當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說課稿> 高中數(shù)學(xué)說課稿

高中數(shù)學(xué)說課稿

時(shí)間:2022-01-13 21:29:18 說課稿 我要投稿

有關(guān)高中數(shù)學(xué)說課稿錦集9篇

  作為一位不辭辛勞的人民教師,總不可避免地需要編寫說課稿,說課稿是進(jìn)行說課準(zhǔn)備的文稿,有著至關(guān)重要的作用。那么說課稿應(yīng)該怎么寫才合適呢?以下是小編精心整理的高中數(shù)學(xué)說課稿9篇,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

有關(guān)高中數(shù)學(xué)說課稿錦集9篇

高中數(shù)學(xué)說課稿 篇1

  一、 說教材

 。ㄒ唬┙滩牡牡匚缓妥饔

  本節(jié)內(nèi)容著重介紹了三角形的三種特殊線段,已學(xué)過的過直線外一點(diǎn)作已知直線的垂線、線段的中點(diǎn)、角的平分線等知識(shí)是學(xué)習(xí)本節(jié)新知識(shí)的基礎(chǔ),其中三角形的高學(xué)生從小學(xué)起已開始接觸,教材從學(xué)生已有認(rèn)知出發(fā),從高入手,利用圖形,給高作了具體定義,使學(xué)生了解三角形的高為線段,進(jìn)而引出三角形的另外幾種特殊線段——中線、角平分線。通過本節(jié)內(nèi)容學(xué)習(xí),可使學(xué)生掌握三角形的高、中線、角平分線與垂線、角平分線的聯(lián)系與區(qū)別。通過學(xué)習(xí)作圖、觀察與探究,會(huì)發(fā)現(xiàn)三角形的三條高所在的直線、三條角平分線、三條中線都各自交于一點(diǎn),這為以后三角形的內(nèi)心、重心等知識(shí)的學(xué)習(xí)打下一定的基礎(chǔ),另外,本節(jié)內(nèi)容也是日后學(xué)習(xí)等腰三角形等特殊三角形的墊腳石。故學(xué)好本節(jié)內(nèi)容是十分必要的。因此,對(duì)三角的高、中線、角平分線定義的理解及畫法的掌握是本節(jié)教學(xué)的重點(diǎn),而三角形的高由于三角形的形狀改變而使其位置呈現(xiàn)多樣性,學(xué)生難以掌握,故在各類三角形中作出它們是本課的難點(diǎn)。

 。ǘ┙虒W(xué)目標(biāo)分析

  本節(jié)課的教學(xué)設(shè)計(jì)力圖體現(xiàn)“尊重學(xué)生,注重發(fā)展”的教學(xué)理念,著重培養(yǎng)和發(fā)展學(xué)生基本作圖能力、語言表達(dá)能力、觀察能力等,根據(jù)這一目的確定本節(jié)教學(xué)目標(biāo)為:

  1、理解三角形的高、中線、角平分線的概念

  2、能正確作出一個(gè)三角形的高、中線、角平分線

  3、通過觀察、探究、畫一畫、折一折與描述等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)語言的準(zhǔn)確性,提高觀察能力,語言表達(dá)能力,發(fā)展推理能力。

  重點(diǎn):掌握三角形的高、中線、角平分線的概念,并能在具體三角形中畫出它們

  難點(diǎn):在各種三角形中作出它們的高

  二、 說教法

  1、情境創(chuàng)設(shè)法 :利用張師傅如何將一塊三角形的地分成面積相等的兩塊三角形地創(chuàng)設(shè)問題情境,并引導(dǎo)學(xué)生去簡單分析思路,目的使數(shù)學(xué)能密切聯(lián)系實(shí)際體現(xiàn)知識(shí)的形成和應(yīng)用過程。以實(shí)際問題為出發(fā)點(diǎn)和歸宿,更能貼近學(xué)生生活,以激發(fā)學(xué)生對(duì)學(xué)習(xí)本節(jié)內(nèi)容的求知欲,培養(yǎng)他們運(yùn)用所學(xué)知識(shí)解決問題的能力。

  2、加強(qiáng)學(xué)生學(xué)習(xí)的主動(dòng)性與探究性 在課堂中要充分調(diào)動(dòng)學(xué)生自主學(xué)習(xí)的潛能,讓他們自由探究中發(fā)現(xiàn),從而發(fā)展他們的創(chuàng)新能力,讓他們感受到成功的喜悅。學(xué)生在畫一畫、折一折、何三個(gè)探究活動(dòng)中體驗(yàn)數(shù)學(xué)知識(shí)的形成過程。當(dāng)學(xué)生在探究過程中遇到困難時(shí),才取消組建的交流與合作,充分發(fā)揮學(xué)生的團(tuán)隊(duì)作用,以更好地激發(fā)學(xué)生的積極思維,得到更大的收獲。

  3、運(yùn)用多媒體等作為教輔工具,增強(qiáng)學(xué)生的直觀感受,掃除學(xué)生從形象思維難以跨越到抽象思維的障礙,突出重點(diǎn),突破難點(diǎn)。

  三、說學(xué)法

  1、本節(jié)重點(diǎn)是三角形的三種重要線段,難點(diǎn)是對(duì)三角形的角平分線、中線、高的準(zhǔn)確理解、作圖與正確運(yùn)用,而突破難點(diǎn)的關(guān)鍵是運(yùn)用好數(shù)形結(jié)合的數(shù)學(xué)思想從畫圖入手,從大量的活動(dòng)入手獲得三種線段的直觀形象,進(jìn)一步架起數(shù)與形之間的橋梁,加強(qiáng)知識(shí)間的相互聯(lián)系。

  2、小組討論、合作探究,既可讓學(xué)生互相啟發(fā),互相促進(jìn),積極交流,表達(dá)思想又可促進(jìn)數(shù)學(xué)思考,擴(kuò)大和加深對(duì)問題的認(rèn)識(shí),本節(jié)課中我讓學(xué)生以小組進(jìn)行探究,歸納圖形特征,做到仔細(xì)觀察,大膽探索,勇于發(fā)現(xiàn),抽象概括。讓學(xué)生通過探索活動(dòng)來發(fā)現(xiàn)結(jié)論,經(jīng)歷知識(shí)的“再發(fā)現(xiàn)”過程,從而改變學(xué)生學(xué)習(xí)的方式,發(fā)展創(chuàng)新思維能力。

  四、說教學(xué)過程:

  1、創(chuàng)設(shè)問題情境,引出新知: 從生活實(shí)例引出新問題,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性

  2、預(yù)習(xí)檢查:以題組的形勢(shì)

  考點(diǎn)1:三角形的高

  1.如圖7.1.2-1,在△ABC中,BC邊上的高是________;在△AFC中,CF邊上的高是________;在△ABE中,AB邊上的高是_________.

  2.如圖7.1.2-2,△ABC的三條高AD、BE、CF相交于點(diǎn)H,則△ABH的三條高是_______,這三條高交于________.BD是△________、△________、△________的高.

  3.如圖7.1.2-3,在△ABC中EF∥AC,BD⊥AC于D,交EF于G,則下面說話中錯(cuò)誤的是( )

  A.BD是△ABC的高 BD是△BCD的高 C.EG是△ABD的高 D.BG是△BEF的高

  7.1.2《三角形的高、中線、角平分線》說課稿

  圖7.1.2-1 圖7.1.2-2 圖7.1.2-3

  4.如果一個(gè)三角形的三條高的交點(diǎn)恰是三角形的一個(gè)頂點(diǎn),那么這個(gè)三角形是( )

  A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定

  5.三角形的三條高的交點(diǎn)一定在( )

  A.三角形內(nèi)部 B.三角形的外部 C.三角形的內(nèi)部或外部 D.以上答案都不對(duì)

  考點(diǎn)2:三角形的中線與角平分線

  6.如圖7.1.2-5所示:(1)AD⊥BC,垂足為D,則AD是________的高,∠________=∠________=90°.

 。2)AE平分∠BAC,交BC于E點(diǎn),則AE叫做△ABC的________,∠________=∠________=7.1.2《三角形的高、中線、角平分線》說課稿∠________.

 。3)若AF=FC,則△ABC的中線是________,S△ABF=________.

 。4)若BG=GH=HF,則AG是________的中線,AH是________的中線.

  圖7.1.2-5 圖7.1.2-6 圖7.1.2-7

  7.如圖7.1.2-6,DE∥BC,CD是∠ACB的.平分線,∠ACB=60°,那么∠EDC=______度.

  8.如圖7.1.2-7,BD=DC,∠ABN=7.1.2《三角形的高、中線、角平分線》說課稿∠ABC,則AD是△ABC的________線,BN是△ABC的________,

  ND是△BNC的________線.

