《三角函數(shù)》說課稿(精選14篇)
作為一名教職工,通常會被要求編寫說課稿,說課稿是進(jìn)行說課準(zhǔn)備的文稿,有著至關(guān)重要的作用。那么你有了解過說課稿嗎?下面是小編為大家整理的《三角函數(shù)》說課稿,歡迎閱讀與收藏。
《三角函數(shù)》說課稿 1
《銳角三角函數(shù)》(第一課時(shí)),所選用的教材為人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書。根據(jù)新課標(biāo)的理念,對于本節(jié)課,以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學(xué)目標(biāo)分析,教學(xué)方法和學(xué)法分析,教學(xué)過程分析四個(gè)方面加以說明。
一、教材的地位和作用
1、教材分析
本節(jié)教材是人教版初中數(shù)學(xué)新教材九年級下第28章第一節(jié)內(nèi)容,是初中數(shù)學(xué)的重要內(nèi)容之一。一方面,這是在學(xué)習(xí)了直角三角形兩銳角關(guān)系、勾股定理等知識的基礎(chǔ)上,對直角三角形邊角關(guān)系的進(jìn)一步深入和拓展;另一方面,又為解直角三角形等知識奠定了基礎(chǔ),也是高中進(jìn)一步研究三角函數(shù)、反三角函數(shù)的工具性內(nèi)容。鑒于這種認(rèn)識,我認(rèn)為,本節(jié)課不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。
2、學(xué)情分析
從學(xué)生的年齡特征和認(rèn)知特征來看:
九年級學(xué)生的思維活躍,接受能力較強(qiáng),具備了一定的數(shù)學(xué)探究活動經(jīng)歷和應(yīng)用數(shù)學(xué)的意識。
從學(xué)生已具備的知識和技能來看:
九年級學(xué)生已經(jīng)掌握直角三角形中各邊和各角的關(guān)系,能靈活運(yùn)用相似圖形的性質(zhì)及判定方法解決問題,有較強(qiáng)的推理證明能力,這為順利完成本節(jié)課的教學(xué)任務(wù)打下了基礎(chǔ)。
從心理特征來看:九年級學(xué)生邏輯思維從經(jīng)驗(yàn)型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。
從學(xué)生有待于提高的知識和技能來看:
學(xué)生要得出直角三角形中邊與角之間的關(guān)系,需要觀察、思考、交流,進(jìn)一步體會數(shù)學(xué)知識之間的聯(lián)系,感受數(shù)形結(jié)合的思想,體會銳角三角函數(shù)的意義,提高應(yīng)用數(shù)學(xué)和合作交流的能力。學(xué)生可能會產(chǎn)生一定的困難,所以教學(xué)中應(yīng)予以簡單明了,深入淺出的剖析。
3、教學(xué)重點(diǎn)、難點(diǎn)
根據(jù)以上對教材的地位和作用,以及學(xué)情分析,結(jié)合新課標(biāo)對本節(jié)課的要求,我認(rèn)為本節(jié)課的重點(diǎn)為:理解正弦函數(shù)意義,并會求銳角的正弦值。
難點(diǎn)為:根據(jù)銳角的正弦值及一邊,求直角三角形的其它邊長。
二、教學(xué)目標(biāo)分析:
新課標(biāo)指出,教學(xué)目標(biāo)應(yīng)從知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度等四個(gè)方面闡述,而這四維目標(biāo)又應(yīng)是緊密聯(lián)系的一個(gè)完整的整體,學(xué)生學(xué)知識技能的過程同時(shí)成為學(xué)會學(xué)習(xí),形成正確價(jià)值觀的過程,這告訴我們,在教學(xué)中應(yīng)以知識技能為主線,滲透情感態(tài)度,并把前面兩者通過數(shù)學(xué)思考充分體現(xiàn)在問題解決中。借此結(jié)合以上教材分析,將四個(gè)目標(biāo)進(jìn)行整合,確定本節(jié)課的教學(xué)目標(biāo)為:
1.理解銳角正弦的意義,并會求銳角的正弦值;
2.掌握根據(jù)銳角的正弦值及直角三角形的一邊,求直角三角形的其它邊長的方法;
3.經(jīng)歷銳角正弦的意義探索的過程,培養(yǎng)學(xué)生觀察分析、類比歸納的探究問題的能力;
4.通過主動探究,合作交流,感受探索的樂趣和成功的體驗(yàn),體會數(shù)學(xué)的合理性和嚴(yán)謹(jǐn)性,使學(xué)生養(yǎng)成積極思考,獨(dú)立思考的好習(xí)慣,并且同時(shí)培養(yǎng)學(xué)生的團(tuán)隊(duì)合作精神。
三、教學(xué)方法和學(xué)法分析
