn)的基本理念就是要讓學(xué)生“人人學(xué)有價值的數(shù)學(xué)”。強(qiáng)調(diào)“教學(xué)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程。要激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機(jī)會,讓他們積極主動地探索,解決數(shù)學(xué)問題,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,獲得數(shù)學(xué)經(jīng)驗(yàn);而教師只是學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者和合作者,在全面參與和了解學(xué)生的學(xué)習(xí)過程中起著對學(xué)生進(jìn)行積極的評價,關(guān)注他們的學(xué)習(xí)方法、學(xué)習(xí)水平和情感態(tài)度,促使學(xué)生向著預(yù)定的目標(biāo)發(fā)展的作用”。因此,我運(yùn)用“猜一猜——量一量——拼—拼——折一折——看一看……”的教學(xué)法,讓學(xué)生知道身邊的數(shù)學(xué)問題隨處可見,能用自己所學(xué)的知識解決生活當(dāng)中的事情,培養(yǎng)學(xué)生的發(fā)散思維,進(jìn)一步激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。

  四、說學(xué)法

  學(xué)法是學(xué)生再生知識的法寶。為了使學(xué)生能在整節(jié)課的探索活動中積極主動參與動手實(shí)踐、自主探究、合作交流的學(xué)習(xí)活動,我設(shè)計(jì)了獨(dú)立活動、二人活動及分小組活動。在具體活動中,我讓學(xué)生大膽猜想,自主探索三角形的內(nèi)角和是多少度?再通過測量、拼折、驗(yàn)證等方式讓學(xué)生確定三角形內(nèi)角的度數(shù)是18度。這樣,既培養(yǎng)了學(xué)生的觀察能力和歸納概括能力,又體現(xiàn)了學(xué)生動手實(shí)踐、合作交流,自主探索的學(xué)習(xí)方式,同時也培養(yǎng)了學(xué)生探索能力和創(chuàng)新精神。

  五、說教學(xué)流程

  “將課堂還給學(xué)生,讓課堂煥發(fā)生命的活力”,“努力營造學(xué)生在教學(xué)活動中獨(dú)立自主學(xué)習(xí)的時間和空間,使他們成為課堂教學(xué)中重要的參與者與創(chuàng)造者。在整個教學(xué)設(shè)計(jì)上力求充分體現(xiàn)“以學(xué)生發(fā)展為本”教育理念,我將教學(xué)流程擬定為“設(shè)疑導(dǎo)入——大膽猜想——動手驗(yàn)證——鞏固內(nèi)化&mdash

 ;—拓展延伸”,努力構(gòu)建探索型的課堂教學(xué)模式。

  1、設(shè)疑導(dǎo)入

  教學(xué)的藝術(shù)不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。伊始上課,我想以前面學(xué)過的知識“三角形的分類”為切入點(diǎn),給出不同形狀的三角形,讓學(xué)生說出它們的名稱,有銳角三角形、直角三角形、鈍角三角形,隨后我提出挑戰(zhàn),讓學(xué)生畫一個很特殊的三角形:即含有兩個直角的三角形,結(jié)果是可想而知的,學(xué)生是不可能畫出來的,想知道為什么呢?學(xué)了“三角形內(nèi)角和”我們就知道了。板書課題:三角形內(nèi)角和。這樣,我在很短的時間內(nèi)最大限度的激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣,為學(xué)生進(jìn)一步學(xué)習(xí)打好基礎(chǔ)。

  2、大膽猜想

  學(xué)生有了探索的愿望和興趣,可是不能沒有目標(biāo)的去探索,那樣只會事倍功半,甚至沒有結(jié)果,這時我讓學(xué)生大膽猜想:為什么不能畫出有兩個直角的三角形呢?猜一猜三角形的內(nèi)角和”大約是多少度?學(xué)生猜想時我在黑板上書寫幾個比較接近的度數(shù)。這樣形成統(tǒng)一的認(rèn)識,使后邊的探索和驗(yàn)證活動有了明確的目標(biāo)。

  3、動手驗(yàn)證

  學(xué)生形成統(tǒng)一的猜想后,我就把課堂大量的時間和空間留給學(xué)生,讓他們開展有針對性的數(shù)學(xué)探究活動{既驗(yàn)證三角形的內(nèi)角和是否是180度?},在活動中,我既不像過去那樣告訴學(xué)生怎么動手去驗(yàn)證,讓學(xué)生做機(jī)械的操作員,也不是隨意放開讓學(xué)生盲目的操作,我想把放和引有機(jī)的結(jié)合起來,鼓勵學(xué)生積極開動腦筋,從不同的途徑探索解決問題的`方法。不但讓每個學(xué)生自主參與驗(yàn)證活動,而且使學(xué)生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量量不同形狀的三角形的三個內(nèi)角拼一拼將三角形的三個內(nèi)角可以拼成一個什么角,折一折將三角形的三個內(nèi)角可以折成一個什么角,看一看無論是量、還是拼、或者是折我們得到的三角形內(nèi)角和都是多少度?。

  4、鞏固內(nèi)化:

  俗話說的好:“熟能生巧”。數(shù)學(xué)離不開練習(xí),要掌握知識,形成技能技巧,一定要通過練習(xí)。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習(xí),課程標(biāo)準(zhǔn)提倡練習(xí)的有效性。對此,我力爭注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用。

  1、釋疑練習(xí):讓學(xué)生用所學(xué)的知識說一說為什么畫不出含有兩個直角的三角形?目的是解釋課前的設(shè)疑,從中培養(yǎng)學(xué)生應(yīng)用意識和解決問題的能力;

  2、基本練習(xí):鞏固本節(jié)課所學(xué)的知識。

  3、變式練習(xí):目的是是學(xué)生將知識轉(zhuǎn)化成能力。

  4、綜合練習(xí):目的是讓學(xué)生感受數(shù)學(xué)與生活的聯(lián)系,培養(yǎng)運(yùn)用所學(xué)知識解決實(shí)際問題的能力。

  5、拓展創(chuàng)新:力求體現(xiàn)“不同的人在數(shù)學(xué)上得到不同的發(fā)展”這一新課程理念。

  數(shù)學(xué)具有嚴(yán)密的邏輯性和抽象性。而學(xué)生學(xué)習(xí)內(nèi)容的呈現(xiàn)是從簡單到復(fù)雜,思維方式是從具體到抽象的一個循序漸進(jìn)的過程,前面學(xué)習(xí)的知識往往是后面進(jìn)一步學(xué)習(xí)的基礎(chǔ)。要培養(yǎng)學(xué)生思維的靈活性,可以先讓學(xué)生學(xué)會對知識的遷移。本課最后,我給學(xué)生出了一道通過對本節(jié)課所學(xué)知識的遷移就可以完成的問題,對學(xué)生進(jìn)行思維訓(xùn)練,既培養(yǎng)了學(xué)生應(yīng)用知識的能力,又培養(yǎng)了學(xué)生的創(chuàng)新意識和創(chuàng)新精神。

  總之,在本節(jié)課教學(xué)活動中我力求充分體現(xiàn)一下特點(diǎn):以學(xué)生發(fā)展為本,以學(xué)生為主體,以思維訓(xùn)練為主線的教學(xué)思想;充分關(guān)注學(xué)生的自主探究與合作交流,注重培養(yǎng)學(xué)生的創(chuàng)新意識和實(shí)踐能力。

《三角形內(nèi)角和》說課稿7

  一、 說教材

  三角形的內(nèi)角和是北師大版四年級下冊第二單元的內(nèi)容。三角形的內(nèi)角和是三角形的一個重要性質(zhì),學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)幾何的基礎(chǔ)。

  二、說學(xué)情

  本節(jié)課是在學(xué)生學(xué)過角的度量、三角形的特征和分類等知識的基礎(chǔ)上進(jìn)行教學(xué)的,學(xué)生已經(jīng)具備一定的關(guān)于三角形的認(rèn)識的直接經(jīng)驗(yàn),也已具備了一些相應(yīng)的三角形知識和技能,這為感受、理解、抽象三角形的內(nèi)角和的規(guī)律,打下了堅(jiān)實(shí)的基礎(chǔ)。

  因此,我確定本節(jié)課的教學(xué)目標(biāo)是:

  教學(xué)目標(biāo):

  知識與技能:通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180。知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。能應(yīng)用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。

  過程與方法:

  發(fā)展學(xué)生動手操作、觀察比較和抽象概括的能力。

  情感、態(tài)度與價值觀:體驗(yàn)數(shù)學(xué)活動的探索樂趣,體會研究數(shù)學(xué)問題的思想方法。

  教學(xué)重點(diǎn):

  學(xué)生經(jīng)歷探究三角形內(nèi)角和的全過程并歸納概括三角形內(nèi)角和等于180。

  教學(xué)難點(diǎn):

  三角形內(nèi)角和的探索與驗(yàn)證,對不同探究方法的指導(dǎo)和學(xué)生對規(guī)律的靈活應(yīng)用。

  三、說教法、學(xué)法

  整個教學(xué)將體現(xiàn)以人為本,先放后扶的教學(xué)策略。放,不是漫無目的的放,而是為學(xué)生提供足夠的探究規(guī)律的材料和時間,放手讓學(xué)生自主學(xué)習(xí),合作探究;扶,則是根據(jù)學(xué)生的不同探究方法和出現(xiàn)的錯誤,給予恰當(dāng)指導(dǎo),引導(dǎo)學(xué)生歸納概括出規(guī)律。

  《課程標(biāo)準(zhǔn)》明確指出:要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀察、操作、猜想,培養(yǎng)學(xué)生初步的思維能力。四年級學(xué)生經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的動手操作、主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點(diǎn)引導(dǎo)學(xué)生從猜測――驗(yàn)證展開學(xué)習(xí)活動,讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。在教學(xué)中,學(xué)生通過測量、拼折、驗(yàn)證等方式確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了觀察能力和歸納概括能力,又體現(xiàn)了動手實(shí)踐、合作交流,自主探索的學(xué)習(xí)方式,同時也培養(yǎng)了探索能力和創(chuàng)新精神。

  四、說教學(xué)過程

  基于以上分析,我以猜測、驗(yàn)證、結(jié)論和應(yīng)用四個活動環(huán)節(jié)為主線,讓學(xué)生通過自主探究學(xué)習(xí)進(jìn)行數(shù)學(xué)的思考過程,積累數(shù)學(xué)活動經(jīng)驗(yàn)。

