當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說(shuō)課稿> 勾股定理說(shuō)課稿

勾股定理說(shuō)課稿

時(shí)間:2022-01-07 14:02:45 說(shuō)課稿 我要投稿

勾股定理說(shuō)課稿10篇

  作為一名默默奉獻(xiàn)的教育工作者,有必要進(jìn)行細(xì)致的說(shuō)課稿準(zhǔn)備工作,編寫(xiě)說(shuō)課稿助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。說(shuō)課稿要怎么寫(xiě)呢?下面是小編收集整理的勾股定理說(shuō)課稿10篇,希望對(duì)大家有所幫助。

勾股定理說(shuō)課稿10篇

勾股定理說(shuō)課稿 篇1

  一、教材分析

  勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一。它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問(wèn)題,是解直角三角形的主要根據(jù)之一。在實(shí)際生活中用途很大,教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析、拼圖等活動(dòng),讓學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

  據(jù)此,制定教學(xué)目標(biāo)如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。

  3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

  4、通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)與熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  教學(xué)重點(diǎn):勾股定理的證明和應(yīng)用。

  教學(xué)難點(diǎn):勾股定理的證明。

  二、教法和學(xué)法

  教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過(guò)程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

  1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用;運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過(guò)程。

  2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過(guò)觀察、分析、討論、操作、歸納,理解定理。提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。

  3、通過(guò)演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  三、教學(xué)程序

  本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

 。ㄒ唬﹦(chuàng)設(shè)情境 以古引新

  1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說(shuō),把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

  2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂(lè)學(xué)狀態(tài)。

  3、板書(shū)課題,出示學(xué)習(xí)目標(biāo)。

 。ǘ┏醪礁兄 理解教材

  教師指導(dǎo)學(xué)生自學(xué)教材,通過(guò)自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。

 。ㄈ┵|(zhì)疑解難 討論歸納

  1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過(guò)自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。

  2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

 。1)這兩個(gè)圖形有什么特點(diǎn)?

 。2)你能寫(xiě)出這兩個(gè)圖形的`面積嗎?

 。3)如何運(yùn)用勾股定理?是否還有其他形式?

  這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說(shuō)明本組對(duì)問(wèn)題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見(jiàn),最終解決疑難。

 。ㄋ模╈柟叹毩(xí) 強(qiáng)化提高

  1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。

  2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問(wèn)題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

  (五)歸納總結(jié) 練習(xí)反饋

  引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

  本課意在創(chuàng)設(shè)愉悅和諧的樂(lè)學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營(yíng)造一種學(xué)生敢想、感說(shuō)、感問(wèn)的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。

勾股定理說(shuō)課稿 篇2

  各位考官,大家好,我是X號(hào)考生,今天我說(shuō)課的內(nèi)容是《勾股定理的逆定理》。根據(jù)新課程標(biāo)準(zhǔn),我將以教什么,怎么教,為什么這么教為思路開(kāi)展我的說(shuō)課,首先,我先來(lái)說(shuō)說(shuō)我對(duì)教材的理解。

  教材分析是上好一堂課的前提條件,在上好一堂課之前,我首先談一談對(duì)教材的理解。

  一、說(shuō)教材

  “勾股定理的逆定理”一節(jié)?是在上節(jié)“勾股定理”之后繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化。勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問(wèn)題的思想,為將來(lái)學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。

  二、說(shuō)學(xué)情

  中學(xué)生心理學(xué)研究指出,初中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗(yàn)型逐步向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨著迅速發(fā)展。學(xué)生此前學(xué)習(xí)了三角形有關(guān)的知識(shí),掌握了直角三角形的性質(zhì)和勾股定理,學(xué)生在此基礎(chǔ)上學(xué)習(xí)勾股定理的逆定理可以加深理解。

  三、說(shuō)教學(xué)目標(biāo)

  根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容結(jié)合學(xué)生實(shí)際我確定了如下教學(xué)目標(biāo)。

  【知識(shí)與技能】

  理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形。

  【過(guò)程與方法】

  通過(guò)勾股定理的逆定理的證明,體會(huì)數(shù)與形結(jié)合方法在問(wèn)題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問(wèn)題。

  【情感態(tài)度與價(jià)值觀】

  通過(guò)一系列富有探究性的問(wèn)題,滲透與他人交流、合作的意識(shí)和探究精神。

  四、說(shuō)教學(xué)重難點(diǎn)

  重點(diǎn):勾股定理逆定理的應(yīng)用;

  難點(diǎn):探究勾股定理逆定理的證明過(guò)程。

  五、說(shuō)教學(xué)方法

  科學(xué)合理的教學(xué)方法能使教學(xué)效果事半功倍,達(dá)到教與學(xué)的和諧完美統(tǒng)一。基于此,我準(zhǔn)備采用的教法是講練結(jié)合法,小組討論法。

  六、說(shuō)教學(xué)過(guò)程

  (一)導(dǎo)入新課

  在導(dǎo)入新課環(huán)節(jié),我會(huì)采用溫故知新的導(dǎo)入方法,先讓學(xué)生回顧勾股定理有關(guān)知識(shí),并引入本節(jié)課的課題——勾股定理逆定理。

  【設(shè)計(jì)意圖】通過(guò)復(fù)習(xí)回顧能很好地將新舊知識(shí)聯(lián)系起來(lái),使學(xué)生形成對(duì)知識(shí)的系統(tǒng)的認(rèn)識(shí)。并且由舊知開(kāi)始,能很好地幫助學(xué)生克服畏難情緒。

  (二)探究新知

  一開(kāi)課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問(wèn)題去提示本節(jié)課的探究宗旨,演示古代埃及人把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后便得到一個(gè)直角三角形這是為什么?這個(gè)問(wèn)題一出現(xiàn),馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來(lái)創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說(shuō)明了幾何知識(shí)來(lái)源于實(shí)踐不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

  因?yàn)閹缀蝸?lái)源于現(xiàn)實(shí)生活,對(duì)初二學(xué)生來(lái)說(shuō)選擇適當(dāng)?shù)臅r(shí)機(jī)讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開(kāi)始學(xué)習(xí)可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過(guò)動(dòng)手折紙?jiān)诰唧w的實(shí)踐中觀察滿足條件的三角形直觀感覺(jué)上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。

  這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見(jiàn),它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過(guò)操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

  接下來(lái)就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等順利作出了輔助直角三角形,整個(gè)證明過(guò)程自然無(wú)神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的.轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過(guò)程。這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理?因而使學(xué)生感到自然、親切。學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高,使學(xué)生確實(shí)在學(xué)習(xí)過(guò)程中享受到自我創(chuàng)造的快樂(lè)。

  在同學(xué)們完成證明之后,可讓他們對(duì)照課本把證明過(guò)程嚴(yán)格的閱讀一遍充分發(fā)揮教科書(shū)的作用養(yǎng)成學(xué)生看書(shū)的習(xí)慣這也是在培養(yǎng)學(xué)生的自學(xué)能力。

  (三)鞏固提高

  本著由淺入深的原則安排了三個(gè)題目。演示第一題比較簡(jiǎn)單(判斷下列三條線段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學(xué)生口答讓所有的學(xué)生都能完成。

