當前位置:育文網(wǎng)>教學文檔>說課稿> 高中數(shù)學說課稿

高中數(shù)學說課稿

時間:2022-02-15 06:39:54 說課稿 我要投稿

關于高中數(shù)學說課稿六篇

  作為一位杰出的老師,就難以避免地要準備說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。如何把說課稿做到重點突出呢?下面是小編精心整理的高中數(shù)學說課稿6篇,僅供參考,歡迎大家閱讀。

關于高中數(shù)學說課稿六篇

高中數(shù)學說課稿 篇1

  一、地位作用

  數(shù)列是高中數(shù)學重要的內容之一,等比數(shù)列是在學習了等差數(shù)列后新的一種特殊數(shù)列,在生活中如儲蓄、分期付款等應用較為廣泛,在整個高中數(shù)學內容中數(shù)列與已學過的函數(shù)及后面的數(shù)列極限有密切聯(lián)系,它也是培養(yǎng)學生數(shù)學能力的良好題材,它可以培養(yǎng)學生的觀察、分析、歸納、猜想及綜合解決問題的能力。

  基于此,設計本節(jié)的數(shù)學思路上:

  利用類比的思想,聯(lián)系等差數(shù)列的概念及通項公式的學習方法,采取自學、引導、歸納、猜想、類比總結的教學思路,充分發(fā)揮學生主觀能動性,調動學生的主體地位,充分體現(xiàn)教為主導、學為主體、練為主線的教學思想。

  二、教學目標

  知識目標:1)理解等比數(shù)列的概念

  2)掌握等比數(shù)列的`通項公式

  3)并能用公式解決一些實際問題

  能力目標:培養(yǎng)學生觀察能力及發(fā)現(xiàn)意識,培養(yǎng)學生運用類比思想、解決分析問題的能力。

  三、教學重點

  1)等比數(shù)列概念的理解與掌握 關鍵:是讓學生理解“等比”的特點

  2)等比數(shù)列的通項公式的推導及應用

  四、教學難點

  “等比”的理解及利用通項公式解決一些問題。

  五、教學過程設計

  (一)預習自學環(huán)節(jié)。(8分鐘)

  首先讓學生重新閱讀課本105頁國際象棋發(fā)明者的故事,并出示預習提綱,要求學生閱讀課本P122至P123例1上面。

  回答下列問題

  1)課本中前3個實例有什么特點?能否舉出其它例子,并給出等比數(shù)列的定義。

  2)觀察以下幾個數(shù)列,回答下面問題:

  1, , , ,……

 。1,-2,-4,-8……

  1,2,-4,8……

 。1,-1,-1,-1,……

  1,0,1,0……

  ①有哪幾個是等比數(shù)列?若是公比是什么?

 、诠萹為什么不能等于零?首項能為零嗎?

 、酃萹=1時是什么數(shù)列?

  ④q>0時數(shù)列遞增嗎?q<0時遞減嗎?

  3)怎樣推導等比數(shù)列通項公式?課本中采取了什么方法?還可以怎樣推導?

  4)等比數(shù)列通項公式與函數(shù)關系怎樣?

  (二)歸納主導與總結環(huán)節(jié)(15分鐘)

  這一環(huán)節(jié)主要是通過學生回答為主體,教師引導總結為主線解決本節(jié)兩個重點內容。

  通過回答問題(1)(2)給出等比數(shù)列的定義并強調以下幾點:①定義關鍵字“第二項起”“常數(shù)”;

 、谝龑W生用數(shù)學語言表達定義: =q(n≥2);③q=1時為非零常數(shù)數(shù)列,既是等差數(shù)列又是等比數(shù)列。引申:若數(shù)列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。

  ④q>0時等比數(shù)列單調性不定,q<0為擺動數(shù)列,類比等差數(shù)列d>0為遞增數(shù)列,d<0為遞減數(shù)列。

  通過回答問題(3)回憶等差數(shù)列的推導方法,比較兩個數(shù)列定義的不同,引導推出等比數(shù)列通項公式。

  法一:歸納法,學會從特殊到一般的方法,并從次數(shù)中發(fā)現(xiàn)規(guī)律,培養(yǎng)觀察力。

  法二:迭乘法,聯(lián)系等差數(shù)列“迭加法”,培養(yǎng)學生類比能力及新舊知識轉化能力。

高中數(shù)學說課稿 篇2

  我說課的內容是高中數(shù)學第二冊(上冊)第七章《直線和圓的方程》中的第六節(jié)“曲線和方程”的第一課時,下面我的說課將從以下幾個方面進行闡述:

  一、教材分析

  教材的地位和作用

  “曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關系,為“作形判數(shù)”與“就數(shù)論形”的相互轉化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對全部解析幾何教學有著深遠的影響。學生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學習的入門之徑。如果以為學生不真正領悟曲線和方程的關系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學,這不能不說是一種“舍本逐題”的偏見,應該認識到這節(jié)“曲線和方程”的開頭課是解析幾何教學的“重頭戲”!

