當(dāng)前位置:育文網(wǎng)>高中>高中數(shù)學(xué)> 高中數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)整理

高中數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)整理

時(shí)間:2022-05-25 02:05:32 高中數(shù)學(xué) 我要投稿
  • 相關(guān)推薦

高中數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)整理

  在我們上學(xué)期間,大家最熟悉的就是知識(shí)點(diǎn)吧?知識(shí)點(diǎn)就是掌握某個(gè)問題/知識(shí)的學(xué)習(xí)要點(diǎn)。為了幫助大家掌握重要知識(shí)點(diǎn),以下是小編為大家整理的高中數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)整理,僅供參考,大家一起來看看吧。

高中數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)整理

高中數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)整理1

  一、事件

  1.在條件SS的必然事件.

  2.在條件S下,一定不會(huì)發(fā)生的事件,叫做相對于條件S的不可能事件.

  3.在條件SS的隨機(jī)事件.

  二、概率和頻率

  1.用概率度量隨機(jī)事件發(fā)生的可能性大小能為我們決策提供關(guān)鍵性依據(jù).

  2.在相同條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA

  nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的.比例fn(A)=為事件A出現(xiàn)的頻率.

  3.對于給定的隨機(jī)事件A,由于事件A發(fā)生的頻率fn(A)P(A),P(A).

  三、事件的關(guān)系與運(yùn)算

  四、概率的幾個(gè)基本性質(zhì)

  1.概率的取值范圍:

  2.必然事件的概率P(E)=3.不可能事件的概率P(F)=

  4.概率的加法公式:

  如果事件A與事件B互斥,則P(AB)=P(A)+P(B).

  5.對立事件的概率:

  若事件A與事件B互為對立事件,則AB為必然事件.P(AB)=1,P(A)=1-P(B).

高中數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)整理2

  1.一些基本概念:

  (1)向量:既有大小,又有方向的量.

  (2)數(shù)量:只有大小,沒有方向的量.

  (3)有向線段的三要素:起點(diǎn)、方向、長度.

  (4)零向量:長度為0的向量.

  (5)單位向量:長度等于1個(gè)單位的向量.

  (6)平行向量(共線向量):方向相同或相反的`非零向量.

  ※零向量與任一向量平行.

  (7)相等向量:長度相等且方向相同的向量.

  2.向量加法運(yùn)算:

 、湃切畏▌t的特點(diǎn):首尾相連.

 、破叫兴倪呅畏▌t的特點(diǎn):共起點(diǎn)

高中數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)整理3

  1.萬能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

  2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

  3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

  向量公式:

  1.單位向量:單位向量a0=向量a/|向量a|

  2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(hào)(x平方+y平方)

  3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號(hào)[(x2-x1)平方+(y2-y1)平方]

  4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(hào)(x1平方+y1平方)_根號(hào)(x2平方+y2平方)

  5.空間向量:同上推論(提示:向量a={x,y,z})

  6.充要條件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2

  7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方

高中數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)整理4

  方程的根與函數(shù)的零點(diǎn)

  1、函數(shù)零點(diǎn)的概念:對于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

  2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

  方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

  3、函數(shù)零點(diǎn)的求法:

  求函數(shù)的`零點(diǎn):

  1(代數(shù)法)求方程的實(shí)數(shù)根;

  2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

  4、二次函數(shù)的零點(diǎn):

  二次函數(shù).

  1、△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

  2、△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

  3、△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).

高中數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)整理5

  1.“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實(shí)例:設(shè)A={2-1=0}B={-1,1}“元素相同”

  結(jié)論:對于兩個(gè)集合A與B,如果集合A的`任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

 、偃魏我粋(gè)集合是它本身的子集。AíA

 、谡孀蛹:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄íB,BíC,那么AíC

  ④如果AíB同時(shí)BíA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集

【高中數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)整理】相關(guān)文章:

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)總結(jié)04-13

高中數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)總結(jié)(精選8篇)01-08

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)總結(jié)大全03-04

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)04-06

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)分享02-25

高中數(shù)學(xué)水平考知識(shí)點(diǎn)歸納06-11

生物水平考知識(shí)點(diǎn)高中精選03-01

生物水平考高中知識(shí)點(diǎn)06-11

初中數(shù)學(xué)知識(shí)點(diǎn)整理02-19