  第二題則進(jìn)了一層用字母代替了數(shù)字,繞了一個(gè)彎,既可以檢查本課知識(shí)又可以提高靈活運(yùn)用以往知識(shí)的能力。

  思維提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說(shuō)、練結(jié)合的方法,教師通過(guò)觀察、提問(wèn)、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過(guò)程,隨時(shí)反饋調(diào)節(jié)教法同時(shí)注意加強(qiáng)有針對(duì)性的個(gè)別指導(dǎo)把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來(lái)。

  (四)小結(jié)作業(yè)

  在小結(jié)環(huán)節(jié),我會(huì)隨機(jī)詢問(wèn)學(xué)生勾股定理的逆定理是什么?如果判斷一個(gè)三角形是不是直角三角形,以及勾股定理的逆定理的應(yīng)用需要注意點(diǎn)什么等問(wèn)題,先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法培養(yǎng)能力方面比如輔助線的添法。

  設(shè)計(jì)意圖:這樣設(shè)計(jì)可以幫助學(xué)生以反思的形式回憶本節(jié)課所學(xué)的知識(shí),加深對(duì)知識(shí)的印象,有利于學(xué)生良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣的養(yǎng)成。

  由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。第一組是基礎(chǔ)題,我會(huì)用ppt出示關(guān)于勾股定理的逆定理的計(jì)算題目,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二組是開(kāi)放性題目,讓學(xué)生課后思考總結(jié)一下判定一個(gè)三角形是直角三角形的方法。

勾股定理說(shuō)課稿 篇3

  一、說(shuō)教材分析

  本節(jié)研究的是勾股定理的探索及其應(yīng)用。它從邊的角度進(jìn)一步對(duì)直角三角形的特征進(jìn)行了刻畫(huà)。 它的主要內(nèi)容是探索勾股定理,驗(yàn)證勾股定理的正確性,在此基礎(chǔ)上,讓學(xué)生利用勾股定理來(lái)解決一些實(shí)際問(wèn)題。本節(jié)課是在學(xué)生認(rèn)識(shí)直角三角形的基礎(chǔ)上,在了解正方形和等腰直角三角形以后進(jìn)行學(xué)習(xí)的,它是前面所學(xué)知識(shí)的延伸和拓展,又是后面學(xué)習(xí)勾股定理逆定理的基礎(chǔ),具有承上啟下的作用。

  二、說(shuō)教學(xué)目標(biāo)

  教學(xué)目標(biāo)的確定:教學(xué)目標(biāo)是一堂課的中心任務(wù),它只有在豐富多彩的數(shù)學(xué)活動(dòng)中才能充分實(shí)現(xiàn)。一堂課的教學(xué)目標(biāo)應(yīng)全面、適度、明確、具體,便于檢測(cè)。因此根據(jù)學(xué)生已有的認(rèn)知基礎(chǔ)和新課程標(biāo)準(zhǔn),我確定了本節(jié)課教學(xué)目標(biāo)為:

  1、知識(shí)技能:

 。1)了解勾股定理的文化背景,體驗(yàn)勾股定理的探索和驗(yàn)證過(guò)程。

  (2)運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和解釋生活中的實(shí)際問(wèn)題。

  (3)運(yùn)用勾股定理會(huì)在數(shù)軸上畫(huà)出表示無(wú)理數(shù)的點(diǎn)。

  2、數(shù)學(xué)思考:

  在勾股定理的探索、從實(shí)際問(wèn)題抽象出直角三角形和在數(shù)軸上畫(huà)出表示無(wú)理數(shù)的點(diǎn)的過(guò)程中,發(fā)展合情推理能力,初步體會(huì)、掌握轉(zhuǎn)化和數(shù)形結(jié)合的思想方法。

  3、解決問(wèn)題:

  通過(guò)拼圖、探究活動(dòng),體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維。學(xué)會(huì)與人合作并能與他人交流思維的過(guò)程和探究的'結(jié)果。能夠運(yùn)用勾股定理解決直角三角形,在數(shù)軸上畫(huà)出表示無(wú)理數(shù)的點(diǎn)等有關(guān)實(shí)際問(wèn)題。

  4、情感態(tài)度:

 。ǎ保┩ㄟ^(guò)對(duì)勾股定理歷史的了解和實(shí)例應(yīng)用,體會(huì)勾股定理的文化價(jià)值,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)熱情。

 。ǎ玻┩ㄟ^(guò)獲得成功的經(jīng)驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。

 。3)通過(guò)研究一系列富有探究性的問(wèn)題,培養(yǎng)學(xué)生與他人交流、合作的意識(shí)和品質(zhì)。

  三、說(shuō)教學(xué)重、難點(diǎn)

  教學(xué)重、難點(diǎn)的確定:關(guān)注學(xué)生是否能與同伴進(jìn)行有效的合作交流;關(guān)注學(xué)生是否積極的進(jìn)行思考;關(guān)注學(xué)生能否探索出解決問(wèn)題的方法。

  重點(diǎn):通過(guò)探索、拼圖驗(yàn)證勾股定理及勾股定理的應(yīng)用過(guò)程,使學(xué)生獲得一些研究問(wèn)題與合作交流的方法經(jīng)驗(yàn)。

  難點(diǎn):利用數(shù)形結(jié)合的方法探索發(fā)現(xiàn)、驗(yàn)證勾股定理及其在實(shí)際生活中的應(yīng)用。

  四、知識(shí)反映出來(lái)的技能、能力、方法、德育等因素

  本節(jié)知識(shí)通過(guò) “ 探索發(fā)現(xiàn)---拼圖實(shí)踐—探索驗(yàn)證—分析結(jié)果—運(yùn)用定理 ” 等活動(dòng)過(guò)程,使學(xué)生進(jìn)一步理解勾股定理,并從中學(xué)會(huì)思考,學(xué)會(huì)探索,學(xué)會(huì)運(yùn)用,學(xué)會(huì)交流,體會(huì)知識(shí)反映出來(lái)的豐富的文化內(nèi)涵,指導(dǎo)學(xué)生認(rèn)識(shí)現(xiàn)實(shí)世界中蘊(yùn)涵著的數(shù)學(xué)信息。

  五、教學(xué)方法

  數(shù)學(xué)知識(shí)、數(shù)學(xué)思想和方法必須由學(xué)生在現(xiàn)實(shí)的數(shù)學(xué)活動(dòng)實(shí)踐中理解和發(fā)展;教學(xué)中,以學(xué)生為本位,充分挖掘教材的空間,為學(xué)生搭建動(dòng)手實(shí)踐、自主探索、合作交流的平臺(tái);

  注重讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成過(guò)程,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,并通過(guò)這個(gè)過(guò)程,使學(xué)生體驗(yàn)學(xué)習(xí)成功的樂(lè)趣,在積極的思維中獲取知識(shí),發(fā)展能力。

  六、教學(xué)程序設(shè)計(jì):

  為充分發(fā)揮學(xué)生的主體性和教師的主導(dǎo)輔助作用,設(shè)計(jì)了以下幾個(gè)環(huán)節(jié):

  (1)創(chuàng)設(shè)情境,引入新課

  問(wèn)題

  某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)能否進(jìn)入三樓滅火?