  根據(jù)以上分析,確立教學重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。

  二、教學目標

  根據(jù)教學大綱的要求以及本教材的地位和作用,結合高二學生的認知特點確定教學目標如下:

  知識目標:

  1、了解曲線上的點與方程的解之間的一一對應關系;

  2、初步領會“曲線的方程”與“方程的曲線”的概念;

  3、學會根據(jù)已有的情景資料找規(guī)律,進而分析、判斷、歸納結論;

  4、強化“形”與“數(shù)”一致并相互轉化的思想方法。

  能力目標:

  1、通過直線方程的引入,加強學生對方程的解和曲線上的點的一一對應關系的認識;

  2、在形成曲線和方程的概念的教學中,學生經(jīng)歷觀察、分析、討論等數(shù)學活動過程,探索出結論,并能有條理的闡述自己的觀點;

  3、能用所學知識理解新的概念,并能運用概念解決實際問題,從中體會轉化化歸的`思想方法,提高思維品質,發(fā)展應用意識。

  情感目標:

  1、通過概念的引入,讓學生感受從特殊到一般的認知規(guī)律;

  2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨立思考等良好的個性品質,以及勇于批判、敢于創(chuàng)新的科學精神。

  三、重難點突破

  “曲線的方程”與“方程的曲線”的概念是本節(jié)的重點,這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學生容易對定義中為什么要規(guī)定兩個關系產生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學生已經(jīng)具備了用方程表示直線、拋物線等實際模型,積累了感性認識的基礎,所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學生對概念表述的嚴密性進行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。

  怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點。因為學生在作業(yè)中容易犯想當然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標的點在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點,本節(jié)課設計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的方程。通過這些例題讓學生再一次體會“二者”缺一不可。

  四、學情分析

  此前,學生已知,在建立了直角坐標系后平面內的點和有序實數(shù)對之間建立了一一對應關系,已有了用方程(有時以函數(shù)式的形式出現(xiàn))表示曲線的感性認識(特別是二元一次方程表示直線),現(xiàn)在要進一步研究平面內的曲線和含有兩個變數(shù)的方程之間的關系,是由直觀表象上升到抽象概念的過程,對學生有相當大的難度。學生在學習時容易產生的問題是,不理解“曲線上的點的坐標都是方程的解”和“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系時各自所起的作用。本節(jié)課的教學目標也只能是初步領會,要求學生能答出曲線和方程間必須滿足兩個關系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關系的區(qū)別。

高中數(shù)學說課稿 篇3

  說教材:

  1、地位、作用和特點:

  《 》是高中數(shù)學課本第 冊( 修)的第 章“ ”的第 節(jié)內容,高中數(shù)學課本說課稿。

  本節(jié)是在學習了 之后編排的。通過本節(jié)課的學習,既可以對 的知識進一步鞏固和深化,又可以為后面學習 打下基礎,所以是本章的重要內容。此外,《 》的知識與我們日常生活、生產、科學研究 有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。

  教學目標:

  根據(jù)《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:

 。1)知識目標:A、B、C

 。2)能力目標:A、B、C

 。3)德育目標:A、B

  教學的重點和難點:

 。1)教學重點:

  (2)教學難點:

  二、說教法:

  基于上面的教材分析,我根據(jù)自己對研究性學習“啟發(fā)式”教學模式和新課程改革的理論認識,結合本校學生實際,主要突出了幾個方面:一是創(chuàng)設問題情景,充分調動學生求知欲,并以此來激發(fā)學生的探究心理。二是運用啟發(fā)式教學方法,就是把教和學的各種方法綜合起來統(tǒng)一組織運用于教學過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規(guī)律,觸發(fā)學生的思維,使教學過程真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數(shù)學思考方法(聯(lián)想法、類比法、數(shù)形結合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數(shù)學思想方法,培養(yǎng)學生的探索能力和創(chuàng)造性素質。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設計如下教學程序:

  導入新課 新課教學

  反饋發(fā)展

  三、說學法:

  學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向學生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優(yōu)化教學程序來增強學法指導的目的性和實效性。在本節(jié)課的教學中主要滲透以下幾個方面的學法指導。

  1、培養(yǎng)學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。

  本節(jié)教師通過列舉具體事例來進行分析,歸納出 ,并依

  據(jù)此知識與具體事例結合、推導出 ,這正是一個分析和推理的全過程。

  2、讓學生親自經(jīng)歷運用科學方法探索的過程。 主要是努力創(chuàng)設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授 時,可通過

  演示,創(chuàng)設探索 規(guī)律的情境,引導學生以可靠的事實為基礎,經(jīng)過抽象思維揭示內在規(guī)律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的特點。

  3、讓學生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學生的發(fā)散思維和收斂思維能力,激發(fā)學生的創(chuàng)造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發(fā)、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。

  4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養(yǎng)成認真分析過程、善于比較的好習慣,又有利于培養(yǎng)學生通過現(xiàn)象發(fā)掘知識內在本質的能力。

  四、教學過程:

 。ㄒ唬、課題引入:

  教師創(chuàng)設問題情景(創(chuàng)設情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例。C、講述數(shù)學科學史上的`有關情況。)激發(fā)學生的探究欲望,引導學生提出接下去要研究的問題。

 。ǘ、新課教學:

  1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。

  2、組織學生進行新問題的實驗方法設計—這時在設計上最好是有對比性、數(shù)學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數(shù)據(jù),模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。

 。ㄈ嵤┓答仯

  1、課堂反饋,遷移知識(最好遷移到與生活有關的例子)。讓學生分析有關的問題,實現(xiàn)知識的升華、實現(xiàn)學生的再次創(chuàng)新。

  2、課后反饋,延續(xù)創(chuàng)新。通過課后練習,學生互改作業(yè),課后研實驗,實現(xiàn)課堂內外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。

  五、板書設計:

  在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。

  六、說課綜述:

  以上是我對《 》這節(jié)教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的 知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。

  總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創(chuàng)造能力為指導思想。并且能從各種實際出發(fā),充分利用各種教學手段來激發(fā)學生的學習興趣,體現(xiàn)了對學生創(chuàng)新意識的培養(yǎng)。

高中數(shù)學說課稿 篇4

  大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。

  一、教材分析

  本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內容,與初中學習的三角形的邊和角的基本關系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

  根據(jù)上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:

  認知目標:通過創(chuàng)設問題情境,引導學生發(fā)現(xiàn)正弦定理的內容,掌握正弦定理的內容及其證明方法,使學生會運用正弦定理解決兩類基本的解三角形問題。

  能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養(yǎng)學生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結合的工具,將幾何問題轉化為代數(shù)問題。

  情感目標:面向全體學生,創(chuàng)造平等的.教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,激發(fā)學生學習的興趣。

  教學重點:正弦定理的內容,正弦定理的證明及基本應用。 教學難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

  二、教法

  根據(jù)教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業(yè)生的發(fā)展為本,遵照學生的認識規(guī)律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

  三、學法

  指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現(xiàn)學生的主體地位,增強學生由特殊到一般的數(shù)學思維能力,形成了實事求是的科學態(tài)度,增強了鍥而不舍的求學精神。

  四、教學過程

  (一)創(chuàng)設情境(3分鐘)

  “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

  (二)猜想—推理—證明(15分鐘)

  激發(fā)學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。 提問:那結論對任意三角形都適用嗎?(讓學生分小組討論,并得出猜想)

  在三角形中,角與所對的邊滿足關系

  注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

  3.提示學生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結合的數(shù)學思想。

  (三)總結--應用(3分鐘)

  1.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

  2.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學生知識后用于實際的價值觀。

  (四)講解例題(8分鐘)

  1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中

  一邊的對角時解三角形的各種情形。完了把時間交給學生。

  (五)課堂練習(8分鐘)

  1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

  2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

  學生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。

  (六)小結反思(3分鐘)

