高中數(shù)學(xué)說課稿(精選10篇)
作為一名默默奉獻的教育工作者,常常要寫一份優(yōu)秀的說課稿,說課稿可以幫助我們提高教學(xué)效果。那么大家知道正規(guī)的說課稿是怎么寫的嗎?下面是小編為大家整理的高中數(shù)學(xué)說課稿,希望對大家有所幫助。
高中數(shù)學(xué)說課稿 1
一.說教材
1.本節(jié)課主要內(nèi)容是線性規(guī)劃的意義以及線性約束條件、線性目標函數(shù)、可行域、可行解、最優(yōu)解等概念,根據(jù)約束條件建立線性目標函數(shù)。應(yīng)用線性規(guī)劃的圖解法解決一些實際問題。
2.地位作用:線性規(guī)劃是數(shù)學(xué)規(guī)劃中理論較完整、方法較成熟、應(yīng)用較廣泛的一個分支,它可以解決科學(xué)研究、工程設(shè)計、經(jīng)濟管理等許多方面的實際問題。簡單的線性規(guī)劃是在學(xué)習(xí)了直線方程的基礎(chǔ)上,介紹直線方程的一個簡單應(yīng)用。通過這部分內(nèi)容的學(xué)習(xí),使學(xué)生進一步了解數(shù)學(xué)在解決實際問題中的應(yīng)用,以培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識和解決實際問題的能力。
3.教學(xué)目標
(1)知識與技能:了解線性規(guī)劃的意義以及線性約束條件、線性目標函數(shù)、可行域、可行解、最優(yōu)解等概念,能根據(jù)約束條件建立線性目標函數(shù)。
了解并初步應(yīng)用線性規(guī)劃的圖解法解決一些實際問題。
(2)過程與方法:提高學(xué)生數(shù)學(xué)地提出、分析和解決問題的能力,發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識,力求對現(xiàn)實世界中蘊含的一些數(shù)學(xué)模式進行思考和作出判斷。
(3)情感、態(tài)度與價值觀:體會數(shù)形結(jié)合、等價轉(zhuǎn)化等數(shù)學(xué)思想,逐步認識數(shù)學(xué)的應(yīng)用價值,提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的自信心。
4.重點與難點
重點:理解和用好圖解法
難點:如何用圖解法尋找線性規(guī)劃的最優(yōu)解。
二.說教學(xué)方法
教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法:
(1)啟發(fā)引導(dǎo)學(xué)生思考、分析、實驗、探索、歸納。這能充分調(diào)動學(xué)生的主動性和積極性。
(2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動”的方法。這有利于學(xué)生對知識進行主動建構(gòu);有利于突出重點、解決難點;也有利于發(fā)揮學(xué)生的創(chuàng)造性。
(3)體現(xiàn)“等價轉(zhuǎn)化”、“數(shù)形結(jié)合”的思想方法。這樣可發(fā)揮學(xué)生的主觀能動性,有利于提高學(xué)生的各種能力。
三.說學(xué)法指導(dǎo)
教給學(xué)生方法比教給學(xué)生知識更重要,本節(jié)課注重調(diào)動學(xué)生積極思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,我進行了以下學(xué)法指導(dǎo):觀察分析、聯(lián)想轉(zhuǎn)化、動手實驗、練習(xí)鞏固。
(1)觀察分析:通過引例讓學(xué)生觀察化舊知為新知,造成學(xué)生認知沖突。
(2)聯(lián)想轉(zhuǎn)化:學(xué)生通過分析、探索、得出解決問題的方法。
(3)動手實驗:通過作圖、實驗、從而得出一般解題步驟。
(4)練習(xí)鞏固:讓學(xué)生知道數(shù)學(xué)重在運用,從而檢驗知識的.應(yīng)用情況,找出未掌握的內(nèi)容及其差距。
四.說教學(xué)程序
1、導(dǎo)入課題:由一個不等式組表示平面區(qū)域轉(zhuǎn)化為在此平面區(qū)域內(nèi)一二元一次數(shù)的最值問題,造成學(xué)生認知沖突。
2、導(dǎo)學(xué)達標之一:創(chuàng)設(shè)情境、形成概念
通過引例的問題讓學(xué)生探索解決新問題的方法。
(設(shè)計意圖:利用已經(jīng)學(xué)過的知識逐步分析,學(xué)以致用,使學(xué)生經(jīng)歷數(shù)學(xué)知識的形成過程,從而提高學(xué)生數(shù)學(xué)的地提出、分析和解決問題的能力。)
然后老師逐步引導(dǎo),動手實驗,化抽象為直觀。從而得到解決此類問題的方法,并對比引例給出相關(guān)概念:線性約束條件、目標函數(shù)、線性目標函數(shù)、線性規(guī)劃、可行解、可行域、最優(yōu)解。并能根據(jù)引例提煉線性規(guī)劃問題的解法——圖解法。
(設(shè)計意圖:引導(dǎo)學(xué)生觀察和分析問題,激發(fā)學(xué)生的探索欲望,從而培養(yǎng)學(xué)生的解決問題和總結(jié)歸納的能力。)
3、導(dǎo)學(xué)達標之二:針對問題、舉例講解、形成技能
例一:課本61頁例3
(創(chuàng)設(shè)意境:,練習(xí)是使學(xué)生明白數(shù)學(xué)來源于實際又運用于實際,同時使學(xué)生進初步應(yīng)用線性規(guī)劃的圖解法解決一些實際問題。)
4、鞏固目標:
練習(xí)一:學(xué)生做課堂練習(xí)P64例4
(叫學(xué)生提出解決問題的方法,并用多媒體展示,并根據(jù)問題的實際意義,考慮取值范圍。造成新的認知沖突,從而研究探索,得到整點最優(yōu)解的一種求法。)
練習(xí)二:為了賺大錢,老張最近承包了一家具廠,可老張卻悶悶不樂,原來家具廠有方木料90m3,五合板600m2,老張準備加工成書桌和書廚出售,他通過調(diào)查了解到:生產(chǎn)每張書桌需要方木料0.1m3、五合板2m2,生產(chǎn)每個書櫥需要方木料0.2m3、五合板1m2,出售一張書桌可獲利潤80元,出售一個書櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問題)
(設(shè)計意圖:通過實際問題,激發(fā)學(xué)生興趣,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,力求學(xué)生能夠?qū)ΜF(xiàn)實生活中蘊含的一些數(shù)學(xué)模式進行思考和作出判斷。)
5、歸納與小結(jié):
小結(jié)本課的主要學(xué)習(xí)內(nèi)容是什么?(由師生共同來完成本課小結(jié))
(創(chuàng)設(shè)意境:讓學(xué)生參與小結(jié),引導(dǎo)學(xué)生對所學(xué)知識進行反思,有利于加強學(xué)生記憶和形成良好的數(shù)學(xué)思維習(xí)慣)
6、布置作業(yè):
P64.2
五.說板書設(shè)計
板書設(shè)計為表格式,這樣的板書簡明清楚,重點突出,加深學(xué)生對重點知識的理解和掌握,同時便于記憶,有利于提高教學(xué)效果。
高中數(shù)學(xué)說課稿 2
一、說教材:
1.地位及作用:
“橢圓及其標準方程”是高中《解析幾何》第二章第七節(jié)內(nèi)容,是本書的重點內(nèi)容之一,也是歷年高考、會考的必考內(nèi)容,是在學(xué)完求曲線方程的基礎(chǔ)上,進一步研究橢圓的特性,以完成對圓錐曲線的全面研究,為今后的學(xué)習(xí)打好基礎(chǔ),因此本節(jié)內(nèi)容具有承前啟后的作用。
2.教學(xué)目標:
根據(jù)《教學(xué)大綱》,《考試說明》的要求,并根據(jù)教材的具體內(nèi)容和學(xué)生的實際情況,確定本節(jié)課的教學(xué)目標:
(1)知識目標:掌握橢圓的定義和標準方程,以及它們的應(yīng)用。
。2)能力目標:
(a)培養(yǎng)學(xué)生靈活應(yīng)用知識的能力。
(b)培養(yǎng)學(xué)生全面分析問題和解決問題的能力。
(c)培養(yǎng)學(xué)生快速準確的運算能力。
。3)德育目標:培養(yǎng)學(xué)生數(shù)形結(jié)合思想,類比、分類討論的思想以及確立從感性到理性認識的辯證唯物主義觀點。
3.重點、難點和關(guān)鍵點:
因為橢圓的定義和標準方程是解決與橢圓有關(guān)問題的重要依據(jù),也是研究雙曲線和拋物線的基礎(chǔ),因此,它是本節(jié)教材的重點;由于學(xué)生推理歸納能力較低,在推導(dǎo)橢圓的標準方程時涉及到根式的兩次平方,并且運算也較繁,因此它是本節(jié)課的難點;坐標系建立的好壞直接影響標準方程的推導(dǎo)和化簡,因此建立一個適當(dāng)?shù)闹苯亲鴺讼凳潜竟?jié)的關(guān)鍵。
二、說教材處理
為了完成本節(jié)課的教學(xué)目標,突出重點、分散難點、根據(jù)教材的內(nèi)容和學(xué)生的實際情況,對教材做以下的處理:
1.學(xué)生狀況分析及對策:
2.教材內(nèi)容的組織和安排:
本節(jié)教材的處理上按照人們認識事物的規(guī)律,遵循由淺入深,循序漸進,層層深入的原則組織和安排如下:
(1)復(fù)習(xí)提問
。2)引入新課
(3)新課講解
。4)反饋練習(xí)
。5)歸納總結(jié)
(6)布置作業(yè)
三、說教法和學(xué)法
1.為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,是學(xué)生變被動學(xué)習(xí)為主動而愉快的學(xué)習(xí),引導(dǎo)學(xué)生自己動手,讓學(xué)生的思維活動在教師的.引導(dǎo)下層層展開。請學(xué)生參與課堂。加強方程推導(dǎo)的指導(dǎo),是傳授知識與培養(yǎng)能力有機的溶為一體,為此,本節(jié)課采用“引導(dǎo)教學(xué)法”。
2.利用電腦所畫圖形的動態(tài)演示總結(jié)規(guī)律。同時利用電腦的動態(tài)演示激發(fā)學(xué)生的學(xué)習(xí)興趣。
四、教學(xué)過程
教學(xué)環(huán)節(jié)
設(shè)a(-2,0),b(2,0),三角形abp周長為10,動點p軌跡方程。
例1屬基礎(chǔ),主要反饋學(xué)生掌握基本知識的程度。
例2可強化基本技能訓(xùn)練和基本知識的靈活運用。
小結(jié)
為使學(xué)生對本節(jié)內(nèi)容有一個完整深刻的認識,教師引導(dǎo)學(xué)生從以下幾個方面進行小結(jié)。
1.橢圓的定義和標準方程及其應(yīng)用。
2.橢圓標準方程中a,b,c諸關(guān)系。
3.求橢圓方程常用方法和基本思路。
通過小結(jié)形成知識體系,加深對本節(jié)知識的理解培養(yǎng)學(xué)生的歸納總結(jié)能力,增強學(xué)生學(xué)好圓錐曲線的信心。
布置作業(yè)
。1)77頁——78頁1,2,3,79頁11
。2)預(yù)習(xí)下節(jié)內(nèi)容
鞏固本節(jié)所學(xué)概念,強化基本技能訓(xùn)練,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和品質(zhì),發(fā)現(xiàn)和彌補教學(xué)中的遺漏和不足。
高中數(shù)學(xué)說課稿 3
尊敬的各位評委、各位老師:
大家好!我說課的題目是《函數(shù)的單調(diào)性》,我將從四個方面來闡述我對這節(jié)課的設(shè)計。
一、教材分析
1、教材的地位和作用
(1)本節(jié)課主要對函數(shù)單調(diào)性的學(xué)習(xí);
。2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進行學(xué)習(xí)的,同時又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)
。3)它是歷年高考的熱點、難點問題
(根據(jù)具體的課題改變就行了,如果不是熱點難點問題就刪掉)
2、教材重、難點
重點:函數(shù)單調(diào)性的定義
難點:函數(shù)單調(diào)性的證明
重難點突破:在學(xué)生已有知識的基礎(chǔ)上,通過認真觀察思考,并通過小組合作探究的辦法來實現(xiàn)重難點突破。(這個必須要有)
二、教學(xué)目標
知識目標:(1)函數(shù)單調(diào)性的定義
(2)函數(shù)單調(diào)性的證明
能力目標:培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡單到復(fù)雜,由特殊到一般的化歸思想
情感目標:培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識
(這樣的教學(xué)目標設(shè)計更注重教學(xué)過程和情感體驗,立足教學(xué)目標多元化)
三、教法學(xué)法分析
1、教法分析
“教必有法而教無定法”,只有方法得當(dāng)才會有效。新課程標準之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過程要充分調(diào)動學(xué)生的.積極性、主動性。本著這一原則,在教學(xué)過程中我主要采用以下教學(xué)方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評價法
2、學(xué)法分析
“授人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動的主題,在學(xué)習(xí)過程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。
。ㄇ叭糠钟脮r控制在三分鐘以內(nèi),可適當(dāng)刪減)
四、教學(xué)過程
1、以舊引新,導(dǎo)入新知
通過課前小研究讓學(xué)生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點,總結(jié)歸納。通過課上小組討論歸納,引導(dǎo)學(xué)生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當(dāng)添加手勢,這樣看起來更自然)
2、創(chuàng)設(shè)問題,探索新知
緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達式來描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強調(diào)可以利用作差法來判斷這個函數(shù)的單調(diào)性。
讓學(xué)生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個別同學(xué)起來作答,規(guī)范學(xué)生的數(shù)學(xué)用語。
讓學(xué)生自主學(xué)習(xí)函數(shù)單調(diào)區(qū)間的定義,為接下來例題學(xué)習(xí)打好基礎(chǔ)。
3、例題講解,學(xué)以致用
例1主要是對函數(shù)單調(diào)區(qū)間的鞏固運用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學(xué)生個別回答為主,學(xué)生回答之后通過互評來糾正答案,檢查學(xué)生對函數(shù)單調(diào)區(qū)間的掌握。強調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式
例題講解之后可讓學(xué)生自行完成課后練習(xí)4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習(xí)效果。
例2是將函數(shù)單調(diào)性運用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學(xué)的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。
學(xué)生在熟悉證明步驟之后,做課后練習(xí)3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過自評、互評檢查證明步驟。
4、歸納小結(jié)
本節(jié)課我們主要學(xué)習(xí)了函數(shù)單調(diào)性的定義及證明過程,并在教學(xué)過程中注重培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識。
5、作業(yè)布置
為了讓學(xué)生學(xué)習(xí)不同的數(shù)學(xué),我將采用分層布置作業(yè)的方式:一組習(xí)題1.3A組1、2、3,二組習(xí)題1.3A組2、3、B組1、2
6、板書設(shè)計
我力求簡潔明了地概括本節(jié)課的學(xué)習(xí)要點,讓學(xué)生一目了然。
。ㄟ@部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學(xué)生的活動)
五、教學(xué)評價
本節(jié)課是在學(xué)生已有知識的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過程中通過自主探究、合作交流,充分調(diào)動學(xué)生的積極性跟主動性,及時吸收反饋信息,并通過學(xué)生的自評、互評,讓內(nèi)部動機和外界刺激協(xié)調(diào)作用,促進其數(shù)學(xué)素養(yǎng)不斷提高。
高中數(shù)學(xué)說課稿 4
一、教材分析
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)資料,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,并且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時?家恍┙獯痤}。所以,正弦定理和余弦定理的知識十分重要。