  第一, 猜測。

  通過出示一個角形,讓學(xué)生說知道三角形的知識來引出三角形的內(nèi)角的概念,讓學(xué)生自由猜測,三角形內(nèi)角和是多少?引出課題,以疑激思。

  第二,動手操作,探究新知。

  動手實(shí)踐,自主探究,是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式,新課程的一個重要理念就是提倡學(xué)生做數(shù)學(xué)用親身體驗(yàn)的方式來經(jīng)歷數(shù)學(xué),探究數(shù)學(xué),這要求老師首先為學(xué)生提供充分的研究材料,以及充裕的時間,保證學(xué)生能真正地試驗(yàn),操作和探索。

  這一環(huán)節(jié)我設(shè)計(jì)為以下三步:

  1、操作感知。

  組織學(xué)生通過算一算初步感知三角形的內(nèi)角和。根據(jù)學(xué)生特點(diǎn),為了節(jié)約學(xué)生上課的時間,作為預(yù)習(xí)作業(yè),我提前讓學(xué)生在家里自制鈍角、銳角、直角三角形,并測量出每個角的度數(shù),寫在三角形對應(yīng)的角上,也填在書上的表格里。這時直接讓學(xué)生計(jì)算,學(xué)生匯報計(jì)算結(jié)果,不同的學(xué)生可能會有不同的結(jié)果,有可能大于180或小于180甚至等于180,只要相對合理(允許一點(diǎn)誤差)都給與肯定。這時可引導(dǎo)學(xué)生得出結(jié)論(強(qiáng)調(diào)在排除測量誤差的前提下):三角形的內(nèi)角和是180度。在這一過程中,學(xué)生有困惑,有疑問,而正是這些困惑激發(fā)了學(xué)生更強(qiáng)的探究欲望,正是這些疑問,使得合作成為學(xué)生的內(nèi)在需要。

  2、小組合作。

  針對探究過程中不同思維能力的學(xué)生,要做到因材施教。對于得出結(jié)論的學(xué)生要鼓勵他們思考新的方法,對于無法下手的學(xué)生,要啟發(fā)他們知道三角形的內(nèi)角和,我們可以把角合起來看是多少?能用什么方法將三個角合起來。在探究學(xué)習(xí)中,老師只是起一個引導(dǎo)者的作用,引導(dǎo)學(xué)生不斷地深入探究,盡可能用多種合理的方法,驗(yàn)證結(jié)論。

  3、交流反饋,得出結(jié)論。

  學(xué)生完成探究活動之后,在有親身體驗(yàn)的基礎(chǔ)上,我將選擇不同方法的代表,在展示平臺上展示自己的探究過程,并說說自己是怎樣想的。我關(guān)注的不是學(xué)生最后論證的結(jié)果,而是學(xué)生思維的過程。學(xué)生可能通過:拼一拼、折一折、畫一畫的方法,驗(yàn)證得出三角形的內(nèi)角和是180度,并通過觀察對比各組所用的三角形,是不同類型的而且大小不同的,發(fā)現(xiàn)這一規(guī)律是具有普遍性的,對于任意三角形都是適用。在學(xué)生探究之后,我用課件重新演示了3種方法,讓學(xué)生有一個系統(tǒng)的知識體系。

  第三是靈活應(yīng)用,拓展延伸。

  揭示規(guī)律之后,學(xué)生要掌握知識,形成技能技巧,就要通過解答實(shí)際問題的練習(xí)來鞏固內(nèi)化。根據(jù)學(xué)生能力的不同,我將練習(xí)分為以下3個層次。

  1、基礎(chǔ)練習(xí)。要求學(xué)生利用三角形內(nèi)角和是180度在三角形內(nèi)已知兩個角,求第三個角。由于學(xué)生空間思維能力的`局限,我將先出示有具體圖形的題目,再出示文字?jǐn)⑹鲱}。在這之間指導(dǎo)學(xué)生注意一題多解。

  2、提高練習(xí)。如已知一個直角三角形的一個角的度數(shù),求另一個角的度數(shù);已知一個等腰三角形的頂角或底角的度數(shù),求底角或頂角的度數(shù)。

  3、拓展練習(xí)。針對不同思維能力的學(xué)生,我設(shè)計(jì)的思考題是要求學(xué)生應(yīng)用三角形內(nèi)角和是180的規(guī)律,求多邊形的內(nèi)角和。我的目的不僅僅是為了讓學(xué)生去求解多邊形的內(nèi)角和,更重要的是為了讓學(xué)生靈活應(yīng)用知識點(diǎn),培養(yǎng)學(xué)生的空間思維能力。

  這樣安排可以兼顧不同能力的學(xué)生,在保證基本教學(xué)要求的同時,盡量滿足學(xué)生的學(xué)習(xí)需要,啟發(fā)學(xué)生的思維活動。

  本節(jié)課通過這樣的設(shè)計(jì),學(xué)生全身心投入到數(shù)學(xué)探究互動中去,學(xué)生不僅學(xué)到科學(xué)探究的方法,而體驗(yàn)到探索的甘苦,領(lǐng)略成功的喜悅,學(xué)生在探索中學(xué)習(xí),在探索中發(fā)現(xiàn),在探索中成長,最終實(shí)現(xiàn)可持續(xù)性發(fā)展。

  板書:

  三角形的內(nèi)角和

  猜測驗(yàn)證結(jié)論應(yīng)用

  三角形內(nèi)角和等于180。

《三角形內(nèi)角和》說課稿8

  一、說教材

  1、我說課的內(nèi)容是《九年義務(wù)教育人教版》第八冊的《三角形的內(nèi)角和》。

  2、教材簡析

  三角形在平面圖形中是簡單的,也是最基本的多邊形,這部分內(nèi)容是在學(xué)生對三角形已經(jīng)有了直觀的認(rèn)識,并且對三角形的特性及分類有了一定的了解的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。通過這部分內(nèi)容的學(xué)習(xí),培養(yǎng)學(xué)生的實(shí)際操作能力、觀察能力、小組合作交流能力、語言表達(dá)能力以及抽象的思維能力,為以后學(xué)習(xí)多邊形打好基礎(chǔ)。

  3、教學(xué)目標(biāo)

  根據(jù)教材的內(nèi)容以及學(xué)生的知識現(xiàn)狀和年齡心理特點(diǎn),我制定以下教學(xué)目標(biāo)。

 。1)知識目標(biāo):從實(shí)際出發(fā),通過互動學(xué)習(xí)初步感知三角形的內(nèi)角和是180度,在此基礎(chǔ)上,用實(shí)驗(yàn)的方法加以探究。

  (2)能力目標(biāo):通過教學(xué)活動,培養(yǎng)學(xué)生動手操作、歸納推理以及抽象概括的能力。

  (3)情感目標(biāo):使學(xué)生經(jīng)歷探究的過程,體會與他人合作交流的樂趣,學(xué)會用數(shù)學(xué)的眼光去發(fā)現(xiàn)問題、解決問題。感受到數(shù)學(xué)的價值。

  4、教學(xué)重點(diǎn)與難點(diǎn)。

  《三角形內(nèi)角和》的教學(xué)是學(xué)生從直觀形象到抽象掌握的過程,即學(xué)生從感性認(rèn)識到理性認(rèn)識的升華,對學(xué)生發(fā)展類推的能力有著重要的作用。因此,我認(rèn)為學(xué)生通過操作,自主探究三角形的內(nèi)角和是180度是本節(jié)課的重點(diǎn);采用多種途徑證明三角形的內(nèi)角和等于180度是本節(jié)課的難點(diǎn)。

  5、教學(xué)準(zhǔn)備

  為了更好的達(dá)到教學(xué)目標(biāo),突出重點(diǎn),突破難點(diǎn),我準(zhǔn)備以下教具和學(xué)具:課件、不同類型的三角形紙片、量角器、剪刀、膠水。

  二、說教法學(xué)法

  根據(jù)新課程教材的特點(diǎn)和學(xué)生實(shí)際情況,教學(xué)中以直觀教學(xué)為主。運(yùn)用動手觀察,分組討論等多種方法,采用現(xiàn)代化手段結(jié)合教材,讓學(xué)生在“想一想”、“做一做”、“說一說”的自主探索過程發(fā)揮學(xué)生相互之間的作用,讓學(xué)生自己動腦、動手、動口中促進(jìn)思維的發(fā)展。培養(yǎng)學(xué)生的動手操作能力、語言表達(dá)能力和自學(xué)能力。

  本節(jié)課在學(xué)生學(xué)習(xí)方法的引導(dǎo)上盡量體現(xiàn):

  ①在具體的情景中,讓學(xué)生親身經(jīng)歷發(fā)現(xiàn)問題、提出問題、解決問題的過程,體驗(yàn)成功的快樂。

 、谕ㄟ^師生、生生互動,探究、合作交流,完善自己的想法,形成自己獨(dú)特的學(xué)習(xí)方法。

 、弁ㄟ^靈活、有趣和富有創(chuàng)意的練習(xí),提高學(xué)生解決問題的能力。

  三、學(xué)生情況分析

  學(xué)生在日常生活中接觸了很多大小不同的角,但對于三角形內(nèi)角和等于180度的.知識,生活中很少接觸,顯得比較抽象,對于四年級的學(xué)生抽象思維雖然有一定的發(fā)展,但依然以形象具體思維為主,分析、綜合、歸納、概括能力較弱,有待進(jìn)一步培養(yǎng)。

  四、說教學(xué)流程

  為了達(dá)到本節(jié)課的教學(xué)目標(biāo),我這樣設(shè)計(jì)教學(xué)流程:

  1、設(shè)疑導(dǎo)入。

  為了激起學(xué)生求知的欲望,再根據(jù)本課題的特點(diǎn)和四年級學(xué)生心理的特點(diǎn),我采取了直接設(shè)疑導(dǎo)入。具體步驟如下:

 。1)讓學(xué)生匯報三角尺各個內(nèi)角的度數(shù),并計(jì)算出每個三角尺的內(nèi)角和是多少度。

 。2)提出問題:當(dāng)學(xué)生答出三角尺的內(nèi)角和度數(shù)之后,我問:所有的三角形的內(nèi)角和都是180度嗎?學(xué)生討論之后引出課題。