  9.下列判斷中,正確的個(gè)數(shù)為( )

  (1)D是△ABC中BC邊上的一個(gè)點(diǎn),且BD=CD,則AD是△ABC的中線

 。2)D是△ABC中BC邊上的一個(gè)點(diǎn),且∠ADC=90°,則AD是△ABC的高

 。3)D是△ABC中BC邊上的一個(gè)點(diǎn),且∠BAD=7.1.2《三角形的高、中線、角平分線》說課稿∠BAC,則AD是△ABC的角平分線

 。4)三角形的中線、高、角平分線都是線段

  A.1 B.2 C.3 D.4

  3、探究活動(dòng)1:探究三角形的高,師提出問題,生獨(dú)立解答,教師關(guān)注學(xué)生對(duì)高和邊的對(duì)應(yīng)關(guān)系是否明確,并結(jié)合圖形引出三角形高的定義,并且利用圖形,讓生用語言描述,師加以修正,目的發(fā)展學(xué)生的觀察力與語言表述能力。在此基礎(chǔ)上讓學(xué)生明確三角形的高是一條線段。為了培養(yǎng)學(xué)生的繪圖能力,讓小組之間合作完成銳角三角形、直角三角形、鈍角三角形各邊上的高。小組交流,歸納三角形高的特點(diǎn),再讓他們敘述小組所探究的結(jié)論,師加以適當(dāng)修正與鼓勵(lì)。

  在活動(dòng)中,師應(yīng)重點(diǎn)關(guān)注:

 、賹W(xué)生能否多方位的加以探究

  ②學(xué)生能否用流利的語言描述自己的發(fā)現(xiàn)

 、蹖W(xué)生能否對(duì)不同的觀點(diǎn)進(jìn)行質(zhì)疑,感受數(shù)學(xué)結(jié)論的正確性。之后設(shè)計(jì)的是鞏固性練習(xí),通過學(xué)生練習(xí),對(duì)三角形高的的有關(guān)知識(shí)加以鞏固,讓學(xué)生從運(yùn)用所學(xué)知識(shí)解決問題的過程,獲得成功的體驗(yàn),從而激發(fā)他們學(xué)習(xí)的積極性。

  3、探究活動(dòng)2 : 探究三角形的中線:學(xué)生在畫一畫中體會(huì)三角形中線的定義,培養(yǎng)學(xué)生動(dòng)腦、動(dòng)手能力,語言表達(dá)能力。

  4、探究活動(dòng)3:探究三角形的角平分線。首先讓學(xué)生折一折,在動(dòng)手操作中體會(huì)折痕是否平分三角形的內(nèi)角,之后分小組折疊銳角三角形、直角三角形、鈍角三角形的角平分線,小組交流,歸納三角形角平分線的特點(diǎn),再讓他們敘述小組所探究的結(jié)論,師加以適當(dāng)修正與鼓勵(lì)。從而很好的培養(yǎng)了學(xué)生的動(dòng)手操作和探究能力。

  5、練習(xí)鞏固,深化拓展

  先以搶答形式解決問題1、問題2,讓學(xué)生利用所學(xué)知識(shí),進(jìn)一步鞏固三角形的高、中線、角平分線的有關(guān)概念,提高學(xué)生獨(dú)立解決問題的能力。拓展練習(xí)是一個(gè)綜合性題目,一方面引導(dǎo)學(xué)生從復(fù)雜圖形中抽取基本圖形,從而加強(qiáng)學(xué)生對(duì)概念的掌握,進(jìn)一步發(fā)展學(xué)生的思維,拓展能力,運(yùn)用以增強(qiáng)直觀性。

  6、感悟與收獲:進(jìn)一步提升學(xué)生對(duì)知識(shí)點(diǎn)理解。

  7、作業(yè)布置:讓學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決生活實(shí)例,是讓學(xué)生感受數(shù)學(xué)和生活的聯(lián)系及數(shù)學(xué)在生活中的重要性,充分體現(xiàn)數(shù)學(xué)于生活又還原于生活。

高中數(shù)學(xué)說課稿 篇2

  說課:古典概型

  麻城理工學(xué)校謝衛(wèi)華

 。ㄒ唬┙滩牡匚患白饔:本節(jié)課是高中數(shù)學(xué)(必修

  3)第三章概率的第二節(jié)古典概型的第一課時(shí),是在

  隨機(jī)事件的概率之后,幾何概型之前,尚未學(xué)習(xí)排列組合的情況下教學(xué)的。古典概型是一種特殊的數(shù)學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當(dāng)重要的地位。學(xué)好古典概型可以為其它概率的學(xué)習(xí)奠定基礎(chǔ),同時(shí)有利于理解概率的概念,有利于計(jì)算一些事件的概率,有利于解釋生活中的一些問題。

  根據(jù)本節(jié)課的地位和作用以及新課程標(biāo)準(zhǔn)的具體要求,制訂教學(xué)重點(diǎn):理解古典概型的概念及利用古典概型求解隨機(jī)事件的概率;

  根據(jù)本節(jié)課的內(nèi)容,即尚未學(xué)習(xí)排列組合,以及學(xué)生的心理特點(diǎn)和認(rèn)知水平,制定了教學(xué)難點(diǎn):如何判斷一個(gè)試驗(yàn)是否是古典概型,分清在一個(gè)古典概型中某隨機(jī)事件包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。

 。ǘ└鶕(jù)新課程標(biāo)準(zhǔn),并結(jié)合學(xué)生心理發(fā)展的需求,以及人格、情感、價(jià)值觀的具體要求制訂教學(xué)目標(biāo):

  1.知識(shí)與技能

  (1)理解古典概型及其概率計(jì)算公式(2)會(huì)用列舉法計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率2.情感態(tài)度與價(jià)值觀

  概率教學(xué)的核心問題是讓學(xué)生了解隨機(jī)現(xiàn)象與概率的意義,加強(qiáng)與實(shí)際生活的聯(lián)系,以科學(xué)的態(tài)度評(píng)價(jià)身邊的一些隨機(jī)現(xiàn)象。適當(dāng)?shù)卦黾訉W(xué)生合作學(xué)習(xí)交流的機(jī)會(huì),盡量地讓學(xué)生自己舉出生活和學(xué)習(xí)中與古典概型有關(guān)的實(shí)例。使得學(xué)生在體會(huì)概率意義的同時(shí),感受與他人合作的重要性以及初步形成實(shí)事求是地科學(xué)態(tài)度和鍥而不舍的求學(xué)精神

 。ㄈ┙虒W(xué)方法:根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,通過模擬試驗(yàn)讓學(xué)生理解古典概型的特征,觀

  察類比各個(gè)試驗(yàn),歸納總結(jié)出古典概型的概率計(jì)算公式,體現(xiàn)了化歸的重要思想,掌握列舉法,學(xué)會(huì)運(yùn)用數(shù)形結(jié)合、分類討論的思想解決概率的計(jì)算問題。

 。ㄋ模┙虒W(xué)過程:

  一、提出問題引入新課:在課前,教師布置任務(wù),以數(shù)學(xué)小組為單位,完成下面兩個(gè)模擬試驗(yàn):試驗(yàn)一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄“正面朝上”和“反面朝上”的次數(shù),要求每個(gè)數(shù)學(xué)小組至少完成20次(最好是整十?dāng)?shù)),最后由科代表匯總;

  試驗(yàn)二:拋擲一枚質(zhì)地均勻的骰子,分別記錄“1點(diǎn)”、“2點(diǎn)”、“3點(diǎn)”、“4點(diǎn)”、“5點(diǎn)”和“6點(diǎn)”的次數(shù),要求每個(gè)數(shù)學(xué)小組至少完成60次(最好是整十?dāng)?shù)),最后由科代表匯總。

  教師最后匯總方法、結(jié)果和感受,并提出問題:1.用模擬試驗(yàn)的方法來求某一隨機(jī)事件的概率好不好?為什么?2.根據(jù)以前的學(xué)習(xí),上述兩個(gè)模擬試驗(yàn)的每個(gè)結(jié)果之間都有什么特點(diǎn)?

  二、思考交流形成概念:學(xué)生觀察對(duì)比得出兩個(gè)模擬試驗(yàn)的相同點(diǎn)和不同點(diǎn),教師給出基本事件的概念,并對(duì)相關(guān)特點(diǎn)加以說明,加深新概念的理解。我們把上述試驗(yàn)中的隨機(jī)事件稱為基本事件,它是試驗(yàn)的每一個(gè)可能結(jié)果。

  基本事件有如下的兩個(gè)特點(diǎn):(1)任何兩個(gè)基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。給出例題1,讓學(xué)生自行解決,從而進(jìn)一步理解基本事件,然后讓學(xué)生先觀察對(duì)比,找出兩個(gè)模擬試驗(yàn)和例1的共同特點(diǎn),再概括總結(jié)得到的結(jié)論,(1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè)(有限性);(2)每個(gè)基本事件出現(xiàn)的可能性相等(等可能性)。我們將具有這兩個(gè)特點(diǎn)的概率模型稱為古典概率概型,簡稱

  古典概型。

  三、觀察分析推導(dǎo)公式:教師提出問題:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機(jī)事件出現(xiàn)的概率如何計(jì)算?引導(dǎo)學(xué)生類比分析兩個(gè)模擬試驗(yàn)和例1的概率,先通過用概率加法公式求出隨機(jī)事件的概率,再對(duì)比概率