根據(jù)上述教材資料分析,研究到學(xué)生已有的認知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標:
認知目標:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的資料,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。
能力目標:引導(dǎo)學(xué)生經(jīng)過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標:面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,經(jīng)過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點:正弦定理的資料,正弦定理的證明及基本應(yīng)用。
教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時確定解的個數(shù)。
二、教法
根據(jù)教材的資料和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究資料,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點的手段:抓住學(xué)生情感的興奮點,激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,進取探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學(xué)生原有的認知水平和所需的知識特點入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外經(jīng)過例題和練習(xí)來突破難點
三、學(xué)法:
指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、團體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,構(gòu)成了實事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。
四、教學(xué)過程
第一:創(chuàng)設(shè)情景,大概用2分鐘
第二:實踐探究,構(gòu)成概念,大約用25分鐘
第三:應(yīng)用概念,拓展反思,大約用13分鐘
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是最好的教師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不明白AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫忙別人的熱情和學(xué)習(xí)的興趣,從而進入今日的'學(xué)習(xí)課題。
。ǘ┨綄ぬ乩岢霾孪
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。
2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:
在三角形中,角與所對的邊滿足關(guān)系
這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認識從感性逐步上升到理性。
。ㄈ┻壿嬐评,證明猜想
1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。
2.鼓勵學(xué)生經(jīng)過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。
3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標法來證明
。ㄋ模w納總結(jié),簡單應(yīng)用
1.讓學(xué)生用文字敘述正弦定理,引導(dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。
2.正弦定理的資料,討論能夠解決哪幾類有關(guān)三角形的問題。
3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1,在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2.例2,在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。
。┱n堂練習(xí),提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學(xué)生板演,教師巡視,及時發(fā)現(xiàn)問題,并解答。
。ㄆ撸┬〗Y(jié)反思,提高認識
經(jīng)過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
2.它表述了三角形的邊與對角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。
。◤膶嶋H問題出發(fā),經(jīng)過猜想、實驗、歸納等思維方法,最終得到了推導(dǎo)出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅僅收獲著結(jié)論,并且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)
。ò耍┤蝿(wù)后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎樣辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)資料,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)資料。
高中數(shù)學(xué)說課稿 5
一、教材分析
集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
本節(jié)課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。
二、教學(xué)目標
1、學(xué)習(xí)目標
。1)通過實例,了解集合的含義,體會元素與集合之間的關(guān)系以及理解“屬于”關(guān)系;
(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;
2、能力目標
(1)能夠把一句話一個事件用集合的方式表示出來。
。2)準確理解集合與及集合內(nèi)的元素之間的關(guān)系。
3、情感目標
通過本節(jié)的把實際事件用集合的方式表示出來,從而培養(yǎng)數(shù)學(xué)敏感性,了解到數(shù)學(xué)于生活中。
三、教學(xué)重點與難點
重點集合的基本概念與表示方法;
難點運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;
四、教學(xué)方法
。1)本課將采用探究式教學(xué),讓學(xué)生主動去探索,激發(fā)學(xué)生的學(xué)習(xí)興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達到優(yōu)生得到培養(yǎng),后進生也有所收獲的效果;
。2)學(xué)生在老師的引導(dǎo)下,通過閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而完成本節(jié)課的教學(xué)目標。
五、學(xué)習(xí)方法
(1)主動學(xué)習(xí)法:舉出例子,提出問題,讓學(xué)生在獲得感性認識的同時,教師層層深入,啟發(fā)學(xué)生積極思維,主動探索知識,培養(yǎng)學(xué)生思維想象的綜合能力。
(2)反饋補救法:在練習(xí)中,注意觀察學(xué)生對學(xué)習(xí)的反饋情況,以實現(xiàn)“培優(yōu)扶差,滿足不同。”
六、教學(xué)思路
具體的思路如下:
復(fù)習(xí)的引入:講一些集合的相關(guān)數(shù)學(xué)及相關(guān)數(shù)學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數(shù)學(xué)史從何使學(xué)生對數(shù)學(xué)更加感興趣,有助于上課的效率!因為時間關(guān)系這里我就不說相關(guān)數(shù)學(xué)史咯。
一)引入課題
軍訓(xùn)前學(xué)校通知:8月15日8點,高一年段在體育館集合進行軍訓(xùn)動員;試問這個通知的對象是全體的高一學(xué)生還是個別學(xué)生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學(xué)習(xí)一個新的概念——集合,即是一些研究對象的總體。
二)正體部分
學(xué)生閱讀教材,并思考下列問題:
(1)集合有那些概念?
。2)集合有那些符號?
(3)集合中元素的特性是什么?
(4)如何給集合分類?
