當(dāng)前位置:育文網(wǎng)>高中>高中數(shù)學(xué)> 高中數(shù)學(xué)必修三知識(shí)點(diǎn)

高中數(shù)學(xué)必修三知識(shí)點(diǎn)

時(shí)間:2024-10-06 22:02:38 高中數(shù)學(xué) 我要投稿

高中數(shù)學(xué)必修三知識(shí)點(diǎn)(通用5篇)

  在平平淡淡的學(xué)習(xí)中,是不是經(jīng)常追著老師要知識(shí)點(diǎn)?知識(shí)點(diǎn)也可以理解為考試時(shí)會(huì)涉及到的知識(shí),也就是大綱的分支。掌握知識(shí)點(diǎn)是我們提高成績(jī)的關(guān)鍵!下面是小編為大家整理的高中數(shù)學(xué)必修三知識(shí)點(diǎn),僅供參考,希望能夠幫助到大家。

高中數(shù)學(xué)必修三知識(shí)點(diǎn)(通用5篇)

  高中數(shù)學(xué)必修三知識(shí)點(diǎn) 篇1

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

  2、集合中元素的三個(gè)特性:

  1.元素的確定性;

  2.元素的互異性;

  3.元素的無(wú)序性

  說(shuō)明:

  (1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

  (3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法。

  注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

  關(guān)于“屬于”的概念

  集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

  列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。

  描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。

  ①語(yǔ)言描述法:例:{不是直角三角形的三角形}

  ②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是{x?Rx-3>2}或{x x-3>2}

  4、集合的分類:

  1.有限集含有有限個(gè)元素的.集合

  2.無(wú)限集含有無(wú)限個(gè)元素的集合

  3.空集不含任何元素的集合例:{x x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能

  (1)A是B的一部分。

  (2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實(shí)例:設(shè)A={x x2-1=0}B={-1,1}“元素相同”

  結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

  ①任何一個(gè)集合是它本身的子集。AíA

 、谡孀蛹:如果AíB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄íB,BíC,那么AíC

 、苋绻鸄íB同時(shí)BíA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  高中數(shù)學(xué)必修三知識(shí)點(diǎn) 篇2

  1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  (1)棱柱:

  定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。

  幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點(diǎn)字母,如五棱錐

  幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

  (3)棱臺(tái):

  定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

  表示:用各頂點(diǎn)字母,如五棱臺(tái)

  幾何特征:

 、偕舷碌酌媸窍嗨频钠叫卸噙呅

 、趥(cè)面是梯形

 、蹅(cè)棱交于原棱錐的頂點(diǎn)

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

  幾何特征:

  ①底面是全等的圓;

 、谀妇與軸平行;

  ③軸與底面圓的半徑垂直;

 、軅(cè)面展開(kāi)圖是一個(gè)矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的.幾何體。

  幾何特征:

  ①底面是一個(gè)圓;

  ②母線交于圓錐的頂點(diǎn);

 、蹅(cè)面展開(kāi)圖是一個(gè)扇形。

  (6)圓臺(tái):

  定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:

 、偕舷碌酌媸莾蓚(gè)圓;

 、趥(cè)面母線交于原圓錐的頂點(diǎn);

 、蹅(cè)面展開(kāi)圖是一個(gè)弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:

 、偾虻慕孛媸菆A;

  ②球面上任意一點(diǎn)到球心的距離等于半徑。

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;

  俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;

  側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

  3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法

  斜二測(cè)畫(huà)法特點(diǎn):

 、僭瓉(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

 、谠瓉(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。

  高中數(shù)學(xué)必修三知識(shí)點(diǎn) 篇3

  1、直線方程形式

  一般式:Ax+By+C=0(AB≠0)

  斜截式:y=kx+b(k是斜率b是x軸截距)

  點(diǎn)斜式:y-y1=k(x-x1)(直線過(guò)定點(diǎn)(x1,y1))

  兩點(diǎn)式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直線過(guò)定點(diǎn)(x1,y1),(x2,y2))

  截距式:x/a+y/b=1(a是x軸截距,b是y軸截距)

  做題過(guò)程中,點(diǎn)斜式和斜截式用的最多(兩種合占90%以上),一般式屬于中間過(guò)渡形態(tài)。

  在與圓及圓錐曲線結(jié)合的過(guò)程中,還要用到點(diǎn)到直線距離公式。

  2、直線方程的局限性

  各種不同形式的直線方程的局限性:

  (1)點(diǎn)斜式和斜截式都不能表示斜率不存在的直線;

  (2)兩點(diǎn)式不能表示與坐標(biāo)軸平行的直線;

  (3)截距式不能表示與坐標(biāo)軸平行或過(guò)原點(diǎn)的直線;

  (4)直線方程的一般式中系數(shù)A、B不能同時(shí)為零。

  數(shù)學(xué)直線和圓知識(shí)點(diǎn)

  1、直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義(或)及其直線方程的向量式((為直線的方向向量))、應(yīng)用直線方程的點(diǎn)斜式、斜截式設(shè)直線方程時(shí),一般可設(shè)直線的斜率為k,但你是否注意到直線垂直于x軸時(shí),即斜率k不存在的情況?