  2、動手操作,自主探究。

  為創(chuàng)新學(xué)生的思維,張揚(yáng)學(xué)生的個性,學(xué)生動手量、剪、拼等活動貫穿于整個課堂。我根據(jù)四年級學(xué)生的心理特點(diǎn)設(shè)計(jì)了這一環(huán)節(jié),其目的是:讓學(xué)生在活動過程中形成問題意識,從而展開想象,培養(yǎng)學(xué)生的問題意識。具體做法是:(1)先讓學(xué)生思考如何驗(yàn)證三角形的內(nèi)角和是180度,然后通過討論交流得到幾種驗(yàn)證方法。(2)讓學(xué)生利用量角器量出學(xué)具三角形紙片的各個內(nèi)角的度數(shù),再求出三角形的內(nèi)角和,初步感知三角形的內(nèi)角和等于180度。(3)讓學(xué)生利用剪拼的方法感知三角形的三個內(nèi)角拼在一起是一個平角,從而得到結(jié)論。

  3、鞏固新知

  本環(huán)節(jié)我設(shè)計(jì)了不同類型的習(xí)題。有操作題,計(jì)算題,畫圖題,拼角題等等。其目的是:通過這一環(huán)節(jié),讓學(xué)生掌握、理解三角形的內(nèi)角和等于180度,并把所學(xué)知識回歸于生活實(shí)踐,從而達(dá)到情感、態(tài)度、價值觀這一教學(xué)目標(biāo)的實(shí)現(xiàn)。

  五、板書設(shè)計(jì)

  板書是課堂教學(xué)語言的一種表現(xiàn)形式,它具有啟發(fā)性、指導(dǎo)性和應(yīng)用性。精巧的板書設(shè)計(jì)有“引”和“導(dǎo)”的功能,“引”是引學(xué)生之思,“導(dǎo)”是導(dǎo)學(xué)生之路。

《三角形內(nèi)角和》說課稿9

  一、說教材

  《三角形內(nèi)角和》一課是人教版四年級下冊第五單元的內(nèi)容,是在學(xué)生學(xué)習(xí)了三角形的特性,三角形的分類之后進(jìn)行的,在此之后則是圖形的拼組,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實(shí)際問題的基礎(chǔ),因此,學(xué)習(xí)、掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。本節(jié)課由淺入深,循序漸進(jìn),引導(dǎo)學(xué)生觀察—猜測—實(shí)驗(yàn)—驗(yàn)證,逐步培養(yǎng)學(xué)生的邏輯推理能力。

  二、教學(xué)目標(biāo)

  基于以上對教材的分析,我設(shè)計(jì)了本節(jié)課的教學(xué)目標(biāo):

  1、過實(shí)驗(yàn)、操作、推理、歸納三角形的`內(nèi)角和是180°

  2、運(yùn)用三角形的內(nèi)角和知識解決實(shí)際問題

  3、過拼、擺感受數(shù)學(xué)的轉(zhuǎn)化思想

  4、研究性學(xué)習(xí)使學(xué)生獲得實(shí)實(shí)在在地經(jīng)歷和感受,從情感上喚醒學(xué)生的學(xué)習(xí)需要,激發(fā)學(xué)生的主動性。數(shù)學(xué)活動使學(xué)生獲得成功的體驗(yàn),增強(qiáng)自信心。

  三、教學(xué)重、難點(diǎn)

  重點(diǎn):掌握三角形的內(nèi)角和是180°。難點(diǎn):運(yùn)用三角形內(nèi)角和解決實(shí)際問題。

  四、說學(xué)情

  四年級學(xué)生經(jīng)過以往知識的學(xué)習(xí)具備了初步的動手操作、主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。上學(xué)期已經(jīng)認(rèn)識了角的度量,本學(xué)期學(xué)習(xí)了三角形有關(guān)知識,因此可通過他們的實(shí)際動手操作,得出結(jié)論。

  五、教學(xué)準(zhǔn)備

  準(zhǔn)備各種形狀的三角形,量角器

  六、說教法、學(xué)法

  學(xué)法:因?yàn)椤墩n程標(biāo)準(zhǔn)》明確指出:“要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀察、操作、猜想,培養(yǎng)學(xué)生初步的思維能力”。針對學(xué)生的學(xué)習(xí)情況,本節(jié)課,我將積極倡導(dǎo)自主、合作、交流的學(xué)習(xí)方法展開學(xué)習(xí)活動。教法:根據(jù)以上設(shè)計(jì)的學(xué)法我確定了本節(jié)課的教法,在本節(jié)研究性學(xué)習(xí)的課堂中,我的作用不是“教”而是“導(dǎo)”,通過教師的精心引導(dǎo)和點(diǎn)撥,啟發(fā)學(xué)生主動思考,嘗試用多種方法來證明這個結(jié)論,學(xué)生在小組中合作探索,驗(yàn)證三角形的內(nèi)角和是180度。

  七、說教學(xué)過程

 。ㄔ诮虒W(xué)前我為學(xué)生準(zhǔn)備了多種形狀的三角形,結(jié)合學(xué)生的認(rèn)知水平和年齡特點(diǎn)我將教學(xué)過程設(shè)計(jì)為四個環(huán)節(jié))

 。ㄒ唬、誘導(dǎo)——營建雙效氛圍

  有一天,兩個三角形吵了起來,大三角形說自己的個頭大,所以內(nèi)角比小三角形大。可小三角形說別看自己個頭小,但角卻不小。他們爭得不可開交,始終爭論不出結(jié)果。到底誰的內(nèi)角大,誰的內(nèi)角小,請大家?guī)兔ο雮辦法,好嗎?

  【設(shè)計(jì)意圖】

  (一)通過一個情景小對話為學(xué)生創(chuàng)建了一個平等,寬松的學(xué)習(xí)氛圍,學(xué)生可以自由地發(fā)表意見,自主的按自己的學(xué)習(xí)、思維方式參與教學(xué)活動。也為學(xué)生建造了一個積極探究的氛圍。蘇霍姆林斯基說過:兒童的精神中有一種特別強(qiáng)烈的需要,這就是希望自己是一個發(fā)現(xiàn)者、研究者和探索者。在這個過程中,學(xué)生的思維被這個極具吸引力的情境驅(qū)動著,激發(fā)了學(xué)生強(qiáng)烈的探索欲望。

 。ǘ、研究——展露探索時空這一環(huán)節(jié)利用學(xué)生準(zhǔn)備好的卡片進(jìn)行量一量,拼―拼,折-折,畫一畫等動手操作,并向同學(xué)提出質(zhì)疑大小不同及形狀不同的三角形,它們的內(nèi)角和會是一樣嗎通過小組討論,全班交流,教師點(diǎn)撥等方式探究得出三角形內(nèi)角和等于180度,并充分感受三角形三個角之間的聯(lián)系和變化。

《三角形內(nèi)角和》說課稿10

各位評委、老師大家好:

  我說課的題目是《三角形內(nèi)角和》,內(nèi)容選自人教版九年義務(wù)教育七年級下冊第七章第二節(jié)第一課時。

  一、設(shè)計(jì)理念:

  數(shù)學(xué)是人與人之間精神層面上進(jìn)行的交往。課堂教學(xué)中的交往主要是教師與學(xué)生、學(xué)生與學(xué)生之間的交往。它需要運(yùn)用“對話式”的學(xué)習(xí)方式,采取多種教學(xué)策略,使學(xué)生在合作、探索、交流中發(fā)展能力。新課程中對學(xué)生的情感、體驗(yàn)、價值觀,以及獲取知識的渠道都有悖于傳統(tǒng)的教學(xué)模式,這正是教師在新課程中尋找新的教學(xué)方式的著眼點(diǎn)。

  應(yīng)該說,新的教學(xué)方式將伴隨著教師對新課程的逐漸透視而形成新的路徑。要破除原有教學(xué)活動的框架,建立適應(yīng)師生相互交流的教學(xué)活動體系;滿足學(xué)生的心理需求,實(shí)現(xiàn)教者與學(xué)者感情上的融洽和情感上的共鳴;給學(xué)生體驗(yàn)成功的機(jī)會,把“要我學(xué)”變成“我要學(xué)”。

  我認(rèn)為教師角色的轉(zhuǎn)變一定會促進(jìn)學(xué)生的發(fā)展、促進(jìn)教育的長足發(fā)展,在未來的教學(xué)過程里,教師要做的是:幫助學(xué)生決定適當(dāng)?shù)膶W(xué)習(xí)目標(biāo),并確認(rèn)和協(xié)調(diào)達(dá)到目標(biāo)的最佳途徑;指導(dǎo)學(xué)生形成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略;創(chuàng)造豐富的教學(xué)情境,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,充分調(diào)動學(xué)生的學(xué)習(xí)積極性;為學(xué)生提供各種便利,為學(xué)生的學(xué)習(xí)服務(wù);建立一個接納的、支持性的、寬容的課堂氣氛;作為學(xué)習(xí)的參與者,與學(xué)生分享自己的感情和想法;和學(xué)生一道尋找真理,能夠承認(rèn)自己的過失和錯誤。教學(xué)情境的營造是教師走進(jìn)新課程中所面臨的挑戰(zhàn),適應(yīng)新一輪基礎(chǔ)教育課程改革的教學(xué)情境不是文本中的約定,也不是現(xiàn)成的拿來就能用的,需要我們在教學(xué)活動的全過程中去探索、研究、發(fā)現(xiàn)、形成。

  二、教材分析與處理:

  三角形的內(nèi)角和定理揭示了組成三角形的三個角的數(shù)量關(guān)系,此外,它的證明中引入了輔助線,這些都為后繼學(xué)習(xí)奠定了基礎(chǔ),三角形的內(nèi)角和定理也是幾何問題代數(shù)化的體現(xiàn)。

  三、學(xué)生分析:

  處于這個年齡階段的學(xué)生有能力自己動手,在自己的視野范圍內(nèi)因地制宜地收集、編制、改造適合自身使用,貼近生活實(shí)際的數(shù)學(xué)建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結(jié)的能力,他們渴望體驗(yàn)成功感和自豪感。因而老師有必要給學(xué)生充分的自由和空間,同時注意問題的開放性與可擴(kuò)展性。

  四、教學(xué)目標(biāo):

  1.知識目標(biāo):在情境教學(xué)中,通過探索與交流,逐步發(fā)現(xiàn)“三角形內(nèi)角和定理”,使學(xué)生親身經(jīng)歷知識的發(fā)生過程,并能進(jìn)行簡單應(yīng)用。能夠探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,體會方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學(xué)中,通過有效措施讓學(xué)生在對解決問題過程的反思中,獲得解決問題的經(jīng)驗(yàn),進(jìn)行富有個性的學(xué)習(xí)。

  2.能力目標(biāo):通過拼圖實(shí)踐、問題思考、合作探索、組內(nèi)及組間交流,培養(yǎng)學(xué)生的的邏輯推理、大膽猜想、動手實(shí)踐等能力。