  師生行為:教師出示照片及圖片,并提出問(wèn)題,學(xué)生觀察圖片發(fā)表見(jiàn)解。

  設(shè)計(jì)意圖:從現(xiàn)實(shí)生活中提出勾股定理,為學(xué)生能夠積極主動(dòng)的投入到探索活動(dòng)創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)熱情。同時(shí)為探索勾股定理提供背景材料。達(dá)到引入新課的目的。

 。1)獨(dú)立探究,合作交流。

  講述數(shù)學(xué)家畢達(dá)哥拉斯的故事

  問(wèn)題

  A、B、C的面積有什么關(guān)系?

  SA+SB=SC

  直角三角形三邊有什么關(guān)系?

  兩直邊的平方和等于斜邊的平方

  設(shè)計(jì)意圖:?jiǎn)栴}是思維的起點(diǎn),通過(guò)激發(fā)學(xué)生好奇、探究和主動(dòng)學(xué)習(xí)的欲望。利用面積相等法,讓學(xué)生發(fā)現(xiàn)以直角三角形兩直角邊為邊長(zhǎng)的正方形的面積,以斜邊為邊長(zhǎng)的正方形的面積之間的關(guān)系。降低學(xué)生學(xué)習(xí)難度,從(3)自主實(shí)踐,探索驗(yàn)證

  《課程標(biāo)準(zhǔn)》指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué)!币髮W(xué)生分學(xué)習(xí)小組,動(dòng)手實(shí)踐,積極思考,獲得技能與解決問(wèn)題的方法。關(guān)注學(xué)生動(dòng)手實(shí)踐,關(guān)注學(xué)生主動(dòng)探索與合作,關(guān)注學(xué)生積極思考,給學(xué)生思維表達(dá)的時(shí)間、空間,讓學(xué)生經(jīng)歷探索知識(shí)的過(guò)程,并在這個(gè)過(guò)程中得到發(fā)展.。

  兩種拼圖方案

  1、2、

  師生行為:教師演示動(dòng)畫(huà)和圖片,同時(shí)提出問(wèn)題,學(xué)生在獨(dú)立思考的基礎(chǔ)上以小組為單位,動(dòng)手拼接,教師深入小組活動(dòng)傾聽(tīng)學(xué)生的交流,幫助、指導(dǎo)學(xué)生完成拼圖活動(dòng)。學(xué)生展示分割、拼接的過(guò)程。

  設(shè)計(jì)意圖:通過(guò)觀察、拼圖、探究活動(dòng),給學(xué)生充分的時(shí)間與空間討論、交流,鼓勵(lì)學(xué)生敢于發(fā)表自己的見(jiàn)解,感受合作的重要性,充分調(diào)動(dòng)學(xué)生思維的積極性,發(fā)展形象思維,使學(xué)生對(duì)定理更加深刻,通過(guò)這一教學(xué)過(guò)程來(lái)達(dá)到突破難點(diǎn)的目的。

 。4)應(yīng)用定理,解決問(wèn)題

  數(shù)學(xué)源于實(shí)踐,運(yùn)用于實(shí)踐;開(kāi)放性處理教材,鼓勵(lì)學(xué)生充分地發(fā)表意見(jiàn),表現(xiàn)自我,讓學(xué)生在教師營(yíng)造的“創(chuàng)新土壤”中成為主人;給學(xué)生思維以廣闊的空間,培養(yǎng)學(xué)生從多角度運(yùn)用所學(xué)知識(shí)尋求解決問(wèn)題的能力.

勾股定理說(shuō)課稿 篇4

尊敬的各位評(píng)委、老師,大家好!

  我說(shuō)課的題目是華師版八年級(jí)上冊(cè)第十四章第一節(jié)第一課時(shí)《勾股定理》。

  教材分析:

  如果說(shuō)數(shù)學(xué)思想是解決數(shù)學(xué)問(wèn)題的一首經(jīng)典老歌,那么本節(jié)課蘊(yùn)含的由特殊到一般的思想、數(shù)學(xué)建模的思想、轉(zhuǎn)化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學(xué)習(xí)了二次根式之后的教學(xué),是在學(xué)生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行的后繼學(xué)習(xí),是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識(shí)的靈魂,在實(shí)際生活中有著極其廣泛的應(yīng)用。

  勾股定理的發(fā)現(xiàn)、驗(yàn)證和應(yīng)用蘊(yùn)含著豐富的文化價(jià)值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。

  新課標(biāo)下的數(shù)學(xué)教學(xué)不僅是知識(shí)的教學(xué),更應(yīng)注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學(xué)中的地位和作用,結(jié)合初二學(xué)生不愛(ài)表現(xiàn)、好靜不好動(dòng)的特點(diǎn),我確定本節(jié)教學(xué)目標(biāo)如下:

  1、探索并利用拼圖證明勾股定理。

  2、利用勾股定理解決簡(jiǎn)單的數(shù)學(xué)問(wèn)題。

  3、感受數(shù)學(xué)文化,體會(huì)解決問(wèn)題方法的多樣性和數(shù)形結(jié)合的思想。

  本著課標(biāo)的要求,在吃透教材的基礎(chǔ)上,我確定本節(jié)的教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵如下:

  勾股定理的證明和簡(jiǎn)單應(yīng)用是本節(jié)的重點(diǎn),用拼圖的方法證明勾股定理是難點(diǎn),而解決難點(diǎn)的關(guān)鍵是充分利用圖形面積的各種表示方法構(gòu)造恒等式。

  為了講清重點(diǎn)、突破難點(diǎn)、抓住關(guān)鍵,使學(xué)生達(dá)到預(yù)定目標(biāo),我對(duì)教法和學(xué)法分析如下:

  教法分析:

  新課程標(biāo)準(zhǔn)強(qiáng)調(diào)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),最大限度的激發(fā)學(xué)生學(xué)習(xí)積極性,新課程下的數(shù)學(xué)教師更應(yīng)是學(xué)生學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者、合作者,因此,鑒于教材的重點(diǎn)和初二學(xué)生的認(rèn)知水平,我以學(xué)生充分預(yù)習(xí)為前提,以學(xué)生的動(dòng)手操作、講解為中心,讓學(xué)生親歷親為,體會(huì)做數(shù)學(xué)的過(guò)程,激發(fā)學(xué)生的探索興趣,使課堂活躍起來(lái),提高課堂效率。運(yùn)用觀察法、歸納法、引導(dǎo)發(fā)現(xiàn)法、討論法等多種教學(xué)方法相結(jié)合的形式,讓學(xué)生充分展示預(yù)習(xí)成果,體驗(yàn)成功的快樂(lè),為終身學(xué)習(xí)和發(fā)展打下堅(jiān)實(shí)的基礎(chǔ)。為了增大課堂容量、給學(xué)生創(chuàng)設(shè)高效的數(shù)學(xué)課堂,給學(xué)生提供足夠從事數(shù)學(xué)活動(dòng)的時(shí)間,以導(dǎo)學(xué)案的形式、運(yùn)用多媒體輔助教學(xué)。