(一)集合的有關(guān)概念
。1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象。
。2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構(gòu)成的集合。
。3)元素:集合中每個對象叫做這個集合的元素。
集合通常用大寫的拉丁字母表示,如A、B、C元素通常用小寫的拉丁字母表示,如a、b、c
1、思考:課本P3的.思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,對學(xué)生的例子予以討論、點評,進而講解下面的問題。
2、元素與集合的關(guān)系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2因此我們知道a∈A
。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a∈A
要注意“∈”的方向,不能把a∈A顛倒過來寫(舉例)
3、集合中元素的特性
。1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了。
(2)互異性:集合中的元素一定是不同的。
。3)無序性:集合中的元素沒有固定的順序。
4、集合分類
根據(jù)集合所含元素個屬不同,可把集合分為如下幾類:
。1)把不含任何元素的集合叫做空集Ф
。2)含有有限個元素的集合叫做有限集
(3)含有無窮個元素的集合叫做無限集
5、常用數(shù)集及其表示方法
。1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合,記作N
。2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集,記作N*或N+
。3)整數(shù)集:全體整數(shù)的集合,記作Z
。4)有理數(shù)集:全體有理數(shù)的集合,記作Q
。5)實數(shù)集:全體實數(shù)的集合,記作R
注:(1)自然數(shù)集包括數(shù)0。
。2)非負整數(shù)集內(nèi)排除0的集,記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)排
除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
(二)集合的表示方法
我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
。1)列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
例1,(課本例1)
思考2,引入描述法
說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。
。2)描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內(nèi)。具體方法:在大括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
例2,(課本例2)
說明:(課本P5最后一段)
思考3:(課本P6思考)強調(diào):描述法表示集合應(yīng)注意集合的代表元素
{(x,y)|y=x2+3x+2}與{y|y=x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。
辨析:這里的{}已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。
說明:列舉法與描述法各有優(yōu)點,應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
。ㄈ┱n堂練習(xí)(課本P6練習(xí))
三)歸納小結(jié)與作業(yè)
本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
書面作業(yè):習(xí)題1.1,第1-4題
高中數(shù)學(xué)說課稿 6
一、教學(xué)背景分析
。ㄒ唬┙滩牡匚环治觯骸稒E圓及其標準方程》是繼學(xué)習(xí)圓以后運用“曲線與方程”思想解決二次曲線問題的又一實例,從知識上說,本節(jié)課是對坐標法研究幾何問題的又一次實際運用,同時也是進一步研究橢圓幾何性質(zhì)的基礎(chǔ);從方法上說,它為進一步研究雙曲線、拋物線提供了基本模式和理論基礎(chǔ),因此本節(jié)課起到了承上啟下的重要作用。
。ǘ┲攸c、難點分析:本節(jié)課的重點是橢圓的定義及其標準方程,標準方程的推導(dǎo)是本節(jié)課的難點,要突破這一難點,關(guān)鍵是引導(dǎo)學(xué)生正確選擇去根式的策略。
。ㄈ⿲W(xué)情分析:在學(xué)習(xí)本節(jié)課前,學(xué)生已經(jīng)學(xué)習(xí)了直線與圓的方程,對曲線和方程的思想方法有了一些了解和運用的經(jīng)驗,對坐標法研究幾何問題也有了初步的認識,因此,學(xué)生已經(jīng)具備探究有關(guān)點的軌跡問題的知識基礎(chǔ)和學(xué)習(xí)能力,但由于學(xué)生學(xué)習(xí)解析幾何還不長、學(xué)習(xí)程度也較淺,并且還受到這一年齡段學(xué)習(xí)心理和認知結(jié)構(gòu)的影響,在學(xué)習(xí)過程中難免會有些困難、如:由于學(xué)生對運用坐標法解決幾何問題掌握還不夠,因此從研究圓到橢圓,學(xué)生思維上會存在障礙。
二、教學(xué)目標設(shè)計
。ㄒ唬┲R目標:掌握橢圓的定義及其標準方程;會根據(jù)條件寫出橢圓的標準方程;通過對橢圓標準方程的探求,再次熟悉求曲線方程的一般方法。
(二)能力目標:學(xué)生通過動手畫橢圓、分組討論探究橢圓定義、推導(dǎo)橢圓標準方程等過程,提高動手能力、學(xué)習(xí)能力和運用知識解決實際問題的能力。
(三)情感目標:在形成知識、提高能力的過程中,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)生的審美情趣,培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新的。
三、教法學(xué)法設(shè)計
。ㄒ唬┙虒W(xué)方法設(shè)計:為了更好地培養(yǎng)學(xué)生自主學(xué)習(xí)能力,提高學(xué)生的綜合素質(zhì),我主要采用探究式教學(xué)方法、一方面我通過設(shè)置情境、問題誘導(dǎo)充分發(fā)揮主導(dǎo)作用;另一方面學(xué)生通過對我提供的素材進行直觀觀察→動手操作→討論探究→歸納抽象→總結(jié)規(guī)律的過程充分體現(xiàn)主體地位。
使用多媒體輔助教學(xué)與自制教具相結(jié)合的設(shè)計,實現(xiàn)多媒體快捷、形象、大容量的優(yōu)勢與自制教具直觀、的優(yōu)勢的結(jié)合,既突出了知識的產(chǎn)生過程,又增加了課堂的趣味性。
1、掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導(dǎo)過程;
2、能根據(jù)條件確定橢圓的標準方程,掌握運用待定系數(shù)法求橢圓的標準方程;
3、通過對橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探索能力;
4、通過橢圓的標準方程的推導(dǎo),使學(xué)生進一步掌握求曲線方程的一般方法,并滲透數(shù)形結(jié)合和等價轉(zhuǎn)化的思想方法,提高運用坐標法解決幾何問題的能力;
5、通過讓學(xué)生大膽探索橢圓的定義和標準方程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識。
四、教學(xué)建議
教材分析
1、知識結(jié)構(gòu)
2、重點難點分析
重點是橢圓的定義及橢圓標準方程的兩種形式、難點是橢圓標準方程的建立和推導(dǎo)、關(guān)鍵是掌握建立坐標系與根式化簡的方法。
橢圓及其標準方程這一節(jié)教材整體來看是兩大塊內(nèi)容:一是橢圓的定義;二是橢圓的標準方程、橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對橢圓的研究放在了重點,在雙曲線和拋物線的教學(xué)中鞏固和應(yīng)用、先講橢圓也與第七章的圓的方程銜接自然、學(xué)好橢圓對于學(xué)生學(xué)好圓錐曲線是非常重要的。
。1)對于橢圓的定義的理解,要抓住橢圓上的點所要滿足的條件,即橢圓上點的幾何性質(zhì),可以對比圓的定義來理解。
另外要注意到定義中對“常數(shù)”的限定即常數(shù)要大于、這樣規(guī)定是為了避免出現(xiàn)兩種特殊情況,即:“當(dāng)常數(shù)等于時軌跡是一條線段;當(dāng)常數(shù)小于時無軌跡”。這樣有利于集中精力進一步研究橢圓的標準方程和幾何性質(zhì)、但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的準確性。