  結(jié)果,發(fā)現(xiàn)其中的聯(lián)系。實(shí)驗(yàn)一中,出現(xiàn)正面朝上的概率與反面朝上的`概率相等,即

  1“出現(xiàn)正面朝上”所包含的基本事件的個(gè)數(shù),試驗(yàn)二中,出現(xiàn)各個(gè)點(diǎn)的概率相等,即

  P(“出現(xiàn)正面朝上”)==

  2基本事件的總數(shù)3“出現(xiàn)偶數(shù)點(diǎn)”所包含的基本事件的個(gè)數(shù),根據(jù)上述兩則模擬試驗(yàn),可以概括總結(jié)出,古典

  P(“出現(xiàn)偶數(shù)點(diǎn)”)==

  6基本事件的總數(shù)

  概型計(jì)算任何事件的

  的理解,教師提問:在使用古典概型的概率公式時(shí),應(yīng)該注意什么?學(xué)生回答,教師歸納:應(yīng)該注意,(1)要判斷該概率模型是不是古典概型;

  (2)要找出隨機(jī)事件A包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。

  四、例題分析推廣應(yīng)用:通過例題2及3,鞏固學(xué)生對(duì)已學(xué)知識(shí)的掌握,提高學(xué)生分析問題、解決問題的能力。讓學(xué)生明確決概率的計(jì)算問題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機(jī)事件A包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。適時(shí)利用列表數(shù)形結(jié)合和分類討論等思想方法,既能形象直觀地列出基本事件的總數(shù),又能做到列舉的不重不漏。

  五、總結(jié)概括加深理解:學(xué)生小結(jié)歸納,不足的地方老師補(bǔ)充說明。使學(xué)生對(duì)本節(jié)課的知識(shí)有一個(gè)系統(tǒng)全面的認(rèn)識(shí),并把學(xué)過的相關(guān)知識(shí)有機(jī)地串聯(lián)起來,便于記憶和應(yīng)用,也進(jìn)一步升華了這節(jié)課所要表達(dá)的本質(zhì)思想,讓學(xué)生的認(rèn)知更上一層。

 。ㄎ澹┎贾米鳂I(yè)P123練習(xí)1、2題(六)板書設(shè)計(jì)

  3.2.13.2.1古典概型古典概型試驗(yàn)一試驗(yàn)二基本事件

  古典概型概率

  計(jì)算公式

  例3列表

  例1樹狀圖古典概型

  例2

  以上是我對(duì)《古典概型概型》這節(jié)課的理解和處理方法,歡迎各位專家朋友批評(píng)指正,謝謝!

  說課教案:古典概型

  麻城理工學(xué)校謝衛(wèi)華

高中數(shù)學(xué)說課稿 篇3

  各位老師,大家好!

  我是08數(shù)學(xué)本科(2)班的xx,我今天說課的題目是集合的含義與表示.下面我先對(duì)教材進(jìn)行分析.

  一、教材分析

  集合的含義與表示是選自高中新課標(biāo)A版教材必修1第一章第一節(jié)內(nèi)容。在此之前,學(xué)生已經(jīng)接觸過集合的一些相關(guān)概念,如自然數(shù)的集合、有理數(shù)的集合.集合是一個(gè)基礎(chǔ)性概念,是數(shù)學(xué)以至所有科學(xué)的基礎(chǔ),應(yīng)用廣泛. 集合是高考的對(duì)象,在高考中以選擇題或填空題的形式出現(xiàn),在高考中具有不可忽視的地位.本節(jié)內(nèi)容能夠培養(yǎng)學(xué)生的探索精神和數(shù)學(xué)素養(yǎng).

  二、教學(xué)目標(biāo)

  根據(jù)上述對(duì)教材的分析,我確定本節(jié)課的教學(xué)目標(biāo)為 1. 知識(shí)與技能目標(biāo) 理解集合的含義,集合的元素的特征,元素與集合的關(guān)系. 掌握集合的表示方法. 了解常用的數(shù)集.培養(yǎng)學(xué)生的抽象思維能力、分析能力、判斷能力.

  2. 過程與方法目標(biāo)

  應(yīng)用自然語言與集合語言描述不同的具體問題,與學(xué)生一道歸納出集合的含義. 掌握從具體到抽象,從特殊到一般的研究方法.

  3. 情感態(tài)度價(jià)值觀目標(biāo)

  使得學(xué)生感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美. 培養(yǎng)學(xué)生正確的、高尚的、唯物的價(jià)值觀.培養(yǎng)學(xué)生獨(dú)立思考、敢于創(chuàng)新、勇于探索的科學(xué)精神,激發(fā)同學(xué)們學(xué)習(xí)數(shù)學(xué)的興趣. 三、重點(diǎn)和難點(diǎn)

  重點(diǎn):根據(jù)上述對(duì)教材的分析,確定的教學(xué)目標(biāo),我確定本節(jié)課的教學(xué)重點(diǎn)為:集合的含義,集合的表示方法.

  難點(diǎn):考慮到學(xué)生已有的知識(shí)基礎(chǔ)與認(rèn)知能力,我認(rèn)為教學(xué)難點(diǎn)是集合的表示方法. 關(guān)鍵:學(xué)好本節(jié)課的關(guān)鍵是理解集合的含義,掌握集合的表示方法. 四、教學(xué)方法 1.學(xué)情分析

 。1)生理特點(diǎn):高中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗(yàn)型逐步走向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨之迅速發(fā)展.

 。2)心理特點(diǎn):高中學(xué)生雖有好奇,好表現(xiàn)的因素,更有知道原理、明白方法的理性愿望,希望平等交流研討,厭煩空洞的說教.

  (3)認(rèn)知障礙:有的學(xué)生遺忘了學(xué)過的知識(shí),有的學(xué)生想象能力與歸納能力較差. 2.教法學(xué)法

  根據(jù)上面的分析,從高中生的心理特點(diǎn)和認(rèn)知水平出發(fā),結(jié)合學(xué)生的實(shí)際情況與認(rèn)知障礙,按照突出重點(diǎn),突破難點(diǎn),本節(jié)課采用學(xué)生廣泛參與,師生共同探討的啟發(fā)式教學(xué)法. 五、教學(xué)過程(用描述性語言,不要具體化。

  根據(jù)以上分析,我對(duì)本節(jié)課的教學(xué)過程作如下安排:

  1.引入課題

  先引導(dǎo)學(xué)生回顧自然數(shù)的集合,有理數(shù)的集合,再提出問題:集合的含義是什么呢? 2.新課講解

  (1)分析自然數(shù)的集合,有理數(shù)的集合,不等式的解集,歸納出它們的共同特征:都是由一些確定的、互不相同的對(duì)象組成的整體.

 。2)根據(jù)上面的分析與討論,以及歸納出的共同特征,講解集合的含義,元素與集合的關(guān)系,一些常見的數(shù)集.

 。3)為了化解教學(xué)難點(diǎn),我將結(jié)合具體的例子,講解列舉法與描述法.

 。4)為了加強(qiáng)學(xué)生對(duì)集合的含義的理解,我將與學(xué)生一起歸納出集合的元素的特征. (5)為了提高學(xué)生解決實(shí)際問題的能力,我將講解三個(gè)不同題型、不同難度的例題. 3.課堂練習(xí)

  為了使得學(xué)生掌握等差數(shù)列的定義與通項(xiàng)公式,提高解題技能,我將在課堂上布置3道不同類型、不同難度的練習(xí)題.

  4.歸納小結(jié)

  完成以上的教學(xué)內(nèi)容后,我將組織學(xué)生對(duì)本節(jié)課的內(nèi)容做一個(gè)總結(jié),強(qiáng)調(diào)重點(diǎn). 5.布置作業(yè)

  為了鞏固所學(xué)知識(shí),激發(fā)學(xué)生的求知欲,我將布置3道不同類型、不同難度的作業(yè)題. 六、板書設(shè)計(jì)

  結(jié)合中學(xué)黑板的特點(diǎn),我將如下板書本節(jié)教學(xué)內(nèi)容: 集合的含義與表示 實(shí)例 1. 2. 3. 集合的含義 常見數(shù)集 元素與集合的關(guān)系 集合的表示方法 集合的元素的特征 例1 例2 例3 練習(xí) 作業(yè) 各位老師,以上只是我的一種預(yù)設(shè)方案,但課堂千變?nèi)f化,我將根據(jù)實(shí)際情況靈活掌握,隨機(jī)發(fā)揮.本說課一定存在諸多不足,懇請(qǐng)各位老師提出寶貴意見,謝謝! 1.1.2集合間的基本關(guān)系

  數(shù)學(xué)必修1第一章第二節(jié)第1小節(jié)《集合間的基本關(guān)系》說課稿.

  一 、教學(xué)內(nèi)容分析

  集合概念及其理論是近代數(shù)學(xué)的基石,集合語言是現(xiàn)代數(shù)學(xué)的基本語言,通過學(xué)習(xí)、使用集合語言,有利于學(xué)生簡潔、準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,高中課程只將集合作為一種語言來學(xué)

  習(xí),學(xué)生將學(xué)會(huì)使用最基本的集合語言表示有關(guān)的數(shù)學(xué)對(duì)象,發(fā)展運(yùn)用數(shù)學(xué)語言進(jìn)行交流的能力.