  3.德育目標(biāo):通過添置輔助線教學(xué),滲透美的思想和方法教育。

  4.情感、態(tài)度、價值觀:在良好的師生關(guān)系下,建立輕松的學(xué)習(xí)氛圍,使學(xué)生樂于學(xué)數(shù)學(xué),遇到困難不避讓,在數(shù)學(xué)活動中獲得成功的體驗(yàn),增強(qiáng)自信心,在合作學(xué)習(xí)中增強(qiáng)集體責(zé)任感。

  五、重難點(diǎn)的確立:

  1.重點(diǎn):三角形的內(nèi)角和定理探究與證明。

  2.難點(diǎn):三角形的內(nèi)角和定理的證明方法(添加輔助線)的討論

  六、教法、學(xué)法和教學(xué)手段:

  采用“問題情境-建立模型-解釋、應(yīng)用與拓展”的模式展開教學(xué)。

  采用對話式、嘗試教學(xué)、問題教學(xué)、分層教學(xué)等多種教學(xué)方法,以達(dá)到教學(xué)目的。

  七、教學(xué)過程設(shè)計(jì):

  (一)、創(chuàng)設(shè)情境,懸念引入

  一堂新課的引入是老師與學(xué)生交往活動的開始,是學(xué)生學(xué)習(xí)新知識的心理鋪墊,是拉近師生之間的`距離,破除疑難心理、乏味心理的關(guān)鍵。一個成功的引入,是讓學(xué)生感覺到他熟知的生活,可使學(xué)生迅速投入到課堂中來,對知識在最短的時間內(nèi)產(chǎn)生極大的興趣和求知欲,接下來教學(xué)活動將成為他們樂此不疲的快事了。

  具體做法:拋出問題:“學(xué)校后勤部折疊長梯(電腦顯示圖形)打開時頂端的角是多少度呢?一名學(xué)生測出了兩個梯腿與地面的成角后,立即說出了答案,你知道其中的道理嗎?”待學(xué)生思考片刻后,我因勢利導(dǎo),指出學(xué)習(xí)了本節(jié)課你便能夠回答這個問題了。從而引入新課。

  (二)、探索新知

  1.動手實(shí)踐,嘗試發(fā)現(xiàn):要求學(xué)生將事先準(zhǔn)備好的三角形紙板按線剪開,然后用剪下的∠A、∠B與完整的三角形紙板中的∠C拼圖,使三者頂點(diǎn)重合,問能發(fā)現(xiàn)怎樣的現(xiàn)象?有的學(xué)生會發(fā)現(xiàn),三者拼成一個平角。此時讓學(xué)生互相觀察拼圖,驗(yàn)證結(jié)果。從觀察交流中,互學(xué)方法,達(dá)到生生互動。待交流充分,分小組張貼所拼圖形,教師點(diǎn)評,總結(jié)分類,將所拼圖形分為∠A、∠B分別在∠C同側(cè)和兩側(cè)兩種情況。對有合作精神的小組給與表揚(yáng)。

  (將拼圖展示在黑板上)

  2.嘗試猜想:教師提問,從活動中你有怎樣的發(fā)現(xiàn)?采取組內(nèi)交流的方式,產(chǎn)生思維碰撞。此時我走到學(xué)生中去,對有困難的小組給與適當(dāng)?shù)囊龑?dǎo)。之后由學(xué)生匯報組內(nèi)的發(fā)現(xiàn)。即三角形三個內(nèi)角的和等于180度。

  3.證明猜想:先幫助學(xué)生回憶命題證明的基本步驟,然后讓學(xué)生獨(dú)立完成畫圖、寫出已知、求證的步驟,其他同學(xué)補(bǔ)充完善。下面讓學(xué)生對照剛才的動手實(shí)踐,分小組探求證明方法。此環(huán)節(jié)應(yīng)留給學(xué)生充分的思考、討論、發(fā)現(xiàn)、體驗(yàn)的時間,讓學(xué)生在交流中互取所長,合作探索,找到證明的切入點(diǎn),體驗(yàn)成功。對有困難的學(xué)生要多加關(guān)注和指導(dǎo),不放棄任何一個學(xué)生,借此增進(jìn)教師與學(xué)有困難學(xué)生之間的關(guān)系,為繼續(xù)學(xué)習(xí)奠定基礎(chǔ)。合作探究后,匯報證明方法,注意規(guī)范證明格式。此處自然的引入輔助線的概念。但要說明,添加輔助線不是盲目的,而是為了證明某一結(jié)論,需要引用某個定義、公理、定理,但原圖形不具備直接使用它們的條件,這時就需要添輔助線創(chuàng)造條件,以達(dá)到證明的目的。

  4.學(xué)以致用,反饋練習(xí)

  (1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度數(shù)?

  解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

  ∴∠B+∠C=100°在△ABC中,

  (2)已知:∠A=80°,∠B=52°,則∠C=?

  解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

  又∵∠A=80°∠B=52°(已知)

  ∴∠C=48°

  (3)在△ABC中,已知∠A=80°,∠B-∠C=40°,則∠C=?

  (4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度數(shù)?

  (5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度數(shù)?

  解:設(shè)∠A=x°,則∠B=3x°,∠C=5x°

  由三角形內(nèi)角和定理得,x+3x+5x=180

  解得,x=20

  ∴∠A=20°∠B=60°∠C=100°

  (6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度數(shù)?(2)若BD是AC邊上的高,∠DBC的度數(shù)?

  第(6)題是書中例題的改用,此題由輔助線輔助課件打出,給學(xué)生以圖形由簡單到繁的直觀演示。

  通過這組練習(xí)滲透把圖形簡單化的思想,繼續(xù)滲透統(tǒng)一思想,用代數(shù)方法解決幾何問題。

  5.鞏固提高,以生為本

  (1)如圖:B、C、D在一條直線上,∠ACD=105°,且∠A=∠ACB,則∠B=——度。

  (2)如圖AD是△ABC的角平分線,且∠B=70°,∠C=25°,則∠ADB=——度,∠ADC=——度。

  本組練習(xí)是三角形內(nèi)角和定理與平角定義及角平分線等知識的綜合應(yīng)用.能較好的培養(yǎng)學(xué)生的分析問題、解決問題的能力,有助于獲得一些經(jīng)驗(yàn)。

  6.思維拓展,開放發(fā)散

  如圖,已知△PAD中,∠APD=120°,B、C為AD上的點(diǎn),△PBC為等邊三角形。試盡可能多地找出各幾何量之間的相互關(guān)系。

  本題旨在激發(fā)學(xué)生獨(dú)立思考和創(chuàng)新意識,培養(yǎng)創(chuàng)新精神和實(shí)踐能力,發(fā)展個性思維。

  (三)、歸納總結(jié),同化順應(yīng)

  1.學(xué)生談體會

  2.教師總結(jié),出示本節(jié)知識要點(diǎn)

  3.教師點(diǎn)評,對學(xué)生在課堂上的積極合作,大膽思考給與肯定,提出希望。

  (四)、作業(yè):

  1、必做題:習(xí)題3.1第10、11、12題

  2、選做題:習(xí)題3.1第13、14題

  (五)、板書設(shè)計(jì)

  三角形內(nèi)角和

  學(xué)生拼圖展示

  已知:

  求證:

  證明:

  開放題:

《三角形內(nèi)角和》說課稿11

  一、說教材

  “三角形的內(nèi)角和”是人教版小學(xué)數(shù)學(xué)四年級下冊第五單元第3節(jié)的內(nèi)容。本節(jié)課是在學(xué)生學(xué)過角的度量、三角形的特征和分類等知識的基礎(chǔ)上進(jìn)行教學(xué)的,學(xué)生已經(jīng)具備一定的關(guān)于三角形的認(rèn)識的直接經(jīng)驗(yàn),也已具備了一些相應(yīng)的三角形知識和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的規(guī)律,打下了堅(jiān)實(shí)的基礎(chǔ)。

  二、說學(xué)情

  一堂成功的課不僅要熟悉教材,還需要我們充分的了解學(xué)生的特點(diǎn)。

  本節(jié)課的授課對象是四年級的學(xué)生,從心理特征來說,他們對于新鮮的知識充滿著好奇心和強(qiáng)烈的求知欲望,無意注意仍起著主要作用,有意注意正在發(fā)展。

  從認(rèn)知狀況來說,學(xué)生在此之前已經(jīng)學(xué)習(xí)了三角形有關(guān)的知識,對三角形的內(nèi)角已經(jīng)有了初步的認(rèn)識,這為順利完成本節(jié)課的教學(xué)任務(wù)打下了基礎(chǔ),但對于三角形內(nèi)角和都是180度的理解,學(xué)生可能會產(chǎn)生一定的困難,所以教學(xué)中應(yīng)予以簡單明白,深入淺出的分析。

  三、說教學(xué)目標(biāo)

  根據(jù)新課程標(biāo)準(zhǔn),教材特點(diǎn)、學(xué)生實(shí)際,我確定了如下三維教學(xué)目標(biāo)。

  【知識與技能】通過量、剪、拼等活動發(fā)現(xiàn)、證實(shí)三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實(shí)際問題。

  【過程與方法】經(jīng)歷觀察、猜想、驗(yàn)證的過程,提升自身動手操作及推理、歸納總結(jié)的能力。

  【情感態(tài)度與價值觀】在參與學(xué)習(xí)的過程中,感受數(shù)學(xué)的魅力,體驗(yàn)成功的喜悅,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

  四、說教學(xué)重難點(diǎn)

  根據(jù)學(xué)生現(xiàn)有的知識儲備和知識點(diǎn)本身的難易程度,學(xué)生很難建構(gòu)知識點(diǎn)之間的聯(lián)系,這也確定了本節(jié)課的重點(diǎn)為三角形內(nèi)角和定理,而三角形內(nèi)角和定理推理的過程為本節(jié)課的難點(diǎn)。

  五、說教法學(xué)法

  新課程明確倡導(dǎo)動手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方式,教師不僅是知識的傳授者,更是學(xué)生探究性、合作性學(xué)習(xí)活動的'設(shè)計(jì)者,組織者和學(xué)生學(xué)習(xí)的伙伴。在教學(xué)過程中,我將采用創(chuàng)設(shè)情境,直觀演示,觀察,猜測,操作,思考,總結(jié)等方法,把學(xué)生帶進(jìn)開放的,富有挑戰(zhàn)性的問題情景,讓學(xué)生通過自己學(xué)習(xí),合作學(xué)習(xí),和交流等活動,獲得知識與能力,掌握解決問題的方法,獲得積極的情感體驗(yàn)。整個學(xué)習(xí)和探索活動,體現(xiàn)出開放性思維和多元思維并存的思維方式,教學(xué)生初步學(xué)會自主梳理知識,探索知識的方法,使他們親歷自主探究的過程。