  學(xué)法分析

  學(xué)法是學(xué)生再生知識(shí)的法寶,為了把學(xué)生學(xué)習(xí)過(guò)程當(dāng)作認(rèn)知事物的過(guò)程來(lái)解決,教學(xué)中我首先引導(dǎo)學(xué)生先動(dòng)手操作,再合作交流,培養(yǎng)學(xué)生良好的學(xué)習(xí)品質(zhì)和與人合作的能力;接下來(lái),我讓學(xué)生獨(dú)立思考,點(diǎn)撥學(xué)生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點(diǎn),然后通過(guò)學(xué)生展示成果讓學(xué)生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關(guān)健,以自己拼圖操作、講解展示預(yù)習(xí)成果突破定理證明這一難點(diǎn),指導(dǎo)學(xué)生嚴(yán)謹(jǐn)、合理的書(shū)寫(xiě)格式,培養(yǎng)學(xué)生的邏輯思維能力和語(yǔ)言表達(dá)能力。

  為了充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)優(yōu)化高效的數(shù)學(xué)課堂,我以導(dǎo)學(xué)案的方式循序見(jiàn)進(jìn)的設(shè)計(jì)教學(xué)流程。

  以學(xué)生必讀課本48—52頁(yè),選讀課本55、56頁(yè)的課前預(yù)習(xí)為前提,共分四個(gè)環(huán)節(jié)來(lái)進(jìn)行教學(xué)

  1、勾股定理的探究:讓學(xué)生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學(xué)思想引導(dǎo)好學(xué)生課前預(yù)習(xí),再以檢查預(yù)習(xí)成果的形式為新知的探究作好鋪墊。

  2、勾股定理的證明:以學(xué)生拼圖展示、講解預(yù)習(xí)成果的形式完成對(duì)定理的證明。

  3、勾股定理的應(yīng)用:以課堂練習(xí)、學(xué)生個(gè)性補(bǔ)充和老師適當(dāng)?shù)膫(gè)性化追加的形式實(shí)現(xiàn)對(duì)定理的靈活應(yīng)用。

  4、學(xué)后反思:以學(xué)生小結(jié)的形式引導(dǎo)學(xué)生從知識(shí)、情感兩方面實(shí)現(xiàn)對(duì)本節(jié)內(nèi)容的鞏固與升華。

  說(shuō)創(chuàng)新點(diǎn):

  為了給學(xué)生營(yíng)造一個(gè)和諧、民主、平等而高效的數(shù)學(xué)課堂,我以新課程標(biāo)準(zhǔn)的基本理念和總體目標(biāo)為指導(dǎo)思想,面向全體學(xué)生,選擇適當(dāng)?shù)钠瘘c(diǎn)和方法,充分發(fā)揮學(xué)生的主體地位與教師主導(dǎo)作用相統(tǒng)一的原則。教學(xué)中注重學(xué)生的動(dòng)手操作能力的培養(yǎng),化繁為簡(jiǎn),化抽象為直觀。例如我以展示預(yù)習(xí)成果為主線,以學(xué)生動(dòng)手操作、講解等直觀方式代替老師畫(huà)圖、剪圖、講評(píng)費(fèi)時(shí)費(fèi)力的方式,既讓每個(gè)學(xué)生都能積極的參與進(jìn)來(lái),培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力、邏輯推理能力,又達(dá)到了直觀高效的'效果。

  教學(xué)中我注重人文環(huán)境的創(chuàng)設(shè),使數(shù)學(xué)課堂充滿親切、民主的氣氛,例如整節(jié)課我以學(xué)生的操作、展示、講解、個(gè)性補(bǔ)充為主,拉近了數(shù)學(xué)與學(xué)生的距離,激發(fā)了學(xué)生的學(xué)習(xí)興趣;為了使不同的學(xué)生得到不同的發(fā)展,人人學(xué)有價(jià)值的數(shù)學(xué),在教學(xué)中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設(shè)身邊暖房工程為情境,體現(xiàn)數(shù)學(xué)的生活化;以一題多變、中考題改編等形式進(jìn)行練習(xí)題的層層深入,體現(xiàn)數(shù)學(xué)的變化美。

  以學(xué)生個(gè)性補(bǔ)充的形式促進(jìn)課堂新的生成,最大限度的培養(yǎng)學(xué)生創(chuàng)新思維,使不同的人在數(shù)學(xué)上有不同的發(fā)展。本節(jié)課既做到了課程的開(kāi)放,為充分發(fā)揮學(xué)生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設(shè)了具有獨(dú)特教學(xué)風(fēng)格的作文式數(shù)學(xué)課堂。而多媒體教學(xué)的引入更為學(xué)生提供了廣闊的思考空間和時(shí)間;同時(shí),我注重對(duì)學(xué)生進(jìn)行數(shù)學(xué)文化的薰陶和數(shù)學(xué)思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結(jié)時(shí)由“勾股樹(shù)”到“智慧樹(shù)”的希望寄語(yǔ)。

勾股定理說(shuō)課稿 篇5

  一、說(shuō)教材

 。ㄒ唬┙滩姆治

  本節(jié)內(nèi)容選自人教版八年級(jí)數(shù)學(xué)下冊(cè)第17章第二節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判定定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法來(lái)證明幾何問(wèn)題的思想,為將來(lái)學(xué)習(xí)解析幾何埋下了伏筆。

 。ǘ┙虒W(xué)目標(biāo)

  根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實(shí)際我確定了本節(jié)課的教學(xué)目標(biāo)。

  知識(shí)技能:

  理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

  掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形。

  了解逆命題的概念,以及原命題為真時(shí),它的逆命題不一定為真。

  過(guò)程方法:

  1、通過(guò)對(duì)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成的過(guò)程

  2、通過(guò)用三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)形結(jié)合方法的應(yīng)用

  3、通過(guò)勾股定理的逆定理的證明,體會(huì)數(shù)與形結(jié)合方法在問(wèn)題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問(wèn)題。

  情感態(tài)度:

  在探究勾股定理的逆定理的.活動(dòng)中,通過(guò)一系列富有探究性的問(wèn)題,滲透與他人交流、合作的意識(shí)和探究精神

 。ㄈ⿲W(xué)情分析

  盡管已到初二下學(xué)期的學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性還很大,能力之間也有差距,而利用“構(gòu)造法”證明勾股定理的逆定理學(xué)生第一次見(jiàn)到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),而勾股定理逆定理的應(yīng)用是本節(jié)重點(diǎn)

  重點(diǎn):勾股定理逆定理的應(yīng)用

  難點(diǎn):勾股定理逆定理的證明

  二、說(shuō)教法學(xué)法

  數(shù)學(xué)課程不僅注重知識(shí)、技能,以及情感意識(shí)和創(chuàng)造力的培養(yǎng),同樣注重社會(huì)實(shí)踐和體驗(yàn),教學(xué)要遵循以教師為主導(dǎo),學(xué)生為主體的原則,因此我采用的教法學(xué)法如下:

  在教學(xué)中以小組合作,自主探索為形式,采用“提問(wèn)引導(dǎo)法”,通過(guò)“提出疑問(wèn)”來(lái)啟發(fā)誘導(dǎo)學(xué)生,讓學(xué)生自覺(jué)主動(dòng)地去分析問(wèn)題、解決問(wèn)題,學(xué)生在操作過(guò)程中不斷“發(fā)現(xiàn)問(wèn)題——解決問(wèn)題”,變學(xué)生“學(xué)會(huì)”為“會(huì)學(xué)”.這樣不僅使學(xué)生學(xué)習(xí)目標(biāo)明確,而且能夠培養(yǎng)他們的合作精神和自主學(xué)習(xí)的能力。根據(jù)學(xué)法指導(dǎo)自主性和差異性原則,本節(jié)我主要采用自主探究學(xué)習(xí)法,通過(guò)設(shè)計(jì)一系列問(wèn)題,引導(dǎo)學(xué)生主動(dòng)探究新知,體現(xiàn)學(xué)習(xí)自主性,從不同層面發(fā)掘不同學(xué)生的不同能力。