。2)根據(jù)橢圓的定義求標準方程,應(yīng)注意下面幾點:
、偾的方程依賴于坐標系,建立適當(dāng)?shù)淖鴺讼,是求曲線方程首先應(yīng)該注意的地方、應(yīng)讓學(xué)生觀察橢圓的圖形或根據(jù)橢圓的定義進行推理,發(fā)現(xiàn)橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標系的'兩軸,不但可以使方程的推導(dǎo)過程變得,而且也可以使最終得出的方程形式整齊和簡潔。
、谠O(shè)橢圓的焦距為,橢圓上任一點到兩個焦點的距離為,令,這些措施,都是為了簡化推導(dǎo)過程和最后得到的方程形式整齊、簡潔,要讓學(xué)生認真領(lǐng)會。
、墼诜匠痰耐茖(dǎo)過程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經(jīng)常遇到的問題,又是學(xué)生的難點、要注意說明這類方程的化簡方法:
方程中只有一個根式時,需將它單獨留在方程的一側(cè),把其他項移至另一側(cè);
方程中有兩個根式時,需將它們分別放在方程的兩側(cè),并使其中一側(cè)只有一項。
④教科書上對橢圓標準方程的推導(dǎo),實際上只給出了“橢圓上點的坐標都適合方程“而沒有證明,”方程的解為坐標的點都在橢圓上”、這實際上是方程的同解變形問題,難度較大,對同學(xué)們不作要求。
(3)兩種標準方程的橢圓異同點
中心在原點、焦點分別在軸上,軸上的橢圓標準方程分別為:它們的相同點是:形狀相同、大小相同,都有,、不同點是:兩種橢圓相對于坐標系的位置不同,它們的焦點坐標也不同、橢圓的焦點在軸上標準方程中項的分母較大;橢圓的焦點在軸上標準方程中項的分母較大、另外,形如中,只要,同號,就是橢圓方程,它可以化為。
(4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法、例3有三個作用:是教給學(xué)生利用中間變量求點的軌跡的方法;第二是向?qū)W生說明,如果求得的點的軌跡的方程形式與橢圓的標準方程相同,那么這個軌跡是橢圓;第三是使學(xué)生知道,一個圓按某一個方向作伸縮變換可以得到橢圓。
高中數(shù)學(xué)說課稿 7
一、說教材
1、教材的地位、作用及編寫意圖
《對數(shù)函數(shù)》出現(xiàn)在職業(yè)高中數(shù)學(xué)第一冊第四章第四節(jié)。函數(shù)是高中數(shù)學(xué)的核心,對數(shù)函數(shù)是函數(shù)的重要分支,對數(shù)函數(shù)的知識在數(shù)學(xué)和其他許多學(xué)科中有著廣泛的應(yīng)用;學(xué)生已經(jīng)學(xué)習(xí)了對數(shù)、反函數(shù)以及指數(shù)函數(shù)等資料,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用;"對數(shù)函數(shù)"這節(jié)教材,指出對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),反映了兩個變量的相互關(guān)系,蘊含了函數(shù)與方程的數(shù)學(xué)思想與數(shù)學(xué)方法,是以后數(shù)學(xué)學(xué)習(xí)中不可缺少的部分,也是高考的必考資料。
2、教學(xué)目標的確定及依據(jù)。
依據(jù)教學(xué)大綱和學(xué)生獲得知識、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學(xué)目標:
(1)知識目標:理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖象和性質(zhì)。
。2)能力目標:培養(yǎng)學(xué)生自主學(xué)習(xí)、綜合歸納、數(shù)形結(jié)合的能力。
。3)德育目標:培養(yǎng)學(xué)生對待知識的科學(xué)態(tài)度、勇于探索和創(chuàng)新的精神。
。4)情感目標:在民主、和諧的教學(xué)氣氛中,促進師生的情感交流。
3、教學(xué)重點、難點及關(guān)鍵
重點:對數(shù)函數(shù)的概念、圖象和性質(zhì);
難點:利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì);
關(guān)鍵:抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng)。
二、說教法
大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力,思維能力等方面參差不齊;同時學(xué)生學(xué)好數(shù)學(xué)的自信心不強,學(xué)習(xí)積極性不高。針對這種情景,在教學(xué)中,我引導(dǎo)學(xué)生從實例出發(fā)啟發(fā)指數(shù)函數(shù)的定義,在概念理解上,用步步設(shè)問、課堂討論來加深理解。在對數(shù)函數(shù)圖像的畫法上,我借助多媒體,演示作圖過程及圖像變化的動畫過程,從而使學(xué)生直接地理解并提高學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點和提高教學(xué)效率。
三、說學(xué)法
教給學(xué)生方法比教給學(xué)生知識更重要,本節(jié)課注重調(diào)動學(xué)生積極思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,我進行了以下學(xué)法指導(dǎo):
。1)對照比較學(xué)習(xí)法:學(xué)習(xí)對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照。
(2)探究式學(xué)習(xí)法:學(xué)生經(jīng)過分析、探索、得出對數(shù)函數(shù)的定義。
。3)自主性學(xué)習(xí)法:經(jīng)過實驗畫出函數(shù)圖象、觀察圖象自得其性質(zhì)。
(4)反饋練習(xí)法:檢驗知識的應(yīng)用情景,找出未掌握的資料及其差距。
這樣可發(fā)揮學(xué)生的主觀能動性,有利于提高學(xué)生的各種能力。
四、說教學(xué)程序
1、復(fù)習(xí)導(dǎo)入
(1)復(fù)習(xí)提問:什么是對數(shù)?如何求反函數(shù)?指數(shù)函數(shù)的圖象和性質(zhì)如何?學(xué)生回答,并利用課件展示一下指數(shù)函數(shù)的圖象和性質(zhì)。
設(shè)計意圖:設(shè)計的提問既與本節(jié)資料有密切關(guān)系,又有利于引入新課,為學(xué)生理解新知識清除了障礙,有意識地培養(yǎng)學(xué)生分析問題的能力。
。2)導(dǎo)言:指數(shù)函數(shù)有沒有反函數(shù)?如果有,如何求指數(shù)函數(shù)的反函數(shù)?它的反函數(shù)是什么?
設(shè)計意圖:這樣的導(dǎo)言可激發(fā)學(xué)生求知欲,使學(xué)生渴望明白問題的答案。
2、認定目標(出示教學(xué)目標)
3、導(dǎo)學(xué)達標
按"教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線"的原則,安排師生互動活動。
。1)對數(shù)函數(shù)的概念
引導(dǎo)學(xué)生從對數(shù)式與指數(shù)式的關(guān)系及反函數(shù)的概念進行分析并推導(dǎo)出,指數(shù)函數(shù)有反函數(shù),并且y=ax(a》0且a≠1)的反函數(shù)是y=logax,見課件。把函數(shù)y=logax叫做對數(shù)函數(shù),其中a》0且a≠1.從而引出對數(shù)函數(shù)的概念,展示課件。
設(shè)計意圖:對數(shù)函數(shù)的概念比較抽象,利用已經(jīng)學(xué)過的知識逐步分析,這樣引出對數(shù)函數(shù)的概念過渡自然,學(xué)生易于理解。因為對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),讓學(xué)生比較它們的定義域、值域、對應(yīng)法則及圖象間的關(guān)系,培養(yǎng)學(xué)生參與意識,經(jīng)過比較充分體現(xiàn)指數(shù)函數(shù)及對數(shù)函數(shù)的內(nèi)在聯(lián)系。
。2)對數(shù)函數(shù)的圖象
提問:同指數(shù)函數(shù)一樣,在學(xué)習(xí)了函數(shù)的定義之后,我們要畫函數(shù)的圖象,應(yīng)如何畫對數(shù)函數(shù)的圖象呢?讓學(xué)生思考并回答,用描點法畫圖。教師肯定,我們每學(xué)習(xí)一種新的函數(shù)都能夠根據(jù)函數(shù)的解析式,列表、描點畫圖。再研究一下,我們還能夠用什么方法畫出對數(shù)函數(shù)的圖象呢?