  1.它表述了三角形的邊與對角的正弦值的關系。

  2.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。

  3.會用向量作為數(shù)形結合的工具,將幾何問題轉化為代數(shù)問題。

  五、教學反思

  從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數(shù)學教學成為數(shù)學活動的教學。

高中數(shù)學說課稿 篇5

  一、教材分析

  1· 教材的地位和作用

  在學習這節(jié)課以前,我們已經(jīng)學習了振幅變換。本節(jié)知識是學習函數(shù)圖象變換綜合應用的基礎,在教材地位上顯得十分重要。

  y=asin(ωx+φ)圖象變換的學習有助于學生進一步理解正弦函數(shù)的圖象和性質,加深學生對函數(shù)圖象變換的理解和認識,加深數(shù)形結合在數(shù)學學習中的應用的認識。同時為相關學科的學習打下扎實的基礎。

 、步滩牡闹攸c和難點

  重點是對周期變換、相位變換規(guī)律的理解和應用。

  難點是對周期變換、相位變換先后順序的調整,對圖象變換的影響。

 、辰滩膬热莸陌才藕吞幚

  函數(shù)y=asin(ωx+φ)圖象這部分內容計劃用3課時,本節(jié)是第2課時,主要學習周期變換和相位變換,以及兩種變換的綜合應用。

  二、目的分析

  ⒈知識目標

  掌握相位變換、周期變換的變換規(guī)律。

 、材芰δ繕

  培養(yǎng)學生的觀察能力、動手能力、歸納能力、分析問題解決問題能力。

  ⒊德育目標

  在教學中努力培養(yǎng)學生的“由簡單到復雜、由特殊到一般”的辯證思想,培養(yǎng)學生的探究能力和協(xié)作學習的能力。

  ⒋情感目標

  通過學數(shù)學,用數(shù)學,進而培養(yǎng)學生對數(shù)學的興趣。

  三、教具使用

  ①本課安排在電腦室教學,每個學生都擁有一臺計算機,所有的計算機由一套多媒體演示控制系統(tǒng)連接,以實現(xiàn)師生、生生的相互溝通。

 、谡n前應先把本課所需要的幾何畫板課件通過多媒體演示系統(tǒng)發(fā)送到每一臺學生電腦。

  四、教法、學法分析

  本節(jié)課以“探究——歸納——應用”為主線,通過設置問題情境,引導學生自主探究,總結規(guī)律,并能應用規(guī)律分析問題、解決問題。

  以學生的自主探究為主要方式,把計算機使用的主動權交給學生,讓學生主動去學習新知、探究未知,在活動中學習數(shù)學、掌握數(shù)學,并能數(shù)學地提出問題、解決問題。

  五、教學過程

  教學過程設計:

  預備知識

  一、問題探究

 、艓熒献魈骄恐芷谧儞Q

 、茖W生自主探究相位變換

  二、歸納概括

  三、實踐應用

  教學程序

  設計說明

  〖預備知識

  1我們已經(jīng)學習了幾種圖象變換?

  2這些變換的規(guī)律是什么?

  幫助學生鞏固、理解和歸納基礎知識,為后面的學習作鋪墊。促使學生學會對知識的歸納梳理。

  〖問題探究

  (一)師生合作探究周期變換

  (1)自己動手,在幾何畫板中分別觀察①y=sinx→y=sin2x;②y=sinx→y=sin

  x圖象的變換過程,指出變換過程中圖象上每一個點的坐標發(fā)生了什么變化。

  (2) 在上述變換過程中,橫坐標的伸長和縮短與ω之間存在怎樣的關系?

 。ǘ⿲W生自主探究相位變換

  (1)我們初中學過的由y=f(x)→y=f(x+a)的圖象變換規(guī)律是怎樣的?

  (2) 令f(x)=sinx,則f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的'變換是不是也符合上述規(guī)律呢?請動手用幾何畫板加以驗證。

  設計這個問題的主要用意是讓學生通過觀察圖象變換的過程,了解周期變換的基本規(guī)律。

  設計這個問題意圖是引導學生再次認真觀察圖象變換的過程,以便總結周期變換的規(guī)律。

  師生合作探究已經(jīng)讓學生掌握了探究圖象變換的基本方法,在此基礎上,由學生自主探究相位變換規(guī)律,提高學生的綜合能力。

  〖歸納概括

  通過以上探究,你能否總結出周期變換和相位變換的一般規(guī)律?