  三、說(shuō)教學(xué)準(zhǔn)備

  1、多媒體教學(xué)課件

  2、紙片、直尺、圓規(guī)等

  3、對(duì)學(xué)生事先分組

  四、說(shuō)教學(xué)過(guò)程

  根據(jù)本課教學(xué)內(nèi)容以及數(shù)學(xué)課程學(xué)科特點(diǎn),結(jié)合八年級(jí)學(xué)生的實(shí)際認(rèn)知水平,我設(shè)計(jì)了如下六個(gè)教學(xué)環(huán)節(jié):

 。ㄒ唬⿵(fù)習(xí)提問(wèn)、引入新課

  問(wèn)題1:前面我們學(xué)習(xí)了勾股定理,你能說(shuō)出它的題設(shè)和結(jié)論嗎?

  問(wèn)題2:若一個(gè)三角形三邊具有a2+b2=c2,能否確定這個(gè)三角形是直角三角形?

 。ǘ﹦(dòng)手操作、觀察猜想

  探究一:分組做實(shí)驗(yàn)

  第一組同學(xué)每人畫(huà)一個(gè)邊長(zhǎng)為3cm、4 cm、5 cm的三角形;

  第二組同學(xué)每人畫(huà)一個(gè)邊長(zhǎng)為2.5 cm、6 cm、7.5 cm的三角形;

  第三組同學(xué)每人畫(huà)一個(gè)邊長(zhǎng)為4 cm、7.5 cm、8.5 cm的三角形;

  第四組同學(xué)每人畫(huà)一個(gè)邊長(zhǎng)為2 cm、5 cm、6 cm的三角形。

  問(wèn)題1:觀察這些三角形,它們分別是什么形狀呢?并測(cè)量驗(yàn)證

  問(wèn)題2:前三個(gè)三角形三邊具有怎樣的關(guān)系呢?

  問(wèn)題3: 結(jié)合三角形三邊長(zhǎng)度的平方關(guān)系,你能猜一猜三角形的三邊長(zhǎng)度與三角形的形狀之間有怎樣的關(guān)系嗎?

  學(xué)生活動(dòng):動(dòng)手、觀察、測(cè)量、思考、猜想

  設(shè)計(jì)意圖:由特殊到一般,歸納猜想得出勾股定理的逆命題,既培養(yǎng)學(xué)生動(dòng)手操作能力和尋求解決數(shù)學(xué)問(wèn)題的一般方法,又體驗(yàn)了數(shù)與形的內(nèi)在聯(lián)系。

 。ㄈ⿲(shí)踐驗(yàn)證,歸納證明

  教師出示問(wèn)題

  問(wèn)題1:對(duì)于一個(gè)真命題,它的逆命題是否也為真?學(xué)生舉例說(shuō)明。

  勾股定理的逆命題是否也正確?怎么證明?

  問(wèn)題2:三邊長(zhǎng)度分別3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系,你是怎樣得到的?(出示紙片)

  問(wèn)題3:你能否借鑒問(wèn)題2的方法來(lái)證明勾股定理的逆命題呢?

  學(xué)生活動(dòng):觀察思考,動(dòng)手操作,分組討論,交流合作(教師引導(dǎo)學(xué)生主動(dòng)探索,在師生互動(dòng)中完成證明,得到勾股定理的逆定理)

  設(shè)計(jì)意圖:把“構(gòu)造直角三角形”這一方法的獲取過(guò)程交給學(xué)生,讓他們?cè)诓粩嗟膰L試、探究的過(guò)程中,親身體驗(yàn)參與發(fā)現(xiàn)的愉悅,有效地突破本節(jié)的難點(diǎn)。

勾股定理說(shuō)課稿 篇6

  一、教材分析:

 。ㄒ唬┙滩牡牡匚慌c作用

  從知識(shí)結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。

  從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;勾股定理又是對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。

  根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級(jí)學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識(shí)技能、數(shù)學(xué)思考、問(wèn)題解決、情感態(tài)度。其中情感態(tài)度方面,以我國(guó)數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛(ài)祖國(guó)悠久文化的情感。

  (二)重點(diǎn)與難點(diǎn)

  為變被動(dòng)接受為主動(dòng)探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過(guò)程。限于八年級(jí)學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引導(dǎo)學(xué)生動(dòng)手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。

  二、教學(xué)與學(xué)法分析

  教學(xué)方法葉圣陶說(shuō)過(guò)"教師之為教,不在全盤(pán)授予,而在相機(jī)誘導(dǎo)。"因此教師利用幾何直觀提出問(wèn)題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。

  學(xué)法指導(dǎo)為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識(shí)的形成過(guò)程。

  三、教學(xué)過(guò)程

  我國(guó)數(shù)學(xué)文化源遠(yuǎn)流長(zhǎng)、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節(jié)課設(shè)計(jì)為以下五個(gè)環(huán)節(jié)。

  首先,情境導(dǎo)入古韻今風(fēng)

  給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進(jìn)行合作拼圖。讓學(xué)生觀察并思考三個(gè)正方形面積之間的關(guān)系?它們圍成了怎么樣三角形,反映在三邊上,又蘊(yùn)含著怎么樣數(shù)學(xué)奧秘呢?寓教于樂(lè),激發(fā)學(xué)生好奇、探究的欲望。

  第二步追溯歷史解密真相

  勾股定理的探索過(guò)程是本節(jié)課的重點(diǎn),依照數(shù)學(xué)知識(shí)的循序漸進(jìn)、螺旋上升的原則,我設(shè)計(jì)如下三個(gè)活動(dòng)。

  從上面低起點(diǎn)的問(wèn)題入手,有利于學(xué)生參與探索。學(xué)生很容易發(fā)現(xiàn),在等腰三角形中存在如下關(guān)系。巧妙的將面積之間的關(guān)系轉(zhuǎn)化為邊長(zhǎng)之間的關(guān)系,體現(xiàn)了轉(zhuǎn)化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計(jì)算更具說(shuō)服力。將圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積,體現(xiàn)了數(shù)形結(jié)合的思想。學(xué)生會(huì)想到用"數(shù)格子"的方法,這種方法雖然簡(jiǎn)單易行,但對(duì)于下一步探索一般直角三角形并不適用,具有局限性。因此教師應(yīng)引導(dǎo)學(xué)生利用"割"和"補(bǔ)"的方法求正方形C的面積,為下一步探索復(fù)雜圖形的面積做鋪墊。

  突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結(jié)論呢?體現(xiàn)了"從特殊到一般"的認(rèn)知規(guī)律。教師給出邊長(zhǎng)單位長(zhǎng)度分別為3、4、5的直角三角形,避免了學(xué)生因作圖不準(zhǔn)確而產(chǎn)生的錯(cuò)誤,也為下面"勾三股四弦五"的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點(diǎn)。在求正方形C的面積時(shí),學(xué)生將展示"割"的方法,"補(bǔ)"的方法,有的學(xué)生可能會(huì)發(fā)現(xiàn)平移的方法,旋轉(zhuǎn)的方法,對(duì)于這兩種新方法教師應(yīng)給于表?yè)P(yáng),肯定學(xué)生的研究成果,培養(yǎng)學(xué)生的類比、遷移以及探索問(wèn)題的能力。