讓學(xué)生回答,畫出指數(shù)函數(shù)關(guān)于直線y=x對稱的圖象,就是對數(shù)函數(shù)的圖象。
教師總結(jié):我們畫對數(shù)函數(shù)的圖象,既可用描點法,也可用圖象變換法,下邊我們利用兩種方法畫對數(shù)函數(shù)的圖象。
方法一(描點法)首先列出x,y(y=log2x,y=logx)值的對應(yīng)表,因為對數(shù)函數(shù)的定義域為x》0,所以可取x=···1,2,4,8···,請計算對應(yīng)的`y值,然后在坐標系內(nèi)描點、畫出它們的圖象。
方法二(圖象變換法)因為對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),圖象關(guān)于直線y=x對稱,所以只要畫出y=ax的圖象關(guān)于直線y=x對稱的曲線,就能夠得到y(tǒng)=logax的圖象。學(xué)生動手做實驗,先描出y=2x的圖象,畫出它關(guān)于直線y=x對稱的曲線,它就是y=log2x的圖象;類似的從y=()x的圖象畫出y=logx的圖象,再出示課件,教師加以解釋。
設(shè)計意圖:用這種對稱變換的方法畫函數(shù)的圖象,能夠加深和鞏固學(xué)生對互為反函數(shù)的兩個函數(shù)之間的認識,便于將對數(shù)函數(shù)的圖象和性質(zhì)與指數(shù)函數(shù)的圖象和性質(zhì)對照,但使用描點法畫函數(shù)圖象更為方便,兩種方法可同時進行,分析畫法之后,可讓學(xué)生自由選擇畫法。這樣能夠充分調(diào)動學(xué)生自主學(xué)習(xí)的積極性。
。3)對數(shù)函數(shù)的性質(zhì)
在理解對數(shù)函數(shù)定義的基礎(chǔ)上,掌握對數(shù)函數(shù)的圖象和性質(zhì)是本節(jié)的重點,關(guān)鍵在于抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng),講對數(shù)函數(shù)的性質(zhì),可先在同一坐標系內(nèi)畫出上述兩個對數(shù)函數(shù)的圖象,根據(jù)圖象讓學(xué)生列表分析它們的圖象特征和性質(zhì),然后出示課件,教師補充。作了以上分析之后,再分a》1與0《a《1兩種情景列出對數(shù)函數(shù)圖象和性質(zhì)表,體現(xiàn)了從"特殊到一般"、"從具體到抽象"的方法。出示課件并進行詳細講解,把對數(shù)函數(shù)圖象和性質(zhì)列成一個表以便讓學(xué)生比較著記憶。
設(shè)計意圖:這種講法既嚴謹又直觀易懂,還能讓學(xué)生主動參與教學(xué)過程,對培養(yǎng)學(xué)生的創(chuàng)新能力有幫忙,學(xué)生易于理解易于掌握,并且利用表格,能夠突破難點。
由于對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),它們的定義域與值域正好互換,為了揭示這兩種函數(shù)之間的內(nèi)在聯(lián)系,列出指數(shù)函數(shù)與對數(shù)函數(shù)對照表(見課件)
設(shè)計意圖:經(jīng)過比較對照的方法,學(xué)生更好地掌握兩個函數(shù)的定義、圖象和性質(zhì),認識兩個函數(shù)的內(nèi)在聯(lián)系,提高學(xué)生對函數(shù)思想方法的認識和應(yīng)用意識。
4、鞏固達標(見課件)
這一訓(xùn)練是為了培養(yǎng)學(xué)生利用所學(xué)知識解決實際問題的能力,經(jīng)過這個環(huán)節(jié)學(xué)生能夠加深對本節(jié)知識的理解和運用,并從講解過程中找出所涉及的知識點,予以總結(jié)。充分體現(xiàn)"數(shù)形結(jié)合"和"分類討論"的思想。
5、反饋練習(xí)(見課件)
習(xí)題是對學(xué)生所學(xué)知識的反饋過程,教師能夠了解學(xué)生對知識掌握的情景。
6、歸納總結(jié)(見課件)
引導(dǎo)學(xué)生對主要知識進行回顧,使學(xué)生對本節(jié)有一個整體的把握,所以,從三方面進行總結(jié):對數(shù)函數(shù)的概念、對數(shù)函數(shù)的圖象和性質(zhì)、比較對數(shù)值大小的方法。
7、課外作業(yè):
。1)完成P782、3題
。2)當(dāng)?shù)讛?shù)a》1與0《a《1時,底數(shù)不一樣,對數(shù)函數(shù)圖象有什么持點?
五、說板書
板書設(shè)計為表格式(見課件),這樣的板書簡明清楚,重點突出,加深學(xué)生對圖象和性質(zhì)的理解和掌握,便于記憶,有利于提高教學(xué)效果。
高中數(shù)學(xué)說課稿 8
本節(jié)課講述的是人教版高一數(shù)學(xué)(上)3.2等差數(shù)列(第一課時)的內(nèi)容。
一、教材分析
1、教材的地位和作用:
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。
2、教學(xué)目標
根據(jù)教學(xué)大綱的要求和學(xué)生的實際水平,確定了本次課的教學(xué)目標
a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建模”的思想方法并能運用。
b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。
c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習(xí)慣。
3、教學(xué)重點和難點
根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點為:
①等差數(shù)列的概念。
②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。
由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學(xué)生對“數(shù)學(xué)建模”的思想方法較為陌生,因此用數(shù)學(xué)思想解決實際問題是本節(jié)課的另一個難點。
二、學(xué)情教法分析:
對于三中的高一學(xué)生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。
三、學(xué)法指導(dǎo):
在引導(dǎo)分析時,留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學(xué)程序
(一)復(fù)習(xí)引入:
1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______。(N﹡;解析式)
通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準備。
2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92①
3.小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25②
通過練習(xí)2和3引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認知能力。
(二)新課探究
1、由引入自然的給出等差數(shù)列的概念:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):
、佟皬牡诙椘稹睗M足條件;
、诠頳一定是由后項減前項所得;
、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)”);
在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達式:
an+1-an=d(n≥1)同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。
1)9,8,7,6,5,4,√d=-1
2)0.70,0.71,0.72,0.73,0.74,√d=0.01
3)0,0,0,0,0,0,√d=0
4)1,2,3,2,3,4,×
5)1,0,1,0,1,×
其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0
由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0
2、第二個重點部分為等差數(shù)列的通項公式
在歸納等差數(shù)列通項公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項,公差d,由學(xué)生研究分組討論a4的通項公式。通過總結(jié)a4的通項公式由學(xué)生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點。
若一等差數(shù)列{an}的首項是a1,公差是d,則據(jù)其定義可得:
a2-a1=d即:a2=a1+d
a3–a2=d即:a3=a2+d=a1+2d
a4–a3=d即:a4=a3+d=a1+3d
猜想:a40=a1+39d,進而歸納出等差數(shù)列的通項公式:
an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴密,為了培養(yǎng)學(xué)生嚴謹?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:
a2–a1=d
a3–a2=d
a4–a3=d
an–an-1=d
將這(n-1)個等式左右兩邊分別相加,就可以得到an–a1=(n-1)d即an=a1+(n-1)d(1),當(dāng)n=1時,(1)也成立,所以對一切n∈N﹡,上面的公式都成立
因此它就是等差數(shù)列{an}的通項公式。
在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。
利用等差數(shù)列概念啟發(fā)學(xué)生寫出n-1個等式。
對照已歸納出的.通項公式啟發(fā)學(xué)生想出將n-1個等式相加。證出通項公式。
在這里通過該知識點引入迭加法這一數(shù)學(xué)思想,逐步達到“注重方法,凸現(xiàn)思想”的教學(xué)要求
接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)×2,即an=2n-1以此來鞏固等差數(shù)列通項公式運用
同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。
(三)應(yīng)用舉例
這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。
例1(1)求等差數(shù)列8,5,2的第20項;第30項;第40項
。2)-401是不是等差數(shù)列-5,-9,-13的項?如果是,是第幾項?