  2、知直線縱截距,常設(shè)其方程為或;知直線橫截距,常設(shè)其方程為(直線斜率k存在時(shí),為k的倒數(shù))或知直線過(guò)點(diǎn),常設(shè)其方程為

  (2)直線在坐標(biāo)軸上的'截距可正、可負(fù)、也可為0、直線兩截距相等直線的斜率為-1或直線過(guò)原點(diǎn);直線兩截距互為相反數(shù)直線的斜率為1或直線過(guò)原點(diǎn);直線兩截距絕對(duì)值相等直線的斜率為或直線過(guò)原點(diǎn)

  (3)在解析幾何中,研究?jī)蓷l直線的位置關(guān)系時(shí),有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合

  3、相交兩直線的夾角和兩直線間的到角是兩個(gè)不同的概念:夾角特指相交兩直線所成的較小角,范圍是。而其到角是帶有方向的角,范圍是

  4、線性規(guī)劃中幾個(gè)概念:約束條件、可行解、可行域、目標(biāo)函數(shù)、最優(yōu)解

  5、圓的方程:最簡(jiǎn)方程;標(biāo)準(zhǔn)方程;

  6、解決直線與圓的關(guān)系問(wèn)題有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價(jià)轉(zhuǎn)化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形,切線長(zhǎng)定理、割線定理、弦切角定理等等)的作用!”

  (1)過(guò)圓上一點(diǎn)圓的切線方程

  過(guò)圓上一點(diǎn)圓的切線方程

  過(guò)圓上一點(diǎn)圓的切線方程

  如果點(diǎn)在圓外,那么上述直線方程表示過(guò)點(diǎn)兩切線上兩切點(diǎn)的“切點(diǎn)弦”方程

  如果點(diǎn)在圓內(nèi),那么上述直線方程表示與圓相離且垂直于(為圓心)的直線方程,(為圓心到直線的距離)

  7、曲線與的交點(diǎn)坐標(biāo)方程組的解;

  過(guò)兩圓交點(diǎn)的圓(公共弦)系為,當(dāng)且僅當(dāng)無(wú)平方項(xiàng)時(shí),為兩圓公共弦所在直線方程

  高中數(shù)學(xué)必修三知識(shí)點(diǎn) 篇4

  一.隨機(jī)事件的概率及概率的意義

  1、基本概念:

  (1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;

  (2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;

  (3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;

  (4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;

  (5)頻數(shù)與頻率:在相同的`條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。

  (6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率

  二.概率的基本性質(zhì)

  1、基本概念:

  (1)事件的包含、并事件、交事件、相等事件

  (2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;

  (3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對(duì)立事件;

  (4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對(duì)立事件,則A∪B為必然事件,所以

  P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)

  2、概率的基本性質(zhì):

  1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;

  2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);

  3)若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);

  4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:

  (1)事件A發(fā)生且事件B不發(fā)生;

  (2)事件A不發(fā)生且事件B發(fā)生;

  (3)事件A與事件B同時(shí)不發(fā)生;

  而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;

  (1)事件A發(fā)生B不發(fā)生;

  (2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。

  三.古典概型及隨機(jī)數(shù)的產(chǎn)生

  (1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。

  (2)古典概型的解題步驟;

 、偾蟪隹偟幕臼录䲠(shù);

 、谇蟪鍪录嗀所包含的基本事件數(shù),然后利用公式P(A)=

  四.幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生

  基本概念:

  (1)幾何概率模型:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;

  (2)幾何概型的概率公式:P(A)=;

  (3)幾何概型的特點(diǎn):

  1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);

  2)每個(gè)基本事件出現(xiàn)的可能性相等

  高中數(shù)學(xué)必修三知識(shí)點(diǎn) 篇5

  總體和樣本

 、僭诮y(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體。

  ②把每個(gè)研究對(duì)象叫做個(gè)體。

 、郯芽傮w中個(gè)體的總數(shù)叫做總體容量。

 、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,x-x研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量。

  簡(jiǎn)單隨機(jī)抽樣也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的.可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ),高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。

  簡(jiǎn)單隨機(jī)抽樣常用的方法

 、俪楹灧

 、陔S機(jī)數(shù)表法

  ③計(jì)算機(jī)模擬法

 、苁褂媒y(tǒng)計(jì)軟件直接抽取。

  在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:

  ①總體變異情況;

  ②允許誤差范圍;

 、鄹怕时WC程度。

  抽簽法

 、俳o調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);

 、跍(zhǔn)備抽簽的工具,實(shí)施抽簽;

 、蹖(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查。

【高中數(shù)學(xué)必修三知識(shí)點(diǎn)】相關(guān)文章:

高中數(shù)學(xué)必修三知識(shí)點(diǎn)歸納11-03

高中數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)07-12

高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)05-25

高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)05-31

高中數(shù)學(xué)必修知識(shí)點(diǎn)(精選22篇)05-14

高中數(shù)學(xué)必修三重要知識(shí)點(diǎn)總結(jié)09-05

高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)(優(yōu)秀)07-24

高中數(shù)學(xué)知識(shí)點(diǎn)必修一總結(jié)10-17

高中數(shù)學(xué)知識(shí)點(diǎn)必修課總結(jié)10-23