  使用幾何畫(huà)板動(dòng)態(tài)演示,使幾何與代數(shù)之間的關(guān)系可視化。當(dāng)為直角三角形時(shí),改變?nèi)呴L(zhǎng)度三邊關(guān)系不變,當(dāng)∠α為銳角或鈍角時(shí),三邊關(guān)系就改變了,進(jìn)而強(qiáng)調(diào)了命題成立的前提條件必須是直角三角形。加深學(xué)生對(duì)勾股定理理解的同時(shí)也拓展了學(xué)生的視野。

  以上三個(gè)環(huán)節(jié)層層深入步步引導(dǎo),學(xué)生歸納得到命題1,從而培養(yǎng)學(xué)生的合情推理能力以及語(yǔ)言表達(dá)能力。

  感性認(rèn)識(shí)未必是正確的,推理驗(yàn)證證實(shí)我們的'猜想。

  第三步推陳出新借古鼎新

  教材中直接給出"趙爽弦圖"的證法對(duì)學(xué)生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動(dòng)解放學(xué)生的大腦,讓學(xué)生發(fā)揮自己的聰明才智證明勾股定理。這是教學(xué)的難點(diǎn)也是重點(diǎn),教師應(yīng)給學(xué)生充分的自主探索的時(shí)間與空間,讓學(xué)生的思維在相互討論中碰撞、在相互學(xué)習(xí)中完善。教師深入到學(xué)生中間,觀察學(xué)生探究方法接受學(xué)生的質(zhì)疑,對(duì)于不同的拼圖方案給予肯定。從而體現(xiàn)出"學(xué)生是學(xué)習(xí)的主體,教師是組織者、引導(dǎo)者與合作者"這一教學(xué)理念。學(xué)生會(huì)發(fā)現(xiàn)兩種證明方案。

  方案1為趙爽弦圖,學(xué)生講解論證過(guò)程,再現(xiàn)古代數(shù)學(xué)家的探索方法。方案2為學(xué)生自己探索的結(jié)果,論證之巧較方案1有異曲同工之妙。整個(gè)探索過(guò)程,讓學(xué)生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過(guò)程,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。對(duì)比"古"、"今"兩種證法,讓學(xué)生體會(huì)"吹盡黃沙始到金"的喜悅,感受到"青出于藍(lán)而勝于藍(lán)"的自豪感。板書(shū)勾股定理,進(jìn)而給出字母表示,培養(yǎng)學(xué)生的符號(hào)意識(shí)。

  教師對(duì)"勾、股、弦"的含義以及古今中外對(duì)勾股定理的研究做一個(gè)介紹,使學(xué)生感受數(shù)學(xué)文化,培養(yǎng)民族自豪感和愛(ài)國(guó)主義精神。利用勾股樹(shù)動(dòng)態(tài)演示,讓學(xué)生欣賞數(shù)學(xué)的精巧、優(yōu)美。

  第四步取其精華古為今用

  我按照"理解—掌握—運(yùn)用"的梯度設(shè)計(jì)了如下三組習(xí)題。

 。1)對(duì)應(yīng)難點(diǎn),鞏固所學(xué)。

 。2)考查重點(diǎn),深化新知。

  (3)解決問(wèn)題,感受應(yīng)用。

  第五步溫故反思任務(wù)后延

  在課堂接近尾聲時(shí),我鼓勵(lì)學(xué)生從"四基"的要求對(duì)本節(jié)課進(jìn)行小結(jié)。進(jìn)而總結(jié)出一個(gè)定理、二個(gè)方案、三種思想、四種經(jīng)驗(yàn)。

  然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學(xué)生的理念。

勾股定理說(shuō)課稿 篇7

  課題:勾股定理

  內(nèi)容:教材分析、教法學(xué)法分析、教學(xué)過(guò)程設(shè)計(jì)、設(shè)計(jì)說(shuō)明

  一、 教材分析

 。ㄒ唬┙滩乃幍牡匚

  這節(jié)課是華師大九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)八年級(jí)總第19章第2節(jié)探索勾股定理,勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

 。ǘ└鶕(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:

  1、能說(shuō)出勾股定理的內(nèi)容。

  2、會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用。

  3、在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。

  4、通過(guò)介紹勾股定理在中國(guó)古代的研究,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。

 。ㄈ┍菊n的教學(xué)重點(diǎn):探索勾股定理

  本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計(jì)算。

  二、教法與學(xué)法分析

  教法分析:針對(duì)初二年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問(wèn)題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)六部分。

  學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問(wèn)題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。

  三、 教學(xué)過(guò)程設(shè)計(jì)

  (一)數(shù)學(xué)史導(dǎo)入

  以畢達(dá)哥拉斯發(fā)現(xiàn)勾股定理引入新課,不僅自然,而且反映了數(shù)學(xué)來(lái)源于實(shí)際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識(shí)的基本觀點(diǎn),同時(shí)也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,而且解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程。

  (二)實(shí)驗(yàn)操作

  1、投影課本圖的有關(guān)直角三角形問(wèn)題,讓學(xué)生計(jì)算正方形A,B,C的面積,學(xué)生可能有不同的方法,不管是通過(guò)直接數(shù)小方格的個(gè)數(shù),還是將C劃分為4個(gè)全等的等腰直角三角形來(lái)求等等,各種方法都應(yīng)予于肯定,并鼓勵(lì)學(xué)生用語(yǔ)言進(jìn)行表達(dá),引導(dǎo)學(xué)生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學(xué)生通過(guò)正方形面積之間的關(guān)系容易發(fā)現(xiàn)對(duì)于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

  2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計(jì)算正方形的面積,但正方形C的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫(huà)出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計(jì)不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會(huì)到觀察、猜想、歸納的思想,也讓學(xué)生的分析問(wèn)題和解決問(wèn)題的能力在無(wú)形中得到了提高,這對(duì)后面的學(xué)習(xí)及有幫助。

  3、給出一個(gè)邊長(zhǎng)單位為5,12,13,這種含小數(shù)的直角三角形,讓學(xué)生計(jì)算是否也滿足這個(gè)結(jié)論,設(shè)計(jì)的目的是讓學(xué)生體會(huì)到結(jié)論更具有一般性。

  (三)歸納驗(yàn)證

  1、歸納通過(guò)對(duì)邊長(zhǎng)為整數(shù)的等腰直角三角形到一般直角三角形再到邊長(zhǎng)含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語(yǔ)言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對(duì)于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行抽象、概括的能力是有益的,同時(shí)發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個(gè)結(jié)論要好的多。

  2、驗(yàn)證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個(gè)直角三角形,通過(guò)動(dòng)手操作拼圖來(lái)驗(yàn)證結(jié)論的正確性和廣泛性。這一過(guò)程有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號(hào)語(yǔ)言表示,因?yàn)閷⑽淖终Z(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對(duì)勾股定理的研究,對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育和數(shù)學(xué)文化熏陶。