  六、教學(xué)過程

  (一)導(dǎo)入新課

  首先是導(dǎo)入環(huán)節(jié),我會多媒體課件播放有關(guān)三角形內(nèi)角和情境視頻:在圖形的王國中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。鈍角三角形說“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大”。銳角三角形也不示弱“你雖然有一個鈍角,可是其它兩個角都很小,而我的三個角都不是很小,所以我的內(nèi)角和比你大”。直角三角形說“別爭了,我們的內(nèi)角和是一樣大的,因?yàn)槿切蔚膬?nèi)角和是180°”。

  根據(jù)視頻中三角形的對話,順勢引出題目——三角形的內(nèi)角和。

  設(shè)計(jì)意圖:在這個環(huán)節(jié)中,多媒體課件展示有關(guān)三角形內(nèi)角和的內(nèi)容,激發(fā)學(xué)生深厚的學(xué)習(xí)興趣和求知欲望,快速的進(jìn)入學(xué)習(xí)高潮。

  (二)新課探究

  接下里是新課探究環(huán)節(jié),在這一教學(xué)環(huán)節(jié)中,我首先讓學(xué)生畫幾個不同類型的三角形。然后同桌互相量一量,算一算,三角形3個內(nèi)角的和各是多少度?通過測量,學(xué)生可以發(fā)現(xiàn)三角形的內(nèi)角和是180°。

  接著我會提出一個問題是不是所有的三角形的內(nèi)角和都是180°,如何進(jìn)行驗(yàn)證你的結(jié)論呢?接下來我會讓學(xué)生分小組討論,針對學(xué)生出現(xiàn)的問題,我給予指導(dǎo),討論過后,請同學(xué)匯報,鼓勵學(xué)生用自己的語言表達(dá),無論學(xué)生回答的全面與否,都給予積極的評價,其他同學(xué)認(rèn)真傾聽后做出判斷,進(jìn)行補(bǔ)充,提高學(xué)生的注意力。

  通過小組之間的討論,引導(dǎo)學(xué)生采用剪拼的方法進(jìn)行驗(yàn)證,先把一個三角形的三個角剪下來,再拼一拼,拼成一個平角。最后引導(dǎo)學(xué)生總結(jié)出三角形的內(nèi)角和是180°。

  此環(huán)節(jié)通過小組合作,體現(xiàn)以生為本的教學(xué)理念。既培養(yǎng)學(xué)生的推理能力,又鍛煉學(xué)生的語言表達(dá)能力和溝通能力。

 。ㄈ╈柟烫岣

  接下來進(jìn)入鞏固提高環(huán)節(jié)。本環(huán)節(jié)我依據(jù)教學(xué)目標(biāo)和學(xué)生在學(xué)習(xí)中存在的問題,設(shè)計(jì)有針對性、層次分明的練習(xí)題組。讓學(xué)生在解決這些問題的過程中,進(jìn)一步理解、鞏固新知,訓(xùn)練思維的靈活性、敏捷性、創(chuàng)造性,使學(xué)生的創(chuàng)新精神和實(shí)踐能力得到進(jìn)一步提高。

  練習(xí)題組設(shè)計(jì)如下:

  第二題把這兩個完全一樣的直角三角形拼組在一起,得到的新三角形的內(nèi)角和是多少度?

  設(shè)計(jì)意圖:通過各種形式的練習(xí),進(jìn)一步提高學(xué)生學(xué)習(xí)興趣,使學(xué)生的認(rèn)知結(jié)構(gòu)更加完善。同時強(qiáng)化本課的教學(xué)重點(diǎn),突破教學(xué)難點(diǎn)。

 。ㄋ模┬〗Y(jié)作業(yè)

  在小結(jié)環(huán)節(jié),我會引導(dǎo)學(xué)生同桌之間以“你問我答”的形式回顧本節(jié)課所學(xué)的主要內(nèi)容,這節(jié)課你都學(xué)習(xí)了哪些內(nèi)容?三角形內(nèi)角和定理的推導(dǎo)過程體現(xiàn)了哪種數(shù)學(xué)思想方法?

  這樣設(shè)計(jì)的目的是讓學(xué)生在回顧課堂經(jīng)歷的基礎(chǔ)上,以相互交流、相互啟發(fā)的方式總結(jié)自己的收獲,教師通過概括性引導(dǎo)提升學(xué)生對三角形的內(nèi)角和定理的認(rèn)識

  在作業(yè)環(huán)節(jié),我會讓學(xué)生利用本節(jié)課所學(xué)的知識,思考一下四邊形的內(nèi)角和是多少度?

  這樣設(shè)計(jì)的意圖是學(xué)生在學(xué)習(xí)本節(jié)課內(nèi)容的基礎(chǔ)上,進(jìn)一步對本節(jié)課的一個延伸,拓展學(xué)生的思維。

  七、板書設(shè)計(jì)

  為了讓學(xué)生對本節(jié)課的學(xué)習(xí)形成清晰的思路,同時還有利于學(xué)生系統(tǒng)性地記憶新知。我的板書設(shè)計(jì)如下。

《三角形內(nèi)角和》說課稿12

各位老師:

  下午好!我今天說課的內(nèi)容是三角形內(nèi)角和定理,選自北京市義務(wù)教育課程改革實(shí)驗(yàn)教材第15冊第十三章第三節(jié),接下來我將根據(jù)我的教學(xué)設(shè)計(jì),從教學(xué)內(nèi)容、學(xué)情情況、教學(xué)目標(biāo)、教學(xué)方法與過程四個方面進(jìn)行分析,不足之處請各位老師批評指正。

  一、教學(xué)內(nèi)容分析

  本節(jié)課是八年級上冊第十三章第三節(jié),其教學(xué)內(nèi)容為三角形內(nèi)角和定理及其簡單應(yīng)用。它是對圖形進(jìn)一步認(rèn)識以及規(guī)范證明過程的重要內(nèi)容之一,《三角形內(nèi)角和定理》是在學(xué)生知道了“三角形內(nèi)角和等于180°”的前提下,通過添加適當(dāng)?shù)妮o助線,用平行線的性質(zhì)及平角為180加以證明,培養(yǎng)學(xué)生邏輯推理能力,也為下一節(jié)學(xué)習(xí)三角形外角的性質(zhì)作鋪墊。本節(jié)課起著承上啟下的作用。教學(xué)重點(diǎn):三角形內(nèi)角和定理的證明和簡單應(yīng)用。

  二、學(xué)生情況分析

  對于三角形的內(nèi)角和定理,學(xué)生在小學(xué)階段已通過量、折、拼的方法進(jìn)行了合情推理并得出了相關(guān)的推論、在小學(xué)認(rèn)識三角形,通過觀察、操作,得到了三角形內(nèi)角和是180°。

  但在學(xué)生升入初中階段學(xué)習(xí)過推力證明后,必須明確推理要有依據(jù),定理必須通過邏輯證明,F(xiàn)在的學(xué)生喜歡動手實(shí)驗(yàn),操作能力較強(qiáng),但對知識的歸納、概括能力以及知識的遷移能力不強(qiáng)。部分優(yōu)秀學(xué)生已具備良好的學(xué)習(xí)習(xí)慣,有一定分析、歸納能力。

  教學(xué)難點(diǎn):探索三角形內(nèi)角和定理的的證明過程

  三、教學(xué)目標(biāo)分析

  1、知識目標(biāo):掌握“三角形內(nèi)角和定理的證明和簡單應(yīng)用”。能夠探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,體會方程的思想。

  2、能力目標(biāo):通過幾何畫板驗(yàn)證、問題思考、合作探索、組內(nèi)及組間交流,培養(yǎng)學(xué)生的邏輯推理、大膽猜想、將未知轉(zhuǎn)化為已知等能力。

  3、情感、態(tài)度、價值觀:通過添加輔助線教學(xué),滲透數(shù)學(xué)思想和方法教育。在數(shù)學(xué)活動中獲得成功的體驗(yàn),增強(qiáng)自信心,在合作學(xué)習(xí)中增強(qiáng)集體責(zé)任感。

  四、教學(xué)方法與過程

  本節(jié)課我們主要目的是通過添加不同的輔助線的演繹推理的'方法,把三角形的3個內(nèi)角轉(zhuǎn)化為1個平角或把三角形的3個內(nèi)角轉(zhuǎn)化為兩平行線的同旁內(nèi)角證明三角形內(nèi)角和定理,使學(xué)生從中體會到不同的添加輔助線方法的實(shí)質(zhì)是相同的——把一個我們不會解的新問題,轉(zhuǎn)化為我們會解的問題,認(rèn)識到添加輔助線是解決數(shù)學(xué)問題的一種常用方法。

  為了完成這個設(shè)計(jì)理念,在本節(jié)課的教學(xué)方法上采用啟發(fā)引導(dǎo)、合作交流的方法。學(xué)生在已有經(jīng)驗(yàn)的基礎(chǔ)上,要在自己的思考過程中得到進(jìn)步,加深對知識的理解,就必須在教師的引導(dǎo)下,通過同學(xué)間的互相探討、啟發(fā),把課堂上所學(xué)的內(nèi)容完全轉(zhuǎn)化為他們自己的知識。

  本節(jié)課的內(nèi)容主要分為以下六個環(huán)節(jié)分別是:

  (一)復(fù)習(xí)舊知,引入新知

 。ǘ┖献魈骄,學(xué)習(xí)新知

 。ㄈ⿷(yīng)用練習(xí),鞏固新知

 。ㄋ模w納總結(jié),提升認(rèn)識

  (五)隨堂檢測,夯實(shí)基礎(chǔ)

  (六)布置作業(yè),鞏固新知

  下面我將對這六部分進(jìn)行說明

 。ㄒ唬⿵(fù)習(xí)舊知,引入新知

  上節(jié)課我們已經(jīng)研究了三角形的三條邊之間的關(guān)系,今天我們來研究一下三角形的三個內(nèi)角有什么關(guān)系,請問,你們知道三角形的內(nèi)角有什么關(guān)系嗎?

  學(xué)生:三角形內(nèi)角和是1800。

  你已經(jīng)已知道三角形的內(nèi)角和是1800。你還記得以前用的那些方法得到的嗎?