  本章集合的初步知識(shí)是學(xué)生學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是高中數(shù)學(xué)學(xué)習(xí)的出發(fā)點(diǎn)。本小節(jié)內(nèi)容是在學(xué)習(xí)了集合的概念以及集合的表示方法、元素與集合的從屬關(guān)系的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)集合與集合之間的`關(guān)系,同時(shí)也是下一節(jié)學(xué)習(xí)集合之間的運(yùn)算的基礎(chǔ),因此本小節(jié)起著承上啟下的重要作用.

  本節(jié)課的教學(xué)重視過程的教學(xué),因此我選擇了啟發(fā)式教學(xué)的教學(xué)方式。通過問題情境的設(shè)置,層層深入,由具體到抽象,由特殊到一般,幫助學(xué)生的逐步提升數(shù)學(xué)思維。

  二、學(xué)情分析

  本節(jié)課是學(xué)生進(jìn)入高中學(xué)習(xí)的第3節(jié)數(shù)學(xué)課,也是學(xué)生正式學(xué)習(xí)集合語言的第3節(jié)課。由于一切對(duì)于學(xué)生來說都是新的,所以學(xué)生的學(xué)習(xí)興趣相對(duì)來說比較濃厚,有利于學(xué)習(xí)活動(dòng)的展開。而集合對(duì)于學(xué)生來說既熟悉又陌生,熟悉的是在初中就已經(jīng)使用數(shù)軸求簡單不等式(組)的解,用圖示法表示四邊形之間的關(guān)系,陌生的是使用集合的語言來描述集合之間的關(guān)系。而從具體的實(shí)例中抽象出集合之間的包含關(guān)系的本質(zhì),對(duì)于學(xué)生是一個(gè)挑戰(zhàn)。

  根據(jù)上面對(duì)教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點(diǎn),確定本節(jié)課的教學(xué)目標(biāo)和教學(xué)重、難點(diǎn)如下:

  三、教學(xué)目標(biāo): 知識(shí)與技能目標(biāo):

 。1)理解集合之間包含和相等的含義; (2)能識(shí)別給定集合的子集;

 。3)能使用Venn圖表達(dá)集合之間的包含關(guān)系 過程與方法目標(biāo):

 。1)通過復(fù)習(xí)元素與集合之間的關(guān)系,對(duì)照實(shí)數(shù)的相等與不相等的關(guān)系聯(lián)系元素與集合之間的從屬關(guān)系,探究集合之間的包含和相等關(guān)系;

 。2)初步經(jīng)歷使用最基本的集合語言表示有關(guān)的數(shù)學(xué)對(duì)象的過程,體會(huì)集合語言,發(fā)展運(yùn)用數(shù)學(xué)語言進(jìn)行交流的能力;

  情感、態(tài)度、價(jià)值觀目標(biāo):

 。1)了解集合的包含、相等關(guān)系的含義,感受集合語言在描述客觀現(xiàn)實(shí)和數(shù)學(xué)問題中的意義;

  (2)探索利用直觀圖示(Venn圖)理解抽象概念,體會(huì)數(shù)形結(jié)合的思想。

  四、本節(jié)課教學(xué)的重、難點(diǎn):

  重點(diǎn):(1)幫助學(xué)生由具體到抽象地認(rèn)識(shí)集合與集合之間的關(guān)系——子集; (2)如何確定集合之間的關(guān)系; 難點(diǎn):集合關(guān)系與其特征性質(zhì)之間的關(guān)系 五、教學(xué)過程設(shè)計(jì)

  1.新課的引入——設(shè)置問題情境,激發(fā)學(xué)習(xí)興趣

  我們的教學(xué)方式,要服務(wù)于學(xué)生的學(xué)習(xí)方式。那我們來思考一下,在何種情況下,學(xué)生學(xué)得最好?我想,當(dāng)學(xué)生感興趣時(shí);當(dāng)學(xué)生智力遭遇到挑戰(zhàn)時(shí);當(dāng)學(xué)生能自主地參與探索和創(chuàng)新時(shí);當(dāng)學(xué)生能夠?qū)W以致用時(shí);當(dāng)學(xué)生得到鼓勵(lì)與信任時(shí),他們學(xué)得最好。數(shù)學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上,這樣才能讓學(xué)生體驗(yàn)到成就感,保持積極的興奮狀態(tài)。而集合的語言對(duì)于學(xué)生來說是陌生的,雖然比較容易理解,但是由于概念多,符號(hào)多,學(xué)生容易產(chǎn)生厭煩心理,如何讓學(xué)生長時(shí)間興趣盎然地投入到集合關(guān)系的學(xué)習(xí)中呢?我在整個(gè)教學(xué)過程中層層設(shè)問,不斷地向?qū)W生提出挑戰(zhàn),以激發(fā)學(xué)生的學(xué)習(xí)興趣。在引入的環(huán)節(jié),我設(shè)計(jì)了下面的問題情境1:元素與集合有“屬于”、“不屬于”的關(guān)系;數(shù)與數(shù)之間有“相等”、“不相等”的關(guān)系;那么集合與集合之間有什么樣的關(guān)系呢?問題的拋出猶如一石激起千層浪,在這兒,答案并不重要,重要的是學(xué)生迫切尋求答案的愿望,激發(fā)學(xué)生的求知欲。在學(xué)生討論的基礎(chǔ)上提出這一節(jié)課我們來共同探討集合之間的基本關(guān)系。(板書課題)

  2.概念的形成——從特殊到一般、從具體到抽象,從已知到未知 問題情境1的探究:

  具體實(shí)例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四邊形} (3)A={x| x>2}, B={x| x>1};

  此環(huán)節(jié)設(shè)置了三個(gè)具體實(shí)例,包含了有限集、無限集、數(shù)集(包括不等式)、圖形的集合。第一個(gè)例子為有限集數(shù)集,最為簡單直觀,對(duì)學(xué)生初步認(rèn)識(shí)子集,理解子集的概念很有幫助;第二個(gè)例子是圖形集合且是無限集,需要通過探究圖形的性質(zhì)之間的關(guān)系找出集合間的關(guān)系;第三個(gè)例子是無限數(shù)集,基于學(xué)生初中階段已經(jīng)學(xué)習(xí)了用數(shù)軸表示不等式的解集,啟發(fā)學(xué)生可以通過數(shù)形結(jié)合的方式來研究集合之間的關(guān)系,從而引出Venn圖。對(duì)第一個(gè)例子,借助多媒體演示動(dòng)畫,幫助學(xué)生體會(huì)“任意”性。使學(xué)生在經(jīng)歷直觀感知、觀察發(fā)現(xiàn)的基礎(chǔ)上建構(gòu)子集的概念,并且我在教學(xué)的過程中特別注重讓學(xué)生說,借此來學(xué)習(xí)運(yùn)用集合語言進(jìn)行交流,對(duì)于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果我都給予積極的評(píng)價(jià)。

  3、概念的剖析

 。1)A中的元素x與集合B的關(guān)系決定了集合A與集合B之間的關(guān)系,

 。2)符號(hào)的表示,Venn圖的引入及其用Venn圖表示集合的方法。

  這里引入了許多新的符號(hào),對(duì)初學(xué)者來說容易混淆,是一個(gè)易錯(cuò)點(diǎn),因此我在這里設(shè)置了一個(gè)填空小練習(xí):

  0 {0}, {正方形} {矩形},三角形 {等邊三角形} {梯形} {平行四邊形},{x|-1

  并引導(dǎo)學(xué)生類比數(shù)與數(shù)之間的“≤”“≥”符號(hào)來記憶“?”“?”符號(hào)。

  4、概念的深化——集合的相等與真子集

  問題情境2:如果集合A是集合B的子集,那么對(duì)于任意的x?A,有x?B;那么對(duì)于集合B中的任何一個(gè)元素,它與集合A之間又可能是什么關(guān)系呢?