  設計這個環(huán)節(jié)的意圖是通過對上述變換過程的探究,進而引導學生歸納概括,從現(xiàn)象到本質,總結出周期變換和相位變換的一般規(guī)律。

  〖實踐應用

 。ㄒ唬⿷门e例

  (1)用五點法作出y=sin(2x+)一個周期內的簡圖。

  (2)我們可以通過哪些方法完成y=sinx到y(tǒng)=sin(2x+)的圖象變換

  (3)請動手驗證上述方法,把幾何畫板所得圖象與用五點法作出的簡圖作比較,觀察哪些方法是正確的,哪些方法是錯誤的。

  (4)歸納總結

  從上述的變換過程中,我們知道若f(x) =sin2x,則f(___)= sin(2x+),由f(x)→f(x+a)的變換規(guī)律得從y=sin2x →y= sin(2x+)的變換應該是_____.

 。ǘ┓謱佑柧

  a組題(基礎題)

  如何完成下列圖象的變換:

 、賧=sin3x→y=sin(3x+1)

  ②y=sin(x+1) →y=sin(3x+1)

  b組題(中等題)

  如何完成下列圖象的變換:

 、賧=sin3x→y=sin(3x+1)

  ②y=sin(x+1) →y=sin(3x+1)

 、踶=sinx →y=sin(3x+1)

  c組題(拓展題)

 、偃绾瓮瓿上铝袌D象的變換:

  y=sinx →y=sin(3x+1)

 、谖覀冎,從f(x)到f(x)+k的變換可通過圖象的上下平移(k>0上移)(k<0下移)|k|個單位得到。那么由y=f(x)→y=af(x)+k的變換中,振幅變換和上下平移變換是不是也有先后順序呢?請通過實例加以驗證。

  讓學生用五點法作出這個圖象是為了驗證變換方法是否正確。

  給出這個問題的用意是開拓學生的思維,讓學生從多角度思考問題。

  這個步驟主要目的是培養(yǎng)學生的探究能力和動手能力。

  這個問題的解決,是突破本課難點的關鍵。通過問題的解決,讓學生理解如果先進行周期變換,而后進行相位變換,應特別關注x的變化量。

  a組題重在基礎知識的掌握,

  由基礎較薄弱的同學完成。

  b組比a組增加了第③小題,

  重在對兩種變換的綜合應用。

  c組除了考查知識的綜合應用,

  還要求學生對新問題進行探究,

  有較大難度,適合基礎較好的

  同學完成。

  作業(yè):

  (1)必做題

 。2)選做題

  作業(yè)分為兩種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則。選做題不作統(tǒng)一要求,供學有余力的學生課后研究。

  六、評價分析

  在本節(jié)的教與學活動中,始終體現(xiàn)以學生的發(fā)展為本的教育理念。在學生已有的認知基礎上進行設問和引導,關注學生的認知過程,注意學生的品德、思維和心理等方面的發(fā)展。重視動手能力的培養(yǎng),重視問題探究意識和能力的培養(yǎng)。同時,考慮不同學生的個性差異和發(fā)展層次,使不同的學生得到不同的發(fā)展,體現(xiàn)因材施教原則。

  調節(jié)與反饋:

  ⑴驗證兩種變換的綜合時,可能會出現(xiàn)有些學生無法觀察到兩種變換的區(qū)別這種情況,此時,教師除了加以引導外,還需通過教師演示和詳細講解加以解決。

 、平虒W中可能出現(xiàn)個別學生無法正確操作課件的情況,這種情況下一定要強調學生的協(xié)作意識。

  附:板書設計

高中數(shù)學說課稿 篇6

尊敬的各位專家、評委:

  下午好!

  我的抽簽序號是___,今天我說課的課題是《______》第__課時。 我嘗試利用新課標的理念來指導教學,對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、教法學法分析、教學過程分析和評價分析四方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。

  一、教材分析

 。ㄒ唬┑匚慌c作用

  數(shù)列是高中數(shù)學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面學習數(shù)列也為進一步學習數(shù)列的極限等內容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。

  (二)學情分析

 。1)學生已熟練掌握_________________。

 。2)學生的知識經(jīng)驗較豐富,具備了教強的抽象思維能力和演繹推理能力。

  (3)學生思維活潑,積極性高,已初步形成對數(shù)學問題的合作探究能力。

  (4) 學生層次參次不齊,個體差異比較明顯。

  二、目標分析

  新課標指出“三維目標”是一個密切聯(lián)系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養(yǎng)為主線,透情感態(tài)度與價值觀,并把這兩者充分體現(xiàn)在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發(fā),根據(jù)__在教材內容中的地位與作用,結合學情分析,本節(jié)課教學應實現(xiàn)如下教學目標:

 。ㄒ唬┙虒W目標

 。1)知識與技能

  使學生理解函數(shù)單調性的概念,初步掌握判別函數(shù)單調性的方法;。

 。2)過程與方法

  引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數(shù)、單調減函數(shù)等概念;能運用函數(shù)單調性概念解決簡單的問題;使學生領會數(shù)形結合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

 。3)情感態(tài)度與價值觀

  在函數(shù)單調性的學習過程中,使學生體驗數(shù)學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹?shù)目茖W態(tài)度。

 。ǘ┲攸c難點

  本節(jié)課的教學重點是________,教學難點是_________。

  三、教法、學法分析

 。ㄒ唬┙谭

  基于本節(jié)課的內容特點和高二學生的年齡特征,按照臨沂市高中數(shù)學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現(xiàn)本節(jié)課的教學目標,在教法上我采取了:

  1、通過學生熟悉的實際生活問題引入課題,為概念學習創(chuàng)設情境,拉近數(shù)學與現(xiàn)實的距離,激發(fā)學生求知欲,調動學生主體參與的積極性.

  2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.

  3、在鼓勵學生主體參與的同時,不可忽視教師的.主導作用,要教會學生清晰的思維、嚴謹?shù)耐评,并順利地完成書面表達.

 。ǘ⿲W法在學法上我重視了: 1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。 2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。

  四、教學過程分析

 。ㄒ唬┙虒W過程設計

  教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發(fā)、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發(fā)生、發(fā)展和運用過程的演繹、解釋和探究來組織和推動教學。

 。1)創(chuàng)設情境,提出問題。 新課標指出:“應該讓學生在具體生動的情境中學習數(shù)學”。在本節(jié)課的教學中,從我們熟悉的生活情境中提出問題,問題的

  設計改變了傳統(tǒng)目的明確的設計方式,給學生最大的思考空間,充分體現(xiàn)學生主體地位。

 。2)引導探究,建構概念。 數(shù)學概念的形成來自解決實際問題和數(shù)學自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經(jīng)驗和已有的知識基礎出發(fā),經(jīng)歷“數(shù)學化”、“再創(chuàng)造”的活動過程.

 。3)自我嘗試,初步應用。 有效的數(shù)學學習過程,不能單純的模仿與記憶,數(shù)學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學習,生生合作交流,共同探究.

 。4)當堂訓練,鞏固深化。 通過學生的主體參與,使學生深切體會到本節(jié)課的主要內容和思想方法,從而實現(xiàn)對知識識的再次深化。

 。5)小結歸納,回顧反思。 小結歸納不僅是對知識的簡單回顧,還要發(fā)揮學生的主體地位,從知識、方法、經(jīng)驗等方面進行總結。我設計了三個問題:(1)通過本節(jié)課的學習,你學到了哪些知識?(2)通過本節(jié)課的學習,你最大的體驗是什么?(3)通過本節(jié)課的學習,你掌握了哪些技能?

  (二)作業(yè)設計

  作業(yè)分為必做題和選做題,必做題對本節(jié)課學生知識水平的反饋,選做題是對本節(jié)課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業(yè)設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展、合作探究的學習氛圍的形成.

  我設計了以下作業(yè): (1)必做題 (2)選做題

 。ㄈ┌鍟O計 板書要基本體現(xiàn)整堂課的內容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。

  五、評價分析

  學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發(fā)展情況,在質疑探究的過程中,評價學生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發(fā)展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節(jié)課的理解和設計,敬請各位專家、評委批評指正。 謝謝!

【高中數(shù)學說課稿】相關文章:

高中數(shù)學《集合》說課稿07-22

高中數(shù)學說課稿07-09

高中數(shù)學說課稿范文11-02

高中數(shù)學《向量》說課稿范文02-15

關于高中數(shù)學說課稿11-26

精選高中數(shù)學說課稿四篇01-15

高中數(shù)學說課稿六篇01-23

高中數(shù)學說課稿4篇01-09

高中數(shù)學說課稿三篇01-09

【精選】高中數(shù)學說課稿四篇01-14