  (四)問(wèn)題解決

  讓學(xué)生解決生活中的實(shí)際問(wèn)題,學(xué)生從中能體會(huì)到成功的喜悅。完成課本“想一想”進(jìn)一步體會(huì)勾股定理在實(shí)際生活中的應(yīng)用,數(shù)學(xué)是與實(shí)際生活緊密相連的`。

  (五)課堂小結(jié)

  主要通過(guò)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結(jié),后由教師總結(jié)。

  (六)布置作業(yè)

  習(xí)題19.2(1-5)

  有興趣的同學(xué)可以查找另外的證明方法,寫(xiě)出1-2種出來(lái)

  四、 設(shè)計(jì)說(shuō)明

  1、本節(jié)課是公式課,根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的教學(xué)流程是:提出問(wèn)題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。

  2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般再到更一般的對(duì)直角三角形三邊關(guān)系的探索和研究,得出結(jié)論。這種一般化的思想方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好思維品質(zhì)的形成有重要作用,對(duì)學(xué)生的終身發(fā)展也有一定的作用。

  3、關(guān)于練習(xí)的設(shè)計(jì),除兩個(gè)實(shí)際問(wèn)題和課本習(xí)題以外,還讓有興趣的同學(xué)可以查找另外的證明方法,寫(xiě)出1-2種出來(lái)

  4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識(shí)的途徑等幾個(gè)方面展開(kāi),既有知識(shí)的總結(jié),又有方法的提煉,這樣對(duì)于學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí)是有很大的裨益的。

勾股定理說(shuō)課稿 篇8

  一、教材分析

 。ㄒ唬、本節(jié)課在教材中的地位作用

  “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問(wèn)題的思想,為將來(lái)學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

 。ǘ、教學(xué)目標(biāo)

  1、知識(shí)技能:1理解并會(huì)證明勾股定理的逆定理;

  2會(huì)應(yīng)用勾股定理的逆定理判定一個(gè)三角形是否為直角三角形; 3知道什么叫勾股數(shù),記住一些覺(jué)見(jiàn)的勾股數(shù).

  2、過(guò)程與方法:通過(guò)對(duì)勾股定理的逆定理的探索和證明,經(jīng)歷知識(shí)的發(fā)生,發(fā)展與形成的過(guò)程,體驗(yàn)“數(shù)形結(jié)合”方法的應(yīng)用。

  3、情感、態(tài)度價(jià)值觀 培養(yǎng)數(shù)學(xué)思維以及合情推理意識(shí),感悟勾股定理和逆定理的應(yīng)用價(jià)值。滲透與他人交流、合作的意識(shí)和探究精神,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。

 。ㄈ、學(xué)情分析:

  盡管已到初二下學(xué)期學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見(jiàn)到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)。 教學(xué)重點(diǎn):勾股定理逆定理的應(yīng)用

  教學(xué)難點(diǎn):勾股定理逆定理的證明

  二、教學(xué)過(guò)程

  本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過(guò)巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。

 。ㄒ唬⿵(fù)習(xí)回顧

  復(fù)習(xí)回顧與直角三角形、勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。

 。ǘ﹦(chuàng)設(shè)問(wèn)題情境

  一開(kāi)課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問(wèn)題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么?。這個(gè)問(wèn)題一出現(xiàn)馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來(lái),創(chuàng)

  造了我要學(xué)的氣氛,同時(shí)也說(shuō)明了幾何知識(shí)來(lái)源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

 。ㄈ⿲W(xué)生在教師的指導(dǎo)下嘗試解決問(wèn)題,總結(jié)規(guī)律(包括難點(diǎn)突破)

  因?yàn)閹缀蝸?lái)源于現(xiàn)實(shí)生活,對(duì)初二學(xué)生來(lái)說(shuō)選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開(kāi)始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過(guò)動(dòng)手畫(huà)圖在具體的實(shí)踐中觀察滿足條件的三角形直觀感覺(jué)上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。

  這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見(jiàn)到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手畫(huà)出了一個(gè)兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過(guò)操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的`添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

  接下來(lái)就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過(guò)程自然、無(wú)神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過(guò)程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過(guò)程中享受到自我創(chuàng)造的快樂(lè)。

  在同學(xué)們完成證明之后,同時(shí)讓學(xué)生總結(jié)互逆命題、互逆定理的關(guān)系,并舉例指出哪些為互逆定理。然后讓他們對(duì)照課本把證明過(guò)程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書(shū)的作用,養(yǎng)成學(xué)生看書(shū)的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。

 。ㄋ模┙M織變式訓(xùn)練

  本著由淺入深的原則,安排了兩個(gè)例題。(演示)第一題比較簡(jiǎn)單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,不僅判斷是否為直接三角形,還繞了一個(gè)彎,指出哪一個(gè)角是直角。這樣既可以檢查本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。例題講解后安排了三個(gè)練習(xí),循序漸進(jìn),由淺入深。培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。讓學(xué)生知道勾股逆定理的用途,激發(fā)學(xué)生的學(xué)習(xí)興趣。我還采用講、說(shuō)、練結(jié)合的方法,教師通過(guò)觀察、提問(wèn)、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過(guò)程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對(duì)性的個(gè)別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來(lái)。

 。ㄎ澹w納小結(jié),納入知識(shí)體系

  本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并

  告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過(guò)自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問(wèn)題的方法是培養(yǎng)我們發(fā)現(xiàn)問(wèn)題認(rèn)識(shí)問(wèn)題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。

 。┳鳂I(yè)布置

  由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二題適當(dāng)加大難度,拓寬知識(shí),供有能力又有興趣的學(xué)生做,日積月累,對(duì)訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。

  三、說(shuō)教法學(xué)法與教學(xué)手段

  為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對(duì)所學(xué)知識(shí)的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。

  此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過(guò)聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過(guò)動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)。

  總之,本節(jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭(zhēng)最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭(zhēng)把教師教的過(guò)程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過(guò)程;力爭(zhēng)使學(xué)生在獲得知識(shí)的過(guò)程中得到能力的培養(yǎng)。

勾股定理說(shuō)課稿 篇9

  一、 教材分析

  (一)教材地位

  這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版七年級(jí)第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

 。ǘ┙虒W(xué)目標(biāo)

  知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題。

  過(guò)程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的'合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。

  情感態(tài)度與價(jià)值觀: 激發(fā)學(xué)生愛(ài)國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

 。ㄈ┙虒W(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析:

  學(xué)情分析:七年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問(wèn)題的意識(shí)和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

  教法分析:結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境————建立模型————解釋?xiě)?yīng)用———拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過(guò)程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過(guò)程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、 教學(xué)過(guò)程設(shè)計(jì)

  

勾股定理說(shuō)課稿 篇10

  一、教材分析

  教材所處的地位與作用

  “探索勾股定理”是人教版八年級(jí)《數(shù)學(xué)》下冊(cè)內(nèi)容!肮垂啥ɡ怼笔前才旁趯W(xué)生學(xué)習(xí)了三角形、全等三角形、等腰三角形等有關(guān)知識(shí)之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來(lái),在幾何學(xué)中占有非常重要的位置。同時(shí)勾股定理在生產(chǎn)、生活中也有很大的用途。

  二、教學(xué)目標(biāo)

  綜上分析及教學(xué)大綱要求,本課時(shí)教學(xué)目標(biāo)制定如下:

  1、知識(shí)目標(biāo)