高中數(shù)學(xué)說課稿 篇4

  一、教材分析

  1、教材所處的地位和作用

  奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。

  奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識(shí)結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。因此,本節(jié)課起著承上啟下的重要作用。

  2、學(xué)情分析

  從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對(duì)稱圖形和中心對(duì)稱圖形,并且有了一定數(shù)量的簡單函數(shù)的儲(chǔ)備。同時(shí),剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗(yàn)。

  從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗(yàn)型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來思考和解決問題、

  3、教學(xué)目標(biāo)

  基于以上對(duì)教材和學(xué)生的分析,以及新課標(biāo)理念,我設(shè)計(jì)了這樣的教學(xué)目標(biāo):

  【知識(shí)與技能】

  1、能判斷一些簡單函數(shù)的奇偶性。

  2、能運(yùn)用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。

  【過程與方法】

  經(jīng)歷奇偶性概念的形成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。

  【情感、態(tài)度與價(jià)值觀】

  通過自主探索,體會(huì)數(shù)形結(jié)合的思想,感受數(shù)學(xué)的對(duì)稱美。

  從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。

  4、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):函數(shù)奇偶性的概念和幾何意義。

  幾年的教學(xué)實(shí)踐證明,雖然函數(shù)奇偶性這一節(jié)知識(shí)點(diǎn)并不是很難理解,但知識(shí)點(diǎn)掌握不全面的學(xué)生容易出現(xiàn)下面的錯(cuò)誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗(yàn)成立即可,而忽視了考慮函數(shù)定義域的問題。因此,在介紹奇、偶函數(shù)的定義時(shí),一定要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。因此,我把函數(shù)的奇偶性概念設(shè)計(jì)為本節(jié)課的重點(diǎn)。在這個(gè)問題上我除了注意概念的講解,還特意安排了一道例題,來加強(qiáng)本節(jié)課重點(diǎn)問題的講解。

  難點(diǎn):奇偶性概念的數(shù)學(xué)化提煉過程。

  由于,學(xué)生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對(duì)建構(gòu)奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數(shù)學(xué)化提煉過程設(shè)計(jì)為本節(jié)課的難點(diǎn)。

  二、教法與學(xué)法分析

  1、教法

  根據(jù)本節(jié)教材內(nèi)容和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學(xué)中,精心設(shè)計(jì)一個(gè)又一個(gè)帶有啟發(fā)性和思考性的問題,創(chuàng)設(shè)問題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動(dòng)探索問題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。

  2、學(xué)法

  讓學(xué)生在觀察一歸納一檢驗(yàn)一應(yīng)用的學(xué)習(xí)過程中,自主參與知識(shí)的`發(fā)生、發(fā)展、形成的過程,從而使學(xué)生掌握知識(shí)。

  三、教學(xué)過程

  具體的教學(xué)過程是師生互動(dòng)交流的過程,共分六個(gè)環(huán)節(jié):設(shè)疑導(dǎo)入、觀圖激趣;指導(dǎo)觀察、形成概念;學(xué)生探索、領(lǐng)會(huì)定義;知識(shí)應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學(xué)以致用。下面我對(duì)這六個(gè)環(huán)節(jié)進(jìn)行說明。

 。ㄒ唬┰O(shè)疑導(dǎo)入、觀圖激趣

  由于本節(jié)內(nèi)容相對(duì)獨(dú)立,專題性較強(qiáng),所以我采用了開門見山導(dǎo)入方式,直接點(diǎn)明要學(xué)的內(nèi)容,使學(xué)生的思維迅速定向,達(dá)到開始就明確目標(biāo)突出重點(diǎn)的效果。

  用多媒體展示一組圖片,使學(xué)生感受到生活中的對(duì)稱美。再讓學(xué)生觀察幾個(gè)特殊函數(shù)圖象。通過讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為學(xué)習(xí)新知識(shí)作好鋪墊。

  (二)指導(dǎo)觀察、形成概念

  在這一環(huán)節(jié)中共設(shè)計(jì)了2個(gè)探究活動(dòng)。

  探究1 、2 數(shù)學(xué)中對(duì)稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個(gè)探究主要是通過學(xué)生的自主探究來實(shí)現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學(xué)生很快就說出函數(shù)圖象關(guān)于Y軸(原點(diǎn))對(duì)稱。接著學(xué)生填表,從數(shù)值角度研究圖象的這種特征,體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律? 引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學(xué)生發(fā)現(xiàn)兩個(gè)函數(shù)的對(duì)稱性反應(yīng)到函數(shù)值上具有的特性, ()然后通過解析式給出嚴(yán)格證明,進(jìn)一步說明這個(gè)特性對(duì)定義域內(nèi)任意一個(gè) 都成立。 最后給出偶函數(shù)(奇函數(shù))定義(板書)。

  在這個(gè)過程中,學(xué)生把對(duì)圖形規(guī)律的感性認(rèn)識(shí),轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認(rèn)識(shí),切實(shí)經(jīng)歷了一次從特殊歸納出一般的過程體驗(yàn)。

 。ㄈ 學(xué)生探索、領(lǐng)會(huì)定義

  探究3 下列函數(shù)圖象具有奇偶性嗎?

  設(shè)計(jì)意圖:深化對(duì)奇偶性概念的理解。強(qiáng)調(diào):函數(shù)具有奇偶性的前提條件是--定義域關(guān)于原點(diǎn)對(duì)稱。(突破了本節(jié)課的難點(diǎn))

  (四)知識(shí)應(yīng)用,鞏固提高

  在這一環(huán)節(jié)我設(shè)計(jì)了4道題

  例1判斷下列函數(shù)的奇偶性

  選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學(xué)生在下面完成。

  例1設(shè)計(jì)意圖是歸納出判斷奇偶性的步驟:

  (1) 先求定義域,看是否關(guān)于原點(diǎn)對(duì)稱;

  (2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。

  例2 判斷下列函數(shù)的奇偶性:

  例3 判斷下列函數(shù)的奇偶性:

  例2、3設(shè)計(jì)意圖是探究一個(gè)函數(shù)奇偶性的可能情況有幾種類型?

  例4(1)判斷函數(shù)的奇偶性。

 。2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?

  例4設(shè)計(jì)意圖加強(qiáng)函數(shù)奇偶性的幾何意義的應(yīng)用。

  在這個(gè)過程中,我重點(diǎn)關(guān)注了學(xué)生的推理過程的表述。通過這些問題的解決,學(xué)生對(duì)函數(shù)的奇偶性認(rèn)識(shí)、理解和應(yīng)用都能提升很大一個(gè)高度,達(dá)到當(dāng)堂消化吸收的效果。

 。ㄎ澹┛偨Y(jié)反饋

  在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動(dòng)模式,問題貫穿于探究過程的始終,切實(shí)體現(xiàn)了啟發(fā)式、問題式教學(xué)法的特色。

  在本節(jié)課的最后對(duì)知識(shí)點(diǎn)進(jìn)行了簡單回顧,并引導(dǎo)學(xué)生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗(yàn)。知識(shí)在于積累,而學(xué)習(xí)數(shù)學(xué)更在于知識(shí)的應(yīng)用經(jīng)驗(yàn)的積累。所以提高知識(shí)的應(yīng)用能力、增強(qiáng)錯(cuò)誤的預(yù)見能力是提高數(shù)學(xué)綜合能力的很重要的策略。

 。┓謱幼鳂I(yè),學(xué)以致用

  必做題:課本第36頁練習(xí)第1-2題。

  選做題:課本第39頁習(xí)題1、3A組第6題。

  思考題:課本第39頁習(xí)題1、3B組第3題。

  設(shè)計(jì)意圖:面向全體學(xué)生,注重個(gè)人差異,加強(qiáng)作業(yè)的針對(duì)性,對(duì)學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步達(dá)到不同的人在數(shù)學(xué)上得到不同的發(fā)展。

高中數(shù)學(xué)說課稿 篇5

  1. 教材分析

  1-1教學(xué)內(nèi)容及包含的知識(shí)點(diǎn)

  (1) 本課內(nèi)容是高中數(shù)學(xué)第二冊(cè)第七章第三節(jié)《兩條直線的位置關(guān)系》的最后一個(gè)內(nèi)容。

  (2) 包含知識(shí)點(diǎn):點(diǎn)到直線的距離公式和兩平行線的距離公式。

  1-2教材所處地位、作用和前后聯(lián)系

  本節(jié)課是兩條直線位置關(guān)系的最后一個(gè)內(nèi)容,在此之前,有對(duì)兩線位置關(guān)系的定性刻畫:平行、垂直,以及對(duì)相交兩線的定量刻畫:夾角、交點(diǎn)。在此之后,有圓錐曲線方程,因而本節(jié)既是對(duì)前面兩線垂直、兩線交點(diǎn)的復(fù)習(xí),又是為后面計(jì)算點(diǎn)線距離(在直線和圓錐曲線構(gòu)成的組合圖形中)提供一套工具。

  可見,本課有承前啟后的作用。

  1-3教學(xué)大綱要求

  掌握點(diǎn)到直線的距離公式

  1-4高考大綱要求及在高考中的顯示形式

  掌握點(diǎn)到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構(gòu)成的組合圖形為背景,判斷直線和圓錐曲線的位置或構(gòu)成三角形求高,涉及絕對(duì)值,直線垂直,最小值等。

  1-5教學(xué)目標(biāo)及確定依據(jù)

  教學(xué)目標(biāo)

  (1) 掌握點(diǎn)到直線的距離的概念、公式及公式的推導(dǎo)過程,能用公式來求點(diǎn)線距離和線線距離。

  (2) 培養(yǎng)學(xué)生探究性思維方法和由特殊到一般的研究能力。

  (3) 認(rèn)識(shí)事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化知識(shí)的能力。

  (4) 滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。

  確定依據(jù):

  中華人民共和國教育部制定的《全日制普通高級(jí)中學(xué)數(shù)學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎(chǔ)教育課程改革綱要(試行)》,《高考考試說明》(20xx年)

  1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵

  (1) 重點(diǎn):點(diǎn)到直線的距離公式

  確定依據(jù):由本節(jié)在教材中的地位確定

  (2) 難點(diǎn):點(diǎn)到直線的距離公式的推導(dǎo)