  學(xué)生會回憶起小學(xué)時拼、折發(fā)現(xiàn)得出三角形內(nèi)角和等于180°,這只是實(shí)驗(yàn)得出的命題,不能當(dāng)做定理,只有經(jīng)過嚴(yán)格的幾何證明,證明命題的正確性,才能作為幾何定理,今后,在幾何里,常采用這種方法得到新知識。首先通過幾何畫板驗(yàn)證我們也能得到此結(jié)論,但是我們必須通過邏輯推理來證明結(jié)論,你知道該如何證明這個結(jié)論嗎?

  (二)合作探究,學(xué)習(xí)新知

  首先學(xué)生回憶證明一個命題的步驟:

 、佼媹D

 、诜治雒}的題設(shè)和結(jié)論,寫出已知求證,把文字語言轉(zhuǎn)化為幾何語言。

 、鄯治、探究證明方法。

  得出已知求證

  剛才的撕紙、折紙都是把三角形的三個內(nèi)角移到一起,如果不實(shí)際移動,你有什么方法可達(dá)到同樣的效果?

  這個問題學(xué)生思考起來不是很容易們可以進(jìn)一步提示學(xué)生,提示:這個結(jié)論關(guān)鍵在于這個180°,試想一下,我們之前學(xué)過哪些內(nèi)容與180°有關(guān)?

  學(xué)生:

 。1)平角為180°

 。2)兩直線平行,同旁內(nèi)角互補(bǔ)(180°)

  觀察圖形,我們能否轉(zhuǎn)化為已有知識來證明呢?

  學(xué)生通過觀察,可以想到,如果要得到相等的角,就必須有平行線,通過內(nèi)錯角和同位角相等來證明這一結(jié)論。教師引導(dǎo),要把三角形三個內(nèi)角轉(zhuǎn)化為上述兩種角,就要在原圖形上添加一些線,這些線叫做輔助線,在平面幾何里,輔助線常畫成虛線,添輔助線是解決問題的重要思想方法。

  接下來給學(xué)生一些時間,思考如何添加輔助線。

  學(xué)生通過上圖可直接的到添加輔助線的方法。接下來請學(xué)生說出添加輔助線的方法并口述證明過程。

  進(jìn)而在提問還有沒有其他的方法可以證明這一結(jié)論。

  通過全體同學(xué)的思考,可以想到還有其他兩種方法可以證明,有學(xué)生說出解題思路后,總結(jié),雖然添加輔助線的方法不同,但總體思路是相同的:

 。1)平角為180°

  (2)兩直線平行,同旁內(nèi)角互補(bǔ)(180°)

  這樣就得到了三角形內(nèi)角和定理:文字語言:三角形內(nèi)角和為180°

  圖形語言:

  符號語言:

  提醒學(xué)生注意三種語言的轉(zhuǎn)換

  (三)應(yīng)用練習(xí),鞏固新知

  練習(xí):

  通過練習(xí)依法思考

  思考:在一個三角形中,最多有幾個鈍角?直角?銳角?

  最多有一個鈍角,最多有一個直角、最多有三個銳角

  最少有兩個銳角

  例1:已知,如圖:

  分析:一般設(shè)所求角的度數(shù)為x

  練習(xí):

  通過例題,應(yīng)用定理,規(guī)范解題格式

 。ㄋ模w納總結(jié),提升認(rèn)識

  小結(jié);今天我們學(xué)習(xí)了那些內(nèi)容?

  1、三角形內(nèi)角和定理:三角形內(nèi)角和為

  2、在作解答題時,一般設(shè)所求角的度數(shù)為x

  3、在一個三角形中,最多有一個鈍角,最多有一個直角、最多有三個銳角、最少有兩個銳角

  (五)隨堂檢測,夯實(shí)基礎(chǔ)

 。┎贾米鳂I(yè),鞏固新知

  本節(jié)課,我希望通過教師引導(dǎo),學(xué)生合作交流的方式,讓學(xué)生理解將不會解覺的問題轉(zhuǎn)化為已經(jīng)解決的問題的方法,落實(shí)教學(xué)目標(biāo),讓學(xué)生體會,用添加輔助線的方法解決幾何問題。

  最后,感謝各位老師的聆聽!謝謝!

《三角形內(nèi)角和》說課稿13

  說教材

  《三角形的內(nèi)角和》是人教版小學(xué)數(shù)學(xué)四年級下冊第五單元的內(nèi)容!叭切蔚膬(nèi)角和”是三角形的一個重要性質(zhì),學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)幾何的根底。本節(jié)課是在學(xué)生學(xué)過角的度量、三角形的特征和分類等學(xué)問的根底上進(jìn)展教學(xué)的,學(xué)生已經(jīng)具備肯定的關(guān)于三角形的熟悉的直接閱歷,也已具備了一些相應(yīng)的三角形學(xué)問和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的規(guī)律,打下了堅(jiān)實(shí)的根底。

  說學(xué)情

  一節(jié)勝利的課,不僅在于對教材的把握,還有對學(xué)生的討論。四年級的學(xué)生正處于詳細(xì)形象思維為主導(dǎo)的階段,他們解決問題的力量很強(qiáng),但自控力稍差。因此本節(jié)課將注意引導(dǎo)學(xué)生動腦思索,動手實(shí)踐,打破以學(xué)問傳授為主的傳統(tǒng)數(shù)學(xué)課堂模式,采納敏捷多樣的教學(xué)方法,牢牢將學(xué)生的留意力集中在課堂中。

  說教學(xué)目標(biāo)

  依據(jù)新課程的要求及教材的編寫特點(diǎn),充分考慮到四年級學(xué)生的思維水平,我確立如下三維教學(xué)目標(biāo):

  學(xué)問與技能目標(biāo):通過量、剪、拼等活動發(fā)覺、證明三角形內(nèi)角和是180°,并會應(yīng)用這一學(xué)問解決生活中簡潔的實(shí)際問題。

  過程與方法目標(biāo):經(jīng)受觀看、猜測、驗(yàn)證的過程,提升自身動手操作及推理、歸納總結(jié)的力量。

  情感態(tài)度價值觀目標(biāo):在參加學(xué)習(xí)的過程中,感受數(shù)學(xué)的魅力,體驗(yàn)勝利的喜悅,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

  說教學(xué)重難點(diǎn)

  依據(jù)教學(xué)目標(biāo),我確定了本節(jié)課的重點(diǎn)和難點(diǎn)。重點(diǎn)為三角形內(nèi)角和定理,而三角形內(nèi)角和定理推理的過程為本節(jié)課的難點(diǎn)。

  說教法

  為了更好地突出重點(diǎn),突破難點(diǎn),堅(jiān)持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,依據(jù)學(xué)生的心理進(jìn)展規(guī)律,我將采納啟發(fā)式教學(xué)法,引導(dǎo)學(xué)生利用已有的學(xué)問閱歷去探究新知,并在探究過程中把握本節(jié)重難點(diǎn),同時輔之以多媒體教學(xué)設(shè)備,直觀地呈現(xiàn)教學(xué)內(nèi)容。

  我將引導(dǎo)學(xué)生采納自主探究,合作溝通的方式進(jìn)展學(xué)習(xí),通過動手動腦動口來把握本節(jié)課的教學(xué)重難點(diǎn)。

  說教學(xué)內(nèi)容

  為了更好地完本錢節(jié)課的教學(xué)內(nèi)容,突出重點(diǎn)突破難點(diǎn),我設(shè)計(jì)了以下幾個教學(xué)環(huán)節(jié):

 。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課

  為了引入新課,調(diào)動學(xué)生的學(xué)習(xí)興趣,一開頭上課我便用多媒體播放有關(guān)三角形內(nèi)角和情境視頻:在圖形的王國中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場劇烈的爭吵。鈍角三角形說“我的鈍角大,我的內(nèi)角和肯定比你們的內(nèi)角和大”。銳角三角形也不示弱“你雖然有一個鈍角,可是其它兩個角都很小,而我的三個角都不是很小,所以我的內(nèi)角和比你大”。直角三角形說“別爭了,我們的內(nèi)角和是一樣大的,由于三角形的內(nèi)角和是180°”。依據(jù)視頻中三角形的對話,順勢引出題目——三角形的內(nèi)角和。

  多媒體課件展現(xiàn)有關(guān)三角形內(nèi)角和的內(nèi)容,激發(fā)學(xué)生深厚的.學(xué)習(xí)興趣和求知欲望,快速的進(jìn)入學(xué)習(xí)高潮。

 。ǘ┳灾魈骄,感受新知

  首先讓學(xué)生畫幾個不同類型的三角形。然后同桌相互量一量,算一算,三角形3個內(nèi)角的和各是多少度?通過測量,學(xué)生可以發(fā)覺三角形的內(nèi)角和是180°。

  接著我會提出一個問題是不是全部的三角形的內(nèi)角和都是180°,如何進(jìn)展驗(yàn)證你的結(jié)論呢?接下來我會讓學(xué)生分小組爭論,針對學(xué)生消失的問題,我賜予指導(dǎo),爭論過后,請同學(xué)匯報,鼓舞學(xué)生用自己的語言表達(dá),無論學(xué)生答復(fù)的全面與否,都賜予積極的評價,其他同學(xué)仔細(xì)傾聽后做出推斷,進(jìn)展補(bǔ)充,提高學(xué)生的留意力。

  通過小組之間的爭論,引導(dǎo)學(xué)生采納剪拼的方法進(jìn)展驗(yàn)證,先把一個三角形的三個角剪下來,再拼一拼,拼成一個平角。

  最終引導(dǎo)學(xué)生總結(jié)出三角形的內(nèi)角和是180°。

  以上教學(xué)活動采納讓學(xué)生主動探究、小組合作溝通的學(xué)習(xí)方式,使學(xué)生充分經(jīng)受數(shù)學(xué)學(xué)習(xí)的全過程,表達(dá)以生為本的教學(xué)理念。學(xué)生在全程參加中不僅把握新知進(jìn)展力量培育的推理力量,又熬煉學(xué)生的語言表達(dá)力量和溝通力量,同時讓學(xué)生體驗(yàn)數(shù)學(xué)與生活的嚴(yán)密聯(lián)系。

 。ㄈ┓(wěn)固練習(xí),強(qiáng)化學(xué)問

  我利用小學(xué)生好勝心強(qiáng)的特點(diǎn),以闖關(guān)的形式將課本的習(xí)題呈現(xiàn)在多媒體上來穩(wěn)固本節(jié)課所學(xué)的學(xué)問,這樣設(shè)計(jì)能增加數(shù)學(xué)的趣味性,激發(fā)學(xué)生的學(xué)習(xí)興趣,并查看他們學(xué)問的把握狀況。