   知道勾股定理的由來(lái),初步理解割補(bǔ)拼接的面積證法。

   掌握勾股定理,通過(guò)動(dòng)手操作利用等積法理解勾股定理的證明過(guò)程。

  2、能力目標(biāo)

   在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察——合理猜想——?dú)w納——驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學(xué)生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學(xué)探究問(wèn)題的能力。

  3、情感目標(biāo)

   通過(guò)觀察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過(guò)程。

   介紹“趙爽弦圖”,讓學(xué)生感受到中國(guó)古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數(shù)學(xué)激情及愛(ài)國(guó)情感。

  三、教學(xué)重難點(diǎn)

  本課重點(diǎn)是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級(jí)學(xué)生構(gòu)造能力較低以及對(duì)面積證法的不熟悉,因此本課的難點(diǎn)便是勾股定理的證明。

  四、教學(xué)問(wèn)題診斷

  本 節(jié)主要攻克的問(wèn)題就是本節(jié)的難點(diǎn):勾股定理的證明。我打算采用面積法來(lái)講解,但這種借助于圖形的面積來(lái)探索、驗(yàn)證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想,對(duì)于學(xué)生來(lái)說(shuō), 有些陌生,難以理解,又加之?dāng)?shù)學(xué)課本身的課程特征,在講解時(shí),沒(méi)有文科那么深動(dòng)形象,所以針對(duì)這一現(xiàn)狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。

  五、教法與學(xué)法分析

  [教學(xué)方法與手段] 針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題,引導(dǎo)學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。

  [學(xué)法分析] 在教師組織引導(dǎo)下,采用自主探索、合作交流的方式,讓學(xué)生自己實(shí)驗(yàn),自己獲取知識(shí),并感悟?qū)W習(xí)方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦能力,使學(xué)生真正成為學(xué)習(xí)的主體。讓學(xué)生感受到自己是學(xué)習(xí)的主體,增強(qiáng)他們的主動(dòng)感和責(zé)任感,這樣對(duì)掌握新知會(huì)事半功倍。

  六、教學(xué)流程設(shè)計(jì)

  1、創(chuàng)設(shè)情境,引入新課

  本節(jié)課開(kāi)始利用多媒體介紹了在北京召開(kāi)的20xx年 國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),其圖案為“趙爽弦圖”,由此導(dǎo)入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)!昂玫拈_(kāi)始是成功的一半”,在 課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲。多媒體展示這一有意義的圖案,可有效開(kāi)啟學(xué) 生思維的閘門(mén),激勵(lì)探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),在輕松愉悅的氛圍中學(xué)到知識(shí)。

  2、觀察發(fā)現(xiàn),類比猜想

  讓學(xué)生仔細(xì)觀察畢達(dá)哥拉斯朋友家的瓷磚(圖1), 從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學(xué)生合理猜測(cè):是否任意直角三角形都符合這個(gè)“三邊關(guān)系”的結(jié)論?同學(xué)們很輕易的得到了結(jié) 論。最后對(duì)此結(jié)論通過(guò)在網(wǎng)格中數(shù)格子進(jìn)行驗(yàn)證,讓學(xué)生經(jīng)歷了“觀察——合理猜測(cè)——?dú)w納——驗(yàn)證”的這一數(shù)學(xué)思想。在數(shù)格子的驗(yàn)證過(guò)程中,發(fā)現(xiàn)任意直角三 角形(圖2)斜邊上長(zhǎng)出的正方形中網(wǎng)格不規(guī)則,沒(méi)法數(shù)出。通過(guò)同學(xué)們的討論,發(fā)現(xiàn)數(shù)不出來(lái)的原因是格子不規(guī)則,從而想到了用補(bǔ)或割的方法進(jìn)行計(jì)算,其原則就是由不規(guī)則經(jīng)過(guò)割補(bǔ)變?yōu)橐?guī)則。

  3、實(shí)驗(yàn)探究,證明結(jié)論

  因?yàn)楣垂啥ɡ淼某霈F(xiàn),使數(shù)學(xué)從單一的`純計(jì)算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數(shù)形結(jié)合這一數(shù)學(xué)思想,讓學(xué)生親自動(dòng)手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補(bǔ),變?yōu)橐?guī)則的c2,又因兩塊割補(bǔ)前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。

  4、練兵之際

  這是“總統(tǒng)證法”,此時(shí)讓學(xué)生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數(shù)學(xué)的地位之高,第三在沒(méi)有講解的情況下,學(xué)生自己得出了“總統(tǒng)證法”,大大增強(qiáng)了學(xué)生的自信心和自豪感。

  5、自己動(dòng)手,拼出弦圖

  讓同學(xué)們拿出了提前準(zhǔn)備好的四個(gè)全等的邊長(zhǎng)為a、b、c的 直角三角形進(jìn)行拼圖,小組活動(dòng),拼出自己喜愛(ài)的圖形,但有一個(gè)前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時(shí)已經(jīng)是把課堂全部還給了學(xué)生,讓他們 在數(shù)學(xué)的海洋中馳騁,提供這種學(xué)習(xí)方式就是為了讓孩子們更加開(kāi)闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的 證明,在黑板上盡情地展示了一番。

  6、總結(jié)反思

  通 過(guò)這一堂課,我認(rèn)為數(shù)學(xué)教學(xué)的核心不是知識(shí)本身,而是數(shù)學(xué)的思維方式,而培養(yǎng)這種數(shù)學(xué)思維方式需要豐富的數(shù)學(xué)活動(dòng)。在活動(dòng)中學(xué)生可以用自己創(chuàng)造與體驗(yàn)的方 法來(lái)學(xué)習(xí)數(shù)學(xué),這樣才能真正的掌握數(shù)學(xué),真正擁有數(shù)學(xué)的思維方式,這一課的學(xué)習(xí)就是通過(guò)讓學(xué)生自主探索知識(shí),從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興 趣,再合作交流,最后展示成果的自主學(xué)習(xí),教學(xué)模式也從教師講授為主轉(zhuǎn)為了學(xué)生動(dòng)腦、動(dòng)手、自主研究,小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)化為“數(shù)學(xué)實(shí)驗(yàn) 室”,學(xué)生通過(guò)自己活動(dòng)得出結(jié)論,使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。

  七、設(shè)計(jì)說(shuō)明

  1、根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的數(shù)學(xué)流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實(shí)驗(yàn)探究證明結(jié)論——自己動(dòng)手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識(shí)的發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生經(jīng)歷了觀察——猜想——?dú)w納——驗(yàn)證的思想和數(shù)形結(jié)合的思想。

  2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般的數(shù)學(xué)思想對(duì)直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好的思維品質(zhì)的形成有重要作用,對(duì)學(xué)生終身發(fā)展也有很大作用。

【勾股定理說(shuō)課稿】相關(guān)文章:

勾股定理說(shuō)課稿07-05

《勾股定理》的說(shuō)課稿06-08

《勾股定理》說(shuō)課稿12-16

勾股定理說(shuō)課稿02-11

探索《勾股定理》說(shuō)課稿01-04

《勾股定理》優(yōu)秀說(shuō)課稿01-21

探索勾股定理說(shuō)課稿12-06

探索勾股定理說(shuō)課稿11-04

《勾股定理》說(shuō)課稿15篇12-29

《勾股定理》說(shuō)課稿(15篇)12-29