  確定依據(jù):根據(jù)定義進(jìn)行推導(dǎo),思路自然,但運(yùn)算繁瑣;用等積法推導(dǎo),運(yùn)算較簡單,但思路不自然,學(xué)生易被動(dòng),主體性得不到體現(xiàn)。

  分析“嘗試性題組”解題思路可突破難點(diǎn)

  (3)關(guān)鍵:實(shí)現(xiàn)兩個(gè)轉(zhuǎn)化。一是將點(diǎn)線距離轉(zhuǎn)化為定點(diǎn)到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點(diǎn)的距離。

  2.教法

  2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學(xué)生探究性思維目標(biāo),在教學(xué)過程中,使老師的主導(dǎo)性和學(xué)生的主體性有機(jī)結(jié)合,使學(xué)生能夠愉快地自覺學(xué)習(xí),通過學(xué)生自己練習(xí)“嘗試性題組”,引導(dǎo)、啟發(fā)學(xué)生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學(xué)模型。

  確定依據(jù):

  (1)美國教育學(xué)家波利亞的教與學(xué)三原則:主動(dòng)學(xué)習(xí)原則,最佳動(dòng)機(jī)原則,階段漸進(jìn)性原則。

  (2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。

  2-2教具:多媒體和黑板等傳統(tǒng)教具

  3. 學(xué)法

  3-1發(fā)現(xiàn)法:豐富學(xué)生的數(shù)學(xué)活動(dòng),學(xué)生經(jīng)過練習(xí)、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的.數(shù)學(xué)模型,再運(yùn)用所得理論和方法去解決問題。

  一句話:還課堂以生命力,還學(xué)生以活力。

  3-2學(xué)情:

  (1)知識(shí)能力狀況,本節(jié)為兩線位置關(guān)系的最后一個(gè)內(nèi)容,在這之前學(xué)生已經(jīng)系統(tǒng)的學(xué)習(xí)了直線方程的各種形式,有對(duì)兩線位置關(guān)系的定性認(rèn)識(shí)和對(duì)兩線相交的定量認(rèn)識(shí),為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點(diǎn)作好了知識(shí)儲(chǔ)備。同時(shí)學(xué)生對(duì)解析幾何的實(shí)質(zhì)中,用坐標(biāo)系溝通直線與方程的研究辦法,有了初步認(rèn)識(shí),數(shù)形結(jié)合的思想正逐漸趨于成熟。

  (2)心理特點(diǎn):又見“點(diǎn)到直線的距離”(初中已學(xué)習(xí)定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢動(dòng)機(jī)由此而生。

  (3)生活經(jīng)驗(yàn):數(shù)學(xué)源于生活,生活中的點(diǎn)線距隨處可見,怎樣將實(shí)際問題數(shù)學(xué)化,是每個(gè)追求成長、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數(shù)學(xué)活動(dòng)能夠讓他們真正參與,體驗(yàn)過程,錘煉意志,培養(yǎng)能力。

  3-3學(xué)具:直尺、三角板

  4. 教學(xué)評(píng)價(jià)

  學(xué)生完成反思性學(xué)習(xí)報(bào)告,書寫要求:

  (1) 整理知識(shí)結(jié)構(gòu)。

  (2) 總結(jié)所學(xué)到的基本知識(shí),技能和數(shù)學(xué)思想方法。

  (3) 總結(jié)在學(xué)習(xí)過程中的經(jīng)驗(yàn),發(fā)明發(fā)現(xiàn),學(xué)習(xí)障礙等,說明產(chǎn)生障礙的原因。

  (4) 談?wù)勀銓?duì)老師教法的建議和要求。

  作用:

  (1) 通過反思使學(xué)生對(duì)所學(xué)知識(shí)系統(tǒng)化。反思的過程實(shí)際上是學(xué)生思維內(nèi)化,知識(shí)深化和認(rèn)知牢固化的一個(gè)心理活動(dòng)過程。

  (2) 報(bào)告的寫作本身就是一種創(chuàng)造性活動(dòng)。

  (3) 及時(shí)了解學(xué)生學(xué)習(xí)過程中的知識(shí)缺陷,思維障礙,有利于教師了解學(xué)生對(duì)自己的教法的滿意度和效果,以便作出及時(shí)調(diào)整,及時(shí)進(jìn)行補(bǔ)償性教學(xué)。

  5. 板書設(shè)計(jì)

  (略)

  6. 教學(xué)的反思總結(jié)

  心理歷練,得意之處,困惑之處,知識(shí)的傳承發(fā)展,如何修正完善等。

高中數(shù)學(xué)說課稿 篇6

  今天我說課的內(nèi)容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)《棱錐》的第一課時(shí):《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個(gè)方面對(duì)本課的教學(xué)設(shè)計(jì)進(jìn)行說明。

  一、說教材

  1、本節(jié)在教材中的地位和作用:

  本節(jié)是棱柱的后續(xù)內(nèi)容,又是學(xué)習(xí)球的必要基礎(chǔ)。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎(chǔ)知識(shí),同時(shí)培養(yǎng)學(xué)生猜想、類比、比較、轉(zhuǎn)化的能力。著名的生物學(xué)家達(dá)爾文說:“最有價(jià)值的知識(shí)是關(guān)于方法和能力的知識(shí)”,因此,應(yīng)該利用這節(jié)課培養(yǎng)學(xué)生學(xué)習(xí)方法、提高學(xué)習(xí)能力。

  2. 教學(xué)目標(biāo)確定:

  (1)能力訓(xùn)練要求

 、偈箤W(xué)生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高的概念。

 、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。

  (2)德育滲透目標(biāo)

  ①培養(yǎng)學(xué)生善于通過觀察分析實(shí)物形狀到歸納其性質(zhì)的能力。

  ②提高學(xué)生對(duì)事物的感性認(rèn)識(shí)到理性認(rèn)識(shí)的能力。

  ③培養(yǎng)學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀點(diǎn)。

  3. 教學(xué)重點(diǎn)、難點(diǎn)確定:

  重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。

  難 點(diǎn):培養(yǎng)學(xué)生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。

  二、說教學(xué)方法和手段

  1、教法:

  “以學(xué)生參與為標(biāo)志,以啟迪學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)新能力為核心”。

  在教學(xué)中根據(jù)高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導(dǎo)法,講練結(jié)合,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位。

  2、教學(xué)手段:

  根據(jù)《教學(xué)大綱》中“堅(jiān)持啟發(fā)式,反對(duì)注入式”的教學(xué)要求,針對(duì)本節(jié)課概念性強(qiáng),思維量大,整節(jié)課以啟發(fā)學(xué)生觀察思考、分析討論為主,采用“多媒體引導(dǎo)點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導(dǎo)思考”為核心,設(shè)計(jì)課件展示,并引導(dǎo)學(xué)生沿著積極的思維方向,逐步達(dá)到即定的教學(xué)目標(biāo),發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營造的“可探索”的環(huán)境里,積極參與,生動(dòng)活潑地獲取知識(shí),掌握規(guī)律、主動(dòng)發(fā)現(xiàn)、積極探索。

  三、說學(xué)法:

  這節(jié)課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導(dǎo)思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認(rèn)識(shí)規(guī)律,啟發(fā)學(xué)生反復(fù)思考,不斷內(nèi)化成為自己的認(rèn)知結(jié)構(gòu)。

  四、 學(xué)程序:

  [復(fù)習(xí)引入新課]

  1.棱柱的性質(zhì):

 。1)側(cè)棱都相等,側(cè)面是平行四邊形

 。2)兩個(gè)底面與平行于底面的截面是全等的多邊形

  (3)過不相鄰的兩條側(cè)棱的截面是平行四邊形

  2.幾個(gè)重要的四棱柱:

  平行六面體、直平行六面體、長方體、正方體

  思考:如果將棱柱的上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會(huì)是什么樣的體呢?

  [講授新課]

  1、棱錐的基本概念

 。1).棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高、對(duì)角面的概念

 。2).棱錐的表示方法、分類

  2、棱錐的性質(zhì)

  (1). 截面性質(zhì)定理:

  如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

  已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。

  證明:(略)

  引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐

  的側(cè)面積比也等于它們對(duì)應(yīng)高的平方比、等于它們的底面積之比。

  (2).正棱錐的定義及基本性質(zhì):

  正棱錐的定義:

  ①底面是正多邊形

 、陧旤c(diǎn)在底面的射影是底面的中心

  ①各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;

 、诶忮F的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形;

  棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形

  引申:

 、僬忮F的側(cè)棱與底面所成的角都相等;

 、谡忮F的側(cè)面與底面所成的二面角相等;

  (3)正棱錐的各元素間的關(guān)系

  下面我們結(jié)合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來研究。

  引申:

  ①觀察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點(diǎn)?