 。ㄋ模┱n堂小結(jié)

  我將此環(huán)節(jié)分為兩局部。第一局部是以學(xué)生為主體的學(xué)問性總結(jié),讓學(xué)生暢談本節(jié)課的感受和收獲,準(zhǔn)時了解學(xué)生的學(xué)習(xí)狀況和情感體驗(yàn)。其次局部是以教師為主體的情感性總結(jié),我會對學(xué)生的表現(xiàn)予以表揚(yáng)和鼓勵,激發(fā)學(xué)生的學(xué)習(xí)興趣,增加學(xué)習(xí)自信念。

 。ㄎ澹┎贾米鳂I(yè)

  針對學(xué)生的年齡特點(diǎn),我會讓學(xué)生在課下和家長溝通今日的收獲和感受,從而讓家長了解學(xué)生在校的學(xué)習(xí)狀況,并促進(jìn)學(xué)生與家長的溝通。

  說板書設(shè)計(jì)

  一個好的板書應(yīng)當(dāng)是簡潔明白干凈美觀,重難點(diǎn)突出,能夠?qū)W(xué)生理解本節(jié)學(xué)問有肯定的強(qiáng)化作用,因此我的板書是這樣設(shè)計(jì)的。

《三角形內(nèi)角和》說課稿14

  一、說教材

  說課內(nèi)容:人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)第八冊第85頁例5——三角形的內(nèi)角和。

  “三角形的內(nèi)角和”是三角形的一個重要性質(zhì)。它有助于學(xué)生理解三角形的三個內(nèi)角之間的關(guān)系,是掌握多邊形內(nèi)角和及解決其他實(shí)際問題的基礎(chǔ),因此,掌握三角形的內(nèi)角和是180度這一規(guī)律對學(xué)生的后繼學(xué)習(xí)具有重要意義。在此之前,學(xué)生已經(jīng)掌握了三角形的概念、分類,熟悉了銳角、直角、鈍角、平角這些角的知識,也可能有部分學(xué)生已經(jīng)知道三角形的內(nèi)角和是180°,但“知其然而不知其所以然”。所以本課的重點(diǎn)不在于了解,而在于驗(yàn)證和應(yīng)用,同時發(fā)展學(xué)生的空間觀念和思維能力、解決問題的能力。

 。ㄒ唬┙虒W(xué)目標(biāo)

  1、知道三角形的內(nèi)角和等于180°,能運(yùn)用這一規(guī)律進(jìn)行有關(guān)的計(jì)算。

  2、通過觀察、操作和實(shí)驗(yàn)探索等活動,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生的思維能力。

  3、經(jīng)歷三角形的內(nèi)角和等于180°這一知識的導(dǎo)出過程,學(xué)會學(xué)習(xí)幾何知識的方法和科學(xué)探究的方法,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的成功。

 。ǘ┙虒W(xué)重點(diǎn)

  讓學(xué)生經(jīng)歷三角形的內(nèi)角和的導(dǎo)出過程,能運(yùn)用這一規(guī)律進(jìn)行有關(guān)的計(jì)算。

  (三)教學(xué)難點(diǎn)

  驗(yàn)證三角形的內(nèi)角和等于180°。

  二、說教法和學(xué)法

  “要讓學(xué)生動手做科學(xué),而不是用耳朵聽科學(xué)”是新課標(biāo)的一個重要理念。在本課的設(shè)計(jì)上我著力通過引導(dǎo)學(xué)生經(jīng)歷猜想、實(shí)驗(yàn)、驗(yàn)證、歸納、運(yùn)用、拓展等過程,牢固掌握新知。具體的策略是:

  (一)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生學(xué)習(xí)興趣

  通過用一個富有趣味性的動畫情境,讓學(xué)生在愉悅的對話中復(fù)習(xí)舊知,激發(fā)興趣,調(diào)動他們探索的愿望。

  (二)猜想、實(shí)驗(yàn)、驗(yàn)證,經(jīng)歷知識的形成過程

  為了使學(xué)生自主探究發(fā)現(xiàn)三角形的內(nèi)角和是180°,我安排了兩個環(huán)節(jié),一是猜測三角形的內(nèi)角和大約是180°,二是讓學(xué)生通過算一算、拼一拼、折一折等方法驗(yàn)證這一結(jié)論。

  (三)練習(xí)層次分明,呈現(xiàn)方式多樣,夯實(shí)學(xué)生雙基。

  三.說教學(xué)程序設(shè)計(jì)

  依據(jù)以上的分析,我的教學(xué)流程大致分為四個步驟。

  (一)創(chuàng)設(shè)情境,激發(fā)興趣,復(fù)習(xí)導(dǎo)入

  “興趣是最好的老師”,營造一個趣味盎然的課堂學(xué)習(xí)環(huán)境,能有效地吸引學(xué)生參與學(xué)習(xí)過程。課開始,通過課件演示向?qū)W生提出問題:你們認(rèn)識這些三角形嗎?(課件閃現(xiàn)角)這是三角形的……?(角)每個三角形有幾個角?這一情景巧妙地重現(xiàn)知識,改變了復(fù)習(xí)的.方式,再引出三角形的“內(nèi)角”及“內(nèi)角和”的概念,為學(xué)生進(jìn)一步探究三角形的內(nèi)角和掃除了障礙。接著安排猜角的游戲,讓學(xué)生拿出課前準(zhǔn)備的銳角、直角、鈍角三角形,報出其中兩個角的度數(shù),老師馬上報出第三個角的度數(shù),并做好板書記錄。在好奇心的驅(qū)動下,學(xué)生很快可以進(jìn)入憤悱狀態(tài),教師便可趁此導(dǎo)入新課并板書課題:三角形的內(nèi)角和

  板書:三角形∠1∠2∠3內(nèi)角和30°40°110°70°80°30°90°75°15°

  (二)自主探究,操作驗(yàn)證

  讓學(xué)生做數(shù)學(xué)就要讓學(xué)生帶著問題,動手、動口、動腦,調(diào)動多種感官參與數(shù)學(xué)學(xué)習(xí)活動,在活動中獲得知識。教學(xué)中我重視留給學(xué)生充分進(jìn)行自主探索和交流的時間和空間,讓學(xué)生經(jīng)歷猜想——驗(yàn)證的過程,在操作、探索中發(fā)現(xiàn),形成結(jié)論。

  1、猜想

  首先我會向?qū)W生提出:“請你仔細(xì)觀察這個表格,你發(fā)現(xiàn)了什么?”讓學(xué)生自主發(fā)現(xiàn)三角形的內(nèi)角和是1800這一規(guī)律。

  2、驗(yàn)證

  然后鼓勵他們:“你發(fā)現(xiàn)的這個結(jié)論是不是正確的呢?你能不能想辦法驗(yàn)證?”恰當(dāng)?shù)奶釂柗棚w了學(xué)生的思維。學(xué)生經(jīng)過獨(dú)立思考與合作交流,預(yù)計(jì)能反饋出計(jì)算、拼、折等幾種驗(yàn)證的方法。教師在集中反饋時必須向?qū)W生明確以下幾點(diǎn):

  (1)用計(jì)算的方法,可能會因?yàn)闇y量有誤差而導(dǎo)致計(jì)算的結(jié)果有誤差。完成板書。

  三角形∠1∠2∠3內(nèi)角和30°40°110°180°70°80°30°180°90°75°15°180°

  (2)用拼一拼的方法:要注意為每個內(nèi)角注上編號再拼,防止搞錯,同時借助課件加以說明。

 。3)用折一折的方法:要注意第一步折的折痕要和底邊平行,而且是三角形的中位線。并用課件演示。

  3、總結(jié)概括結(jié)論并板書:三角形的內(nèi)角和是180°,然后指導(dǎo)學(xué)生看書質(zhì)疑,并追問:“如果知道三角形的其中兩個角的度數(shù),怎樣求第三個角度數(shù)?”以強(qiáng)化結(jié)論的運(yùn)用。

 。ㄈ╈柟踢\(yùn)用,夯實(shí)雙基

  為了使學(xué)生更好地鞏固和應(yīng)用這一結(jié)論,我設(shè)計(jì)了以下的題組:(課件展示)

  1、猜一猜

  猜一猜小動物背后藏著的角的度數(shù)嗎?

  你知道這個游戲的秘密嗎?

  這一題是用圖示的方法,直接口算出三角形的第3個角的度數(shù)。

  2、書本第85頁的做一做

  在一個三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。

  第二題是用文字的呈現(xiàn)方式,讓學(xué)生計(jì)算出三角形的第三個角的度數(shù)。這道題我板書在黑板上,目的是突出解題的規(guī)范。

  3、判斷、改錯

  說明利用三角形內(nèi)角和可以檢測三角形的角的量度結(jié)果。

  4、書本第88頁的第9題

  這一題是解決特殊三角形的角的計(jì)算問題。

  5、書本第88頁的第10題

  第5題是運(yùn)用“三角形的內(nèi)角和是180°”這一結(jié)論解決生活中的實(shí)際問題。

  這一題組注意結(jié)合學(xué)生的認(rèn)知規(guī)律,具有較強(qiáng)的針對性和層次性,注意到呈現(xiàn)方式的多樣性,讓學(xué)生從“會”過渡到“熟”,從“熟”過渡到“活”。

 。ㄋ模┛偨Y(jié)反饋,拓展延伸

  課末,我會讓學(xué)生結(jié)合板書,回顧本節(jié)課所學(xué)的知識,引導(dǎo)學(xué)生對從練習(xí)中反饋出來的一些易錯、易混的知識加以辨析、強(qiáng)調(diào),進(jìn)一步加深學(xué)生對新學(xué)知識與技能的理解與掌握。

  最后再出示兩道拓展性練習(xí)題:

  1、拓展延伸

  幫角找朋友:每組卡片中,哪三個角可以組成三角形?

  2、思考題:

  根據(jù)三角形的內(nèi)角和是180°,你能求出下面圖形的內(nèi)角和嗎?

