- 相關(guān)推薦
初中數(shù)學(xué)因式分解法知識點
其實因式分解法就是把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式。
因式分解法
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8
(2) 2x2+3x=0
(3) 6x2+5x-50=0 (選學(xué))
(4)x2-4x+4=0 (選學(xué))
(1)解:(x+3)(x-6)=-8 化簡整理得
x2-3x-10=0 (方程左邊為二次三項式,右邊為零)
(x-5)(x+2)=0 (方程左邊分解因式)
∴x-5=0或x+2=0 (轉(zhuǎn)化成兩個一元一次方程)
∴x1=5 x2=-2是方程的解。
x(2x+3)=0 (用提公因式法將方程左邊分解因式)
∴x=0或2x+3=0 (轉(zhuǎn)化成兩個一元一次方程)
∴x1=0,x2=-3/2是原方程的解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式時要特別注意符號不要出錯)
∴2x-5=0或3x+10=0
∴x?=5/2, x?=-10/3 是原方程的解。
(4)解:x2-4x+4 =0
(x-2)(x-2 )=0
∴x1=x2=2是原方程的解。
注意:有些同學(xué)做這種題目時容易丟掉x=0這個解,應(yīng)記住一元二次方程通常有兩個解。
初中數(shù)學(xué)知識點:因式分解的一般步驟
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點:因式分解
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
、芙Y(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
【初中數(shù)學(xué)因式分解法知識點】相關(guān)文章:
初中數(shù)學(xué)因式分解教案03-01
初中數(shù)學(xué)因式分解教案06-15
有關(guān)初中數(shù)學(xué)用公式法解方程的知識點07-20
初中生數(shù)學(xué)知識點:因式分解的一般步驟04-10
初中數(shù)學(xué)近似數(shù)與有效數(shù)字科學(xué)記數(shù)法知識點07-03
初中數(shù)學(xué)概率知識點05-09