在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an。
例2在等差數(shù)列{an}中,已知a5=10,a12=31,求首項a1與公差d。
在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固
例3是一個實際建模問題
建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?
這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺階“等高”使學(xué)生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實際問題轉(zhuǎn)化為數(shù)學(xué)模型------等差數(shù)列:(學(xué)生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學(xué)生認為是16項,應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。
設(shè)置此題的目的:
1.加強同學(xué)們對應(yīng)用題的綜合分析能力
2.通過數(shù)學(xué)實際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;
3.再者通過數(shù)學(xué)實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實際問題的“數(shù)學(xué)建!钡臄(shù)學(xué)思想方法
(四)反饋練習(xí)
1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進行基本技能訓(xùn)練。
2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。
目的:對學(xué)生加強建模思想訓(xùn)練。
3、若數(shù)例{an}是等差數(shù)列,若bn=kan,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列
此題是對學(xué)生進行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。
(五)歸納小結(jié)(由學(xué)生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學(xué)表達式。
強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)
2.等差數(shù)列的通項公式an=a1+(n-1)d會知三求一
3.用“數(shù)學(xué)建!彼枷敕椒ń鉀Q實際問題
(六)布置作業(yè)
必做題:課本P114習(xí)題3.2第2,6題
選做題:已知等差數(shù)列{an}的首項a1=-24,從第10項開始為正數(shù),求公差d的取值范圍。
。康模和ㄟ^分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)
五、板書設(shè)計
在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。
高中數(shù)學(xué)說課稿 9
各位評委,老師們:
大家好!
很高興參加這次說課活動。這對我來說也是一次難得的學(xué)習(xí)和鍛煉的機會,感謝各位老師在百忙之中來此予以指導(dǎo)。希望各位評委和老師們對我的說課內(nèi)容提出寶貴意見。
我說課的內(nèi)容是<平面向量>的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級中學(xué)教科書(試驗修訂本—必修)<數(shù)學(xué)>第一冊下,教學(xué)內(nèi)容為第96頁至98頁第五章第一節(jié)。本校是浙江省一級重點中學(xué),學(xué)生基礎(chǔ)相對較好。我在進行教學(xué)設(shè)計時,也充分考慮到了這一點。
下面我從教材分析,教學(xué)目標的確定,教學(xué)方法的選擇和教學(xué)過程的設(shè)計四個方面來匯報我對這節(jié)課的教學(xué)設(shè)想。
一、說教材
(1)地位和作用
向量是近代數(shù)學(xué)中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉(zhuǎn)化為向量的加(減)法,數(shù)乘向量,數(shù)量積運算(運算率),從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運算體系。向量是溝通代數(shù),幾何與三角函數(shù)的一種工具,有著極其豐富的實際背景,在數(shù)學(xué)和物理學(xué)科中具有廣泛的應(yīng)用。
平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎(chǔ)上進一步對向量的深入學(xué)習(xí)。為學(xué)習(xí)向量的知識體系奠定了知識和方法基礎(chǔ)。
。2)教學(xué)結(jié)構(gòu)的調(diào)整
課本在這一部分內(nèi)容的教學(xué)為一課時,首先從小船航行的距離和方向兩個要素出發(fā),抽象出向量的概念,并重點說明了向量與數(shù)量的區(qū)別。然后介紹了向量的幾何表示,向量的長度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時深化其認知過程和探究過程。在教學(xué)中我將教學(xué)的順序做如下的調(diào)整:將本節(jié)教學(xué)中認知過程的教學(xué)內(nèi)容適當(dāng)集中,以突出這節(jié)課的主題;例題,習(xí)題部分主要由學(xué)生依照概念自行分析,獨立完成。
(3)重點,難點,關(guān)鍵
由于本節(jié)課是本章內(nèi)容的第一節(jié)課,是學(xué)生學(xué)習(xí)本章的基礎(chǔ)。為了本章后面知識的學(xué)習(xí),首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節(jié)課的重點。本節(jié)課是為高一后半學(xué)期學(xué)生設(shè)計的,盡管此時的學(xué)生已經(jīng)有了一定的學(xué)習(xí)方法和習(xí)慣,但根據(jù)以往的教學(xué)經(jīng)驗,多數(shù)學(xué)生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學(xué)生的理解能力要求比較高,所以我認為向量概念也是這節(jié)課的難點。而解決這一難點的關(guān)鍵是多用復(fù)雜的幾何圖形中相等的有向線段讓學(xué)生進行辨認,加深對向量的理解。
二、說教學(xué)目標的確定
根據(jù)本課教材的特點,新大綱對本節(jié)課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個方面確定了以下教學(xué)目標:
。1)基礎(chǔ)知識目標:理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量。會根據(jù)圖形判定向量是否平行,共線,相等。
。2)能力訓(xùn)練目標:培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法,培養(yǎng)學(xué)生觀察問題,分析問題,解決問題的能力。
(3)情感目標:讓學(xué)生在民主、和諧的共同活動中感受學(xué)習(xí)的樂趣。
三、說教學(xué)方法的選擇
Ⅰ教學(xué)方法
本節(jié)課我采用了”啟發(fā)探究式的教學(xué)方法,根據(jù)本課教材的特點和學(xué)生的實際情況在教學(xué)中突出以下兩點:
。1)由教材的特點確立類比思維為教學(xué)的主線。
從教材內(nèi)容看平面向量無論從形式還是內(nèi)容都與物理學(xué)中的有向線段,矢量的概念類似。因此在教學(xué)中運用類比作為思維的主線進行教學(xué)。讓學(xué)生充分體會數(shù)學(xué)知識與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過程。
。2)由學(xué)生的特點確立自主探索式的學(xué)習(xí)方法
通常學(xué)生對于概念課學(xué)起來很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來激發(fā)學(xué)生的學(xué)習(xí)興趣,另外,學(xué)生都有表現(xiàn)自己的欲望,希望得到老師和其他同學(xué)的認可,要多表揚,多肯定來激勵他們的學(xué)習(xí)熱情。考慮到我校學(xué)生的基礎(chǔ)較好,思維較為活躍,對自主探索式的學(xué)習(xí)方法也有一定的認識,所以在教學(xué)中我通過創(chuàng)設(shè)問題情境,啟發(fā)引導(dǎo)學(xué)生運用科學(xué)的思維方法進行自主探究。將學(xué)生的獨立思考,自主探究,交流討論等探索活動貫穿于課堂教學(xué)的全過程,突出學(xué)生的主體作用。
、蚪虒W(xué)手段
本節(jié)課中,除使用常規(guī)的教學(xué)手段外,我還使用了多媒體投影儀和計算機來輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過程則有助于滲透數(shù)形結(jié)合思想,更易于對概念的理解和難點的突破。
四、教學(xué)過程的設(shè)計
Ⅰ知識引入階段———提出學(xué)習(xí)課題,明確學(xué)習(xí)目標
。1)創(chuàng)設(shè)情境——引入概念
數(shù)學(xué)學(xué)習(xí)應(yīng)該與學(xué)生的生活融合起來,從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認識并掌握數(shù)學(xué)。
由生活中具體的向量的實例引入:大海中船只的航線,中國象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。
。2)觀察歸納——形成概念
由實例得出有向線段的概念,有向線段的三個要素:起點,方向,長度。明確知道了有向線段的起點,方向和長度,它的終點就唯一確定。再有目的的進行設(shè)計,引導(dǎo)學(xué)生概括總結(jié)出本課新的.知識點:向量的概念及其幾何表示。
。3)討論研究——深化概念
在得到概念后進行歸納,深化,之后向?qū)W生提出以下三個問題:
、傧蛄康囊厥鞘裁?