  引導(dǎo)學(xué)生通過解決這些拓展性的練習(xí),滲透數(shù)學(xué)的化歸思想,再一次強(qiáng)化對學(xué)習(xí)數(shù)學(xué)的方法的認(rèn)識。

  通過設(shè)計(jì)多層次的練習(xí),放緩了新知的坡度,既有基本練習(xí),鞏固練習(xí),也有發(fā)展性練習(xí),努力體現(xiàn)不同層次的學(xué)生達(dá)到不同的教學(xué)目標(biāo)。同時注意改變練習(xí)的呈現(xiàn)方式,使學(xué)生在輕松愉悅的氣氛中學(xué)會新知,形成技能。

  板書設(shè)計(jì):三角形的內(nèi)角和

《三角形內(nèi)角和》說課稿15

  《三角形的內(nèi)角和》說課稿

  一、 說教材:

  今天我說課的內(nèi)容是小學(xué)數(shù)學(xué)人教版實(shí)驗(yàn)教材四年級下冊的《三角形的內(nèi)角和》。三角形的內(nèi)角和是180°是三角形的一個重要性質(zhì),也是“空間與圖形”領(lǐng)域中的重要內(nèi)容之一,學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)幾何知識的基礎(chǔ)。三角形是常見的一種圖形,在平面圖形中,三角形是最簡單的多邊形,也是最基本的多邊形。學(xué)生對三角形已經(jīng)有了直觀的認(rèn)識,能夠從平面圖形中分辨出三角形,還認(rèn)識了三角形的特性,知道三角形任意兩邊之和大于第三邊以及三角形的分類等有關(guān)三角形的知識。這些都是學(xué)生感受、理解、抽象“三角形的內(nèi)角和”的概念的基礎(chǔ)。我們把握好“三角形的內(nèi)角和是180°”這部分內(nèi)容的教學(xué)不僅可以加深學(xué)生對三角形特征的理解,發(fā)展學(xué)生的空間觀念,而且可以通過動手操作,獲取新知,發(fā)展學(xué)生的思維能力和解決實(shí)際問題的能力。同時也為以后學(xué)習(xí)更復(fù)雜的幾何圖形知識打下堅(jiān)實(shí)的基礎(chǔ)。

  二、說教學(xué)目標(biāo):

  1、知識目標(biāo):知道三角形內(nèi)角和是180°。

  2、能力目標(biāo):①通過學(xué)生測量、撕拼、折疊、觀察等活動,培養(yǎng)學(xué)生探索、發(fā)現(xiàn)能力、觀察能力和動手操作能力。

 、谀苓\(yùn)用三角形內(nèi)角和是180°這一規(guī)律解決實(shí)際問題。

  3、情感目標(biāo):①讓學(xué)生在探索活動中產(chǎn)生對數(shù)學(xué)的好奇心,發(fā)展學(xué)生的空間觀念;

 、隗w驗(yàn)探索的樂趣和成功的快樂,增強(qiáng)學(xué)好數(shù)學(xué)的信心。

  三、說重點(diǎn)和難點(diǎn):

  重點(diǎn):探索和發(fā)現(xiàn)三角形內(nèi)角的度數(shù)和等于180°。

  難點(diǎn):通過小組討論、動手操作等方式,讓學(xué)生自己探索和發(fā)現(xiàn)三角形內(nèi)角的度數(shù)和等于180°,并能應(yīng)用這一規(guī)律解決實(shí)際問題。

  四、說教法和學(xué)法

  新課程標(biāo)準(zhǔn)的基本理念就是要讓學(xué)生“人人學(xué)有價值的數(shù)學(xué)”。強(qiáng)調(diào)“教學(xué)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程。要激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機(jī)會,讓他們積極主動地探索,解決數(shù)學(xué)問題,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,獲得數(shù)學(xué)經(jīng)驗(yàn)。因此,我主要采用的教學(xué)方法是:直觀教學(xué)法和動手操作實(shí)驗(yàn)法。在教學(xué)中,根據(jù)學(xué)生的年齡特征,整節(jié)課我以學(xué)生為主的 “活動教學(xué)”貫穿全過程。設(shè)計(jì)有獨(dú)立活動、同桌活動及分小組活動。在具體活動中,雖然小學(xué)生的遺忘性較強(qiáng),但不得不承認(rèn)學(xué)生已學(xué)過了三角形的內(nèi)角和,所以一開始我大膽放手讓學(xué)生說,從學(xué)生說中導(dǎo)入故事,“三角形三兄弟的爭吵”,引出與學(xué)生要學(xué)習(xí)的內(nèi)容——三角形的內(nèi)角,然后設(shè)疑:三角形內(nèi)角和是多少?由于學(xué)生在小學(xué)學(xué)過這樣的知識,所以很輕松地就可以答出。所以我直接讓學(xué)生分小組討論:有什么辦法可以驗(yàn)證得出這樣的結(jié)論。讓學(xué)生大膽猜想,自主探索三角形的內(nèi)角和。再通過測量、拼折、驗(yàn)證等方式讓學(xué)生確定三角形內(nèi)角和是180度。這樣,既培養(yǎng)了學(xué)生的觀察能力和歸納概括能力,又培養(yǎng)了學(xué)生動手操作能力和創(chuàng)新精神。

  五、 說教學(xué)過程:

  本節(jié)課的教學(xué)過程我設(shè)計(jì)了六個教學(xué)環(huán)節(jié):一是創(chuàng)設(shè)情境,導(dǎo)入新課;二是自主探究,證實(shí)規(guī)律;三是應(yīng)用延伸,解決問題;四是深化思維,拓展知識;五是課堂總結(jié);六是作業(yè)布置。下面就具體的教學(xué)環(huán)節(jié)說說我的設(shè)想。

  (一)創(chuàng)設(shè)情境,導(dǎo)入新課:

  教學(xué)的藝術(shù)不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。開始上課,我就大膽放手讓學(xué)生說三角形的特性、分類等有關(guān)知識,從學(xué)生說中導(dǎo)入故事,“三角形三兄弟的爭吵”,引出與學(xué)生要學(xué)習(xí)的內(nèi)容——三角形的內(nèi)角和,然后設(shè)疑:三角形內(nèi)角和是多少?從而激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣。

  (二)自主探究,證實(shí)規(guī)律:

  1、理解標(biāo)目:學(xué)生有了探索的愿望和興趣,可是不能沒有目標(biāo)的去探索,那樣只會事倍功半,甚至沒有結(jié)果,所以一開始我先不急于動手探索,先讓學(xué)生明白什么是三角形的內(nèi)角和。

  2、 猜想:目標(biāo)明確后,我就讓學(xué)生大膽猜想,形成統(tǒng)一的認(rèn)識,使后邊的探索和驗(yàn)證活動有了明確的目標(biāo)。

  3、 驗(yàn)證{自主探索}:學(xué)生形成統(tǒng)一的猜想{即三角形的`內(nèi)角和等于180度}后,我就把課堂大量的時間和空間留給學(xué)生,讓他們開展有針對性的數(shù)學(xué)探究活動{既驗(yàn)證三角形的內(nèi)角和是否是180度?},在活動中,我既不像過去那樣告訴學(xué)生怎么動手去驗(yàn)證,讓學(xué)生做機(jī)械的操作員,不是隨意放開讓學(xué)生盲目的操作,而是把放和引有機(jī)的結(jié)合,鼓勵學(xué)生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學(xué)生自主參與驗(yàn)證活動,而且使學(xué)生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量量、拼一拼、折一折――說說、議議――小結(jié)。

  4、 鞏固內(nèi)化:俗話說的好:“熟能生巧”。數(shù)學(xué)離不開練習(xí),要掌握知識,形成技能技巧,一定要通過練習(xí)。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習(xí),課程標(biāo)準(zhǔn)提倡練習(xí)的有效性。對此,我非常注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用,如:根據(jù)普遍三角形兩個角求一個角,根據(jù)特殊的三角形求出三角形的三個角的度數(shù){具體在練習(xí)一,第二、應(yīng)用延伸練習(xí)一中都有體現(xiàn)},從中發(fā)展學(xué)生的空間觀念和空間想象能力。這些練習(xí)設(shè)計(jì)目的明確,針對性強(qiáng),使學(xué)生不但鞏固了知識,更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。

  5、 拓展創(chuàng)新:數(shù)學(xué)具有嚴(yán)密的邏輯性和抽象性。而學(xué)生學(xué)習(xí)內(nèi)容的呈現(xiàn)是從簡單到復(fù)雜,思維方式是從具體到抽象的一個循序漸進(jìn)的過程,前面學(xué)習(xí)的知識往往是后面進(jìn)一步學(xué)習(xí)的基礎(chǔ)。要培養(yǎng)學(xué)生思維的靈活性,可以先讓學(xué)生學(xué)會對知識的遷移。本課最后,我給學(xué)生出了一道通過對本節(jié)課所學(xué)知識的遷移就可以完成的問題,對學(xué)生進(jìn)行思維訓(xùn)練,既培養(yǎng)了學(xué)生應(yīng)用知識的能力,又培養(yǎng)了學(xué)生的創(chuàng)新意識和創(chuàng)新精神。

  6、說課堂總結(jié)

  采用用先讓學(xué)生歸納補(bǔ)充,然后教師再補(bǔ)充的方式進(jìn)行:⑴這節(jié)課我們學(xué)了什么知識?你有什么收獲?(2)看書設(shè)疑。充分發(fā)揮學(xué)生的主體意識,培養(yǎng)學(xué)生的語言概括能力。

  六.說教學(xué)板書

  這是一節(jié)操作課,學(xué)生要掌握的概念較少,所以整個板書我以表格為主,主要把學(xué)生大量的驗(yàn)證成果展示出,讓學(xué)生親自動手后再通過觀察,一目了然,得出結(jié)論——三角形的內(nèi)角和是180度。簡間但又層層涉及,形式活潑,色彩也較豐富。

  總之,本節(jié)課教學(xué)活動中我力求充分體現(xiàn)一下特點(diǎn):以學(xué)生發(fā)展為本,以學(xué)生為主體,思維為主線的思想;充分關(guān)注學(xué)生的自主探究與合作交流;練習(xí)體現(xiàn)了層次性,知識技能得于落實(shí)和發(fā)展。

【《三角形內(nèi)角和》說課稿】相關(guān)文章:

《三角形內(nèi)角和》說課稿07-12

三角形內(nèi)角和說課稿06-27

三角形的內(nèi)角和說課稿02-09

三角形內(nèi)角和說課稿(精選)05-28

《三角形內(nèi)角和》說課稿01-06

三角形內(nèi)角和說課稿12-01

[精]三角形內(nèi)角和說課稿05-27

《三角形內(nèi)角和》說課稿(15篇)11-27

《三角形內(nèi)角和》說課稿精選15篇12-28

三角形內(nèi)角和說課稿(15篇)01-05