  (可證得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側(cè)面全是直角三角形。)

 、谌舴謩e假設(shè)正棱錐的高SO= h,斜高SM= h’,底面邊長的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM= r,側(cè)棱SB=L,側(cè)面與底面的二面角∠SMO= α ,側(cè)棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數(shù))請(qǐng)?jiān)囃ㄟ^三角形得出以上各元素間的關(guān)系式。

 。ㄕn后思考題)

  [例題分析]

  例1.若一個(gè)正棱錐每一個(gè)側(cè)面的頂角都是600,則這個(gè)棱錐一定不是( )

  A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐

 。ù鸢福篋)

  例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。

  ﹙解析及圖略﹚

  例3.已知正四棱錐的`棱長和底面邊長均為a,求:

  (1)側(cè)面與底面所成角α的余弦(2)相鄰兩個(gè)側(cè)面所成角β的余弦

  ﹙解析及圖略﹚

  [課堂練習(xí)]

  1、 知一個(gè)正六棱錐的高為h,側(cè)棱為L,求它的底面邊長和斜高。

  ﹙解析及圖略﹚

  2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。

  ﹙解析及圖略﹚

  [課堂小結(jié)]

  一:棱錐的基本概念及表示、分類

  二:棱錐的性質(zhì)

  截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

  引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對(duì)應(yīng)高的平方比、等于它們的底面積之比。

  2.正棱錐的定義及基本性質(zhì)

  正棱錐的定義:

  ①底面是正多邊形

 、陧旤c(diǎn)在底面的射影是底面的中心

  (1)各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高

  相等,它們叫做正棱錐的斜高;

 。2)棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形;棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形

  引申: ①正棱錐的側(cè)棱與底面所成的角都相等;

  ②正棱錐的側(cè)面與底面所成的二面角相等;

  ③正棱錐中各元素間的關(guān)系

  [課后作業(yè)]

  1:課本P52 習(xí)題9.8 : 2、 4

  2:課時(shí)訓(xùn)練:訓(xùn)練一

高中數(shù)學(xué)說課稿 篇7

  一、教材分析:

  1、教材的地位與作用:

  線性規(guī)劃是運(yùn)籌學(xué)的一個(gè)重要分支,在實(shí)際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學(xué)習(xí)了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識(shí)展開的,它是對(duì)二元一次不等式的深化和再認(rèn)識(shí)、再理解。通過這一部分的學(xué)習(xí),使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實(shí)際問題中的應(yīng)用,體驗(yàn)數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識(shí)和解決實(shí)際問題的能力。

  2、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn):畫可行域;在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。

  難點(diǎn):在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。

  二、目標(biāo)分析:

  在新課標(biāo)讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)”的理念指導(dǎo)下,本節(jié)課的教學(xué)目標(biāo)分設(shè)為知識(shí)目標(biāo)、能力目標(biāo)和情感目標(biāo)。

  知識(shí)目標(biāo):

  1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行

  域和最優(yōu)解等概念;

  2、理解線性規(guī)劃問題的圖解法;

  3、會(huì)利用圖解法求線性目標(biāo)函數(shù)的最優(yōu)解.

  能力目標(biāo):

  1、在應(yīng)用圖解法解題的過程中培養(yǎng)學(xué)生的觀察能力、理解能力。

  2、在變式訓(xùn)練的過程中,培養(yǎng)學(xué)生的分析能力、探索能力。

  3、在對(duì)具體事例的`感性認(rèn)識(shí)上升到對(duì)線性規(guī)劃的理性認(rèn)識(shí)過程中,培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合思想解題的能力和化歸能力。

  情感目標(biāo):

  1、讓學(xué)生體驗(yàn)數(shù)學(xué)來源于生活,服務(wù)于生活,體驗(yàn)數(shù)學(xué)在建設(shè)節(jié)約型社會(huì)中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂趣。

  2、讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神;

  3、讓學(xué)生學(xué)會(huì)用運(yùn)動(dòng)觀點(diǎn)觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認(rèn)識(shí)論的思想。

高中數(shù)學(xué)說課稿 篇8

  一、說教材

 。1)說教材的內(nèi)容和地位

  本次說課的內(nèi)容是人教版高一數(shù)學(xué)必修一第一單元第一節(jié)《集合》(第一課時(shí))。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握以及使用數(shù)學(xué)語言的基礎(chǔ)。從知識(shí)結(jié)構(gòu)上來說是為了引入函數(shù)的定義。因此在高中數(shù)學(xué)的模塊中,集合就顯得格外的舉足輕重了。

 。2)說教學(xué)目標(biāo)

  根據(jù)教材結(jié)構(gòu)和內(nèi)容以及教材地位和作用,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,依據(jù)新課標(biāo)制定如下教學(xué)目標(biāo):

  1.知識(shí)與技能:掌握集合的基本概念及表示方法。了解"屬于"關(guān)系的意義,掌握集合元素的特征。

  2.過程與方法:通過情景設(shè)置提出問題,揭示課題,培養(yǎng)學(xué)生主動(dòng)探究新知的習(xí)慣。并通過"自主、合作與探究"實(shí)現(xiàn)"一切以學(xué)生為中心"的理念。

  3.情感態(tài)度與價(jià)值觀:感受數(shù)學(xué)的人文價(jià)值,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,由集合的學(xué)習(xí)感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美。同時(shí)通過自主探究領(lǐng)略獲取新知識(shí)的喜悅。

  (3)說教學(xué)重點(diǎn)和難點(diǎn)

  依據(jù)課程標(biāo)準(zhǔn)和學(xué)生實(shí)際,我確定本課的教學(xué)重點(diǎn)為

  教學(xué)重點(diǎn):集合的基本概念及元素特征。

  教學(xué)難點(diǎn):掌握集合元素的三個(gè)特征,體會(huì)元素與集合的屬于關(guān)系。

  二、說教法和學(xué)法

  接下來則是說教法、學(xué)法

  教法與學(xué)法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來相應(yīng)的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點(diǎn),就本節(jié)課而言,我采用"生活實(shí)例與數(shù)學(xué)實(shí)例"相結(jié)合,"師生互動(dòng)與課堂布白"相輔助的方法。通過不同層次的練習(xí)體驗(yàn),憑借有趣、實(shí)用的教學(xué)手段,突出重點(diǎn),突破難點(diǎn)。然而,學(xué)生是學(xué)習(xí)的主人,以學(xué)生為主體,創(chuàng)造條件讓學(xué)生參與探究活動(dòng),()不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習(xí)的技能和激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,本次活動(dòng)采用的學(xué)法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)等。

  總之,不管采取什么教法和學(xué)法,每節(jié)課都應(yīng)不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng)造和諧的課堂氛圍。

  三、說教學(xué)過程

  接著我來說一下最重要的部分,本節(jié)課的教學(xué)過程:

  這節(jié)課的流程主要分為六個(gè)環(huán)節(jié):創(chuàng)設(shè)情境(引入目標(biāo))、自主探究(感知目標(biāo))、討論辨析(理解目標(biāo))、變式訓(xùn)練(鞏固目標(biāo))、課堂小結(jié)(自我評(píng)價(jià))、作業(yè)布置(反饋矯正)。上述六個(gè)環(huán)節(jié)由淺入深,層層遞進(jìn)。 多層次、多角度地加深對(duì)概念的理解。 提高學(xué)生學(xué)習(xí)的興趣,以達(dá)到良好的教學(xué)效果。

  第一環(huán)節(jié):創(chuàng)設(shè)問題情境,引入目標(biāo)

  課堂開始我將提出兩個(gè)問題:

  問題1:班級(jí)有20名男生,16名女生,問班級(jí)一共多少人?

  問題2:某次運(yùn)動(dòng)會(huì)上,班級(jí)有20人參加田賽,16人參加徑賽,問一共多少人參加比賽?

  這里我會(huì)讓學(xué)生以小組討論的形式進(jìn)行討論問題,事實(shí)上小組合作的形式是本節(jié)課主要形式。

  待學(xué)生討論完畢以后我將作歸納總結(jié):問題2已無法用學(xué)過的知識(shí)加以解釋,這是與集合有關(guān)的問題,因此需用集合的語言加以描述(同時(shí)我將板書標(biāo)題:集合)。

  安排這一過程的意圖是為了從實(shí)際問題引入,讓學(xué)生了解數(shù)學(xué)來源于實(shí)際。從而激發(fā)學(xué)生參與課堂學(xué)習(xí)的欲望。

  很自然地進(jìn)入到第二環(huán)節(jié):自主探究

  讓學(xué)生閱讀教材,并思考下列問題:

  (1)有那些概念?

  (2)有那些符號(hào)?

  (3)集合中元素的特性是什么?

  安排這一過程的意圖是給學(xué)生提供活動(dòng)空間,讓主體主動(dòng)建構(gòu)自己的.知識(shí)結(jié)構(gòu)。培養(yǎng)學(xué)生的探究能力。

  讓學(xué)生自主探究之后將進(jìn)入第三環(huán)節(jié):討論辨析

  小組合作探究(1)

  讓學(xué)生觀察下列實(shí)例

 。1)1~20以內(nèi)的所有質(zhì)數(shù);

 。2)所有的正方形;

 。3)到直線 的距離等于定長 的所有的點(diǎn);

 。4)方程 的所有實(shí)數(shù)根;

  通過以上實(shí)例,辨析概念:

 。1)集合含義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡稱集。而集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素。

 。2)表示方法:集合通常用大括號(hào){ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。

  小組合作探究(2)——集合元素的特征

  問題3:任意一組對(duì)象是否都能組成一個(gè)集合?集合中的元素有什么特征?