、谙蛄恐g能否比較大。
、巯蛄颗c數(shù)量的區(qū)別是什么?
同時指出這就是本節(jié)課我們要研究和學(xué)習(xí)的主題。
Ⅱ知識探索階段———探索平面向量的平行向量。相等向量等概念
(1)總結(jié)反思——提高認識
方向相同或相反的非零向量叫平行向量,也即共線向量,并且規(guī)定0與任一向量平行.長度相等且方向相同的向量叫相等向量,規(guī)定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。
。2)即時訓(xùn)練—鞏固新知
為了使學(xué)生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設(shè)計了一組即時訓(xùn)練題,通過學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來鞏固新知識。
。劬毩(xí)1]判斷下列命題是否正確,若不正確,請簡述理由.
、傧蛄颗c是共線向量,則A、B、C、D四點必在一直線上;
、趩挝幌蛄慷枷嗟;
、廴我幌蛄颗c它的相反向量不相等;
、芩倪呅蜛BCD是平行四邊形的充要條件是=;
⑤模為0是一個向量方向不確定的充要條件;
、薰簿的向量,若起點不同,則終點一定不同.
[練習(xí)2]下列命題正確的是()
A.a(chǎn)與b共線,b與c共線,則a與c也共線
B.任意兩個相等的非零向量的始點與終點是一平行四邊形的四頂點
C.向量a與b不共線,則a與b都是非零向量
D.有相同起點的兩個非零向量不平行
、笾R應(yīng)用階段————共線向量,相等向量等概念的初步應(yīng)用
在本階段的教學(xué)中,我采用的是課本上一道典型的例題:在一個復(fù)雜圖形中觀察,辨認平行,相等的有向線段。選用本題的目的是讓學(xué)生進行獨立思考,自主探究,交流討論等探索活動,加深對概念的理解和對難點的突破。
設(shè)O是正六邊形ABCDEF的中心,分別寫出圖中與向量相等的向量。(同時思考:向量與相等么?向量與相等么?)
具體教學(xué)安排如下:
(1)分析解決問題
先引導(dǎo)學(xué)生分析解決問題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實質(zhì):兩個向量只有當(dāng)它們的模相等,同時方向又相同時,才能稱它們相等。進而進行正確的辨認,直至最終解決問題。
。2)歸納解題方法
主要引導(dǎo)學(xué)生歸納以下兩個問題:①零向量的方向是任意的,它只與零向量相等;②兩個向量只要它們的模相等,方向相同就是相等向量。一個向量只要不改變它的大小和方向,是可以任意平行移動的,既向量是自由的。
、魧W(xué)習(xí),小結(jié)階段———歸納知識方法,布置課后作業(yè)
本階段通過學(xué)習(xí)小結(jié)進行課堂教學(xué)的反饋,組織和指導(dǎo)學(xué)生歸納知識,技能,方法的一般規(guī)律,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。
具體的教學(xué)安排如下:
(1)知識,方法小結(jié)在知識層面上我首先引導(dǎo)學(xué)生回顧本節(jié)課的主要內(nèi)容,提醒學(xué)生要抓住向量的本質(zhì):大小與方向,對它們進行類比,加深對每個概念的理解。
在方法層面上我將帶領(lǐng)學(xué)生回顧探索過程中用到的思維方法和數(shù)學(xué)方法如:
類比,數(shù)形結(jié)合,等價轉(zhuǎn)化等進行強調(diào)。
。2)布置課后作業(yè)
閱讀教材96至97頁內(nèi)容,整理課堂筆記,習(xí)題5.1第1,2,3題。
高中數(shù)學(xué)說課稿 10
一、說教材
1、從在教材中的地位與作用來看
《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要資料,它不僅僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,并且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。
2、從學(xué)生認知角度看
從學(xué)生的思維特點看,很容易把本節(jié)資料與等差數(shù)列前n項和從公式的構(gòu)成、特點等方面進行類比,這是進取因素,應(yīng)因勢利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不一樣,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情景,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯。
3、學(xué)情分析
教學(xué)對象是剛進入高中的學(xué)生,雖然具有必須的分析問題和解決問題的能力,邏輯思維能力也初步構(gòu)成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴謹。
4、重點、難點
教學(xué)重點:公式的推導(dǎo)、公式的特點和公式的運用。
教學(xué)難點:公式的推導(dǎo)方法和公式的靈活運用。
公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學(xué)思想,所以既是重點也是難點。
二、說目標
知識與技能目標:
理解并掌握等比數(shù)列前n項和公式的推導(dǎo)過程、公式的特點,在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題。
過程與方法目標:
經(jīng)過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
情感與態(tài)度價值觀:
經(jīng)過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點。
三、說過程
學(xué)生是認知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的構(gòu)成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學(xué)過程:
1、創(chuàng)設(shè)情境,提出問題
在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我能夠滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學(xué)家計算,結(jié)果出來后,國王大吃一驚。為什么呢
設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性。故事資料緊扣本節(jié)課的主題與重點。
此時我問:同學(xué)們,你們明白西薩要的是多少粒小麥嗎引導(dǎo)學(xué)生寫出麥?倲(shù)。帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。
設(shè)計意圖:在實際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識構(gòu)成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙。同時,構(gòu)成繁難的情境激起了學(xué)生的.求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆。
2、師生互動,探究問題
在肯定他們的思路后,我之后問:1,2,22…263是什么數(shù)列有何特征應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢
探討1:記為(1)式,注意觀察每一項的特征,有何聯(lián)系(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)
設(shè)計意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,所以教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機。
經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,教師指出:這就是錯位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗,從而增強學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
3、類比聯(lián)想,解決問題
這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,那里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進行指導(dǎo)。
設(shè)計意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習(xí)的愉快和成就感。
對不對那里的q能不能等于1等比數(shù)列中的公比能不能為1q=1時是什么數(shù)列此時sn=(那里引導(dǎo)學(xué)生對q進行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ)。)
再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來(引導(dǎo)學(xué)生得出公式的另一形式)
設(shè)計意圖:經(jīng)過反問精講,一方面使學(xué)生加深對知識的認識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和理解,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的能力。這一環(huán)節(jié)十分重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。
4、討論交流,延伸拓展
。裕
【高中數(shù)學(xué)說課稿】相關(guān)文章:
高中數(shù)學(xué)經(jīng)典說課稿優(yōu)秀11-20
高中數(shù)學(xué)說課稿06-25
高中數(shù)學(xué)說課稿07-09
關(guān)于高中數(shù)學(xué)說課稿11-26
高中數(shù)學(xué)說課稿范文05-19
高中數(shù)學(xué)說課稿15篇11-05