  問題4:某單位所有的"帥哥"能否構(gòu)成一個(gè)集合?由此說明什么?

  集合中的元素必須是確定的

  問題5:在一個(gè)給定的集合中能否有相同的元素?由此說明什么?

  集合中的元素是不重復(fù)出現(xiàn)的

  問題6:咱班的全體同學(xué)組成一個(gè)集合,調(diào)整座位后這個(gè)集合有沒有變化?由此說明什么? 集合中的元素是沒有順序的

  我如此設(shè)計(jì)的意圖是因?yàn)椋簡栴}是數(shù)學(xué)的心臟,感受問題是學(xué)習(xí)數(shù)學(xué)的根本動(dòng)力。

  小組合作探究(3)——元素與集合的關(guān)系

  問題7:設(shè)集合A表示"1~20以內(nèi)的所有質(zhì)數(shù)",那么3,4,5,6這四個(gè)元素哪些在集合A中?哪些不在集合A中?

  問題8:如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?

  a屬于集合A,記作a∈A

  問題9:如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?

  a不屬于集合A,記作aA

  小組合作探究(4)——常用數(shù)集及其表示方法

  問題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實(shí)數(shù)集等一些常用數(shù)集,分別用什么符號(hào)表示?

  自然數(shù)集(非負(fù)整數(shù)集):記作 N

  正整數(shù)集:

  整數(shù)集:記作 Z

  有理數(shù)集:記作 Q 實(shí)數(shù)集:記作 R

  設(shè)計(jì)意圖:由于不同的人對(duì)同一問題有不同的體驗(yàn)和理解。讓學(xué)生通過合作交流相互得到啟發(fā),從而不斷完善自己的知識(shí)結(jié)構(gòu)。

  第四環(huán)節(jié):理論遷移 變式訓(xùn)練

  1.下列指定的對(duì)象,能構(gòu)成一個(gè)集合的是

  ① 很小的數(shù)

 、 不超過30的非負(fù)實(shí)數(shù)

  ③ 直角坐標(biāo)平面內(nèi)橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)

 、 π的近似值

  ⑤ 所有無理數(shù)

  A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

  第五環(huán)節(jié):課堂小結(jié),自我評(píng)價(jià)

  1.這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?

  2.這節(jié)課主要解釋了什么數(shù)學(xué)思想?

  設(shè)計(jì)意圖:引導(dǎo)學(xué)生對(duì)所學(xué)知識(shí)、思想方法進(jìn)行小結(jié),形成知識(shí)系統(tǒng)。教師用激勵(lì)性的語言加一點(diǎn)評(píng),讓學(xué)生的思想敞亮的發(fā)揮出來。

  第六環(huán)節(jié):作業(yè)布置,反饋矯正

  1.必做題 課本習(xí)題1.1—1、2、3.

  2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實(shí)數(shù)a 的值。

  設(shè)計(jì)意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗(yàn)。

  四、板書設(shè)計(jì)

  好的板書就像一份微型教案,為了讓學(xué)生直觀易懂的看筆記,板書應(yīng)設(shè)計(jì)得有條理性、概括性、指導(dǎo)性,所以我設(shè)計(jì)的板書如下:

  集 合

  1.集合的概念

  2.集合元素的特征

 。▽W(xué)生板演)

  3.常見集合的表示

  4.范例研究

高中數(shù)學(xué)說課稿 篇9

  一、地位作用

  數(shù)列是高中數(shù)學(xué)重要的內(nèi)容之一,等比數(shù)列是在學(xué)習(xí)了等差數(shù)列后新的一種特殊數(shù)列,在生活中如儲(chǔ)蓄、分期付款等應(yīng)用較為廣泛,在整個(gè)高中數(shù)學(xué)內(nèi)容中數(shù)列與已學(xué)過的函數(shù)及后面的數(shù)列極限有密切聯(lián)系,它也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材,它可以培養(yǎng)學(xué)生的觀察、分析、歸納、猜想及綜合解決問題的能力。

  基于此,設(shè)計(jì)本節(jié)的數(shù)學(xué)思路上:

  利用類比的思想,聯(lián)系等差數(shù)列的.概念及通項(xiàng)公式的學(xué)習(xí)方法,采取自學(xué)、引導(dǎo)、歸納、猜想、類比總結(jié)的教學(xué)思路,充分發(fā)揮學(xué)生主觀能動(dòng)性,調(diào)動(dòng)學(xué)生的主體地位,充分體現(xiàn)教為主導(dǎo)、學(xué)為主體、練為主線的教學(xué)思想。

  二、教學(xué)目標(biāo)

  知識(shí)目標(biāo):1)理解等比數(shù)列的概念

  2)掌握等比數(shù)列的通項(xiàng)公式

  3)并能用公式解決一些實(shí)際問題

  能力目標(biāo):培養(yǎng)學(xué)生觀察能力及發(fā)現(xiàn)意識(shí),培養(yǎng)學(xué)生運(yùn)用類比思想、解決分析問題的能力。

  三、教學(xué)重點(diǎn)

  1)等比數(shù)列概念的理解與掌握 關(guān)鍵:是讓學(xué)生理解“等比”的特點(diǎn)

  2)等比數(shù)列的通項(xiàng)公式的推導(dǎo)及應(yīng)用

  四、教學(xué)難點(diǎn)

  “等比”的理解及利用通項(xiàng)公式解決一些問題。

  五、教學(xué)過程設(shè)計(jì)

  (一)預(yù)習(xí)自學(xué)環(huán)節(jié)。(8分鐘)

  首先讓學(xué)生重新閱讀課本105頁國際象棋發(fā)明者的故事,并出示預(yù)習(xí)提綱,要求學(xué)生閱讀課本P122至P123例1上面。

  回答下列問題

  1)課本中前3個(gè)實(shí)例有什么特點(diǎn)?能否舉出其它例子,并給出等比數(shù)列的定義。

  2)觀察以下幾個(gè)數(shù)列,回答下面問題:

  1, , , ,……

  -1,-2,-4,-8……

  1,2,-4,8……

 。1,-1,-1,-1,……

  1,0,1,0……

 、儆心膸讉(gè)是等比數(shù)列?若是公比是什么?

  ②公比q為什么不能等于零?首項(xiàng)能為零嗎?

  ③公比q=1時(shí)是什么數(shù)列?

  ④q>0時(shí)數(shù)列遞增嗎?q<0時(shí)遞減嗎?

  3)怎樣推導(dǎo)等比數(shù)列通項(xiàng)公式?課本中采取了什么方法?還可以怎樣推導(dǎo)?

  4)等比數(shù)列通項(xiàng)公式與函數(shù)關(guān)系怎樣?

  (二)歸納主導(dǎo)與總結(jié)環(huán)節(jié)(15分鐘)

  這一環(huán)節(jié)主要是通過學(xué)生回答為主體,教師引導(dǎo)總結(jié)為主線解決本節(jié)兩個(gè)重點(diǎn)內(nèi)容。

  通過回答問題(1)(2)給出等比數(shù)列的定義并強(qiáng)調(diào)以下幾點(diǎn):①定義關(guān)鍵字“第二項(xiàng)起”“常數(shù)”;

  ②引導(dǎo)學(xué)生用數(shù)學(xué)語言表達(dá)定義: =q(n≥2);③q=1時(shí)為非零常數(shù)數(shù)列,既是等差數(shù)列又是等比數(shù)列。引申:若數(shù)列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。

  ④q>0時(shí)等比數(shù)列單調(diào)性不定,q<0為擺動(dòng)數(shù)列,類比等差數(shù)列d>0為遞增數(shù)列,d<0為遞減數(shù)列。

  通過回答問題(3)回憶等差數(shù)列的推導(dǎo)方法,比較兩個(gè)數(shù)列定義的不同,引導(dǎo)推出等比數(shù)列通項(xiàng)公式。

  法一:歸納法,學(xué)會(huì)從特殊到一般的方法,并從次數(shù)中發(fā)現(xiàn)規(guī)律,培養(yǎng)觀察力。

  法二:迭乘法,聯(lián)系等差數(shù)列“迭加法”,培養(yǎng)學(xué)生類比能力及新舊知識(shí)轉(zhuǎn)化能力。

【高中數(shù)學(xué)說課稿】相關(guān)文章:

高中數(shù)學(xué)《集合》說課稿07-22

高中數(shù)學(xué)說課稿07-09

關(guān)于高中數(shù)學(xué)說課稿11-26

高中數(shù)學(xué)《向量》說課稿范文02-15

高中數(shù)學(xué)說課稿范文11-02

高中數(shù)學(xué)說課稿7篇02-12

高中數(shù)學(xué)說課稿 15篇11-14

高中數(shù)學(xué)說課稿九篇02-13

高中數(shù)學(xué)《古典概型》說課稿02-16

【精選】高中數(shù)學(xué)說課稿4篇02-03