現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強(qiáng)調(diào)學(xué)生的主動性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的學(xué)情情況,本節(jié)課我采用“三動五自主”的教學(xué)模式,以問題的提出、問題的解決為主線,始終在學(xué)生知識的`“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與教學(xué)實(shí)踐活動,以獨(dú)立思考和合作交流的形式,在教師的指道下發(fā)現(xiàn)、分析和解決問題,在引導(dǎo)分析時(shí),給學(xué)生流出足夠的思考時(shí)間和空間,讓學(xué)生去聯(lián)想、探索,從真正意義上完成對知識的自我建構(gòu)。
本節(jié)課的教法采用的是情境引導(dǎo)和自學(xué)教學(xué)法,在教學(xué)過程中,通過適宜的問題情境引發(fā)新的認(rèn)知沖突;建立知識間的聯(lián)系。教師通過引導(dǎo)、指導(dǎo)、反饋、評價(jià),不斷激發(fā)學(xué)生對問題的好奇心,使其在積極的自主活動中主動參與概念的建構(gòu)過程,并運(yùn)用數(shù)學(xué)知識解決實(shí)際問題,享受數(shù)學(xué)學(xué)習(xí)帶來的樂趣。
本節(jié)課的學(xué)習(xí)方法采用自主探究法與合作交流法相結(jié)合。本節(jié)課數(shù)學(xué)活動貫穿始終,既有學(xué)生自主探究的,也有小組合作交流的,旨在讓學(xué)生從自主探究中發(fā)展,從合作交流中提高。
四、教學(xué)過程
新課標(biāo)指出,數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動的過程,是教師和學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進(jìn)行教學(xué),本節(jié)課主要安排以下教學(xué)環(huán)節(jié):
(一)自學(xué)提綱
1、已知:在Rt△ABC中,∠C=900,∠A=30°,BC=10m,求AB
已知:在Rt△ABC中,∠C=900,∠A=30°,AB=20m,求BC
設(shè)計(jì)意圖:建構(gòu)注意主張教學(xué)應(yīng)從學(xué)生已有的知識體系出發(fā),相似的三角形性質(zhì)是本節(jié)課深入研究銳角正弦的認(rèn)知基礎(chǔ),這樣設(shè)計(jì)有利于引導(dǎo)學(xué)生順利地進(jìn)入學(xué)習(xí)情境。
2、創(chuàng)設(shè)情境,提出問題
利用多媒體播放意大利比薩斜塔圖片,然后老師問:比薩斜塔中條件和要探究的問題:“你能根據(jù)問題背景畫出直角三角形并且利用邊求出斜塔的傾斜角嗎?”這就是今天我們要學(xué)習(xí)銳角三角函數(shù)(板書課題)
設(shè)計(jì)意圖:以問題串的形式創(chuàng)設(shè)情境,引起學(xué)生的認(rèn)知沖突,使學(xué)生對舊知識產(chǎn)生設(shè)疑,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望。
通過情境創(chuàng)設(shè),學(xué)生已激發(fā)了強(qiáng)烈的求知欲望,產(chǎn)生了強(qiáng)勁的學(xué)習(xí)動力,此時(shí)我把學(xué)生帶入下一環(huán)節(jié)。
。ǘ┖献鹘涣
1、閱讀課本P74問題與思考(要求學(xué)生獨(dú)立思考后小組內(nèi)合作探究)
結(jié)論:直角三角形中,30°角的對邊與斜邊的比值。
2、閱讀課本P75思考,并求值
結(jié)論:直角三角形中,45°角的對邊與斜邊的比值。
設(shè)計(jì)意圖:現(xiàn)代數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)知識的教學(xué)必須在學(xué)生自主探索,經(jīng)驗(yàn)歸納的基礎(chǔ)上獲得,教學(xué)中必須展現(xiàn)思維的過程性,在這里,通過觀察分析、獨(dú)立思考、小組交流等活動,引導(dǎo)學(xué)生歸納。
3、閱讀課本P75探究。
問:銳角A度數(shù)一定時(shí),不管直角三角形的大小如何,它的對邊與斜邊的比有什么關(guān)系?你能解釋嗎?
4、正弦函數(shù)定義:在Rt△ABC中,∠C=900,把銳角A的對邊與斜邊的比叫做∠A的正弦,記作sinA,即sinA=BC/AB
對定義的幾點(diǎn)說明:
1、sinA是一個(gè)完整的符號,表示∠A的正弦習(xí)慣上省略“∠”的符號。
2、本章我們只研究銳角的正弦。
通過前面的學(xué)習(xí),學(xué)生已基本把握了本節(jié)課所要學(xué)習(xí)的內(nèi)容,此時(shí),他們急于尋找一塊用武之地,以展示自我,體驗(yàn)成功,于是我把學(xué)生引入到下一環(huán)節(jié)。
。ㄈ┳灾髡故荆◤(qiáng)化訓(xùn)練,鞏固雙基)
1、(例1課本P76)已知:在Rt△ABC中,∠C=90°,根據(jù)圖中數(shù)據(jù)
求sinA和sinB
2、課本77頁練習(xí)
3、判斷對錯(cuò)(學(xué)生口答)
(1)若銳角∠A=∠B,則sinA=sinB()
。2)sin60°=30°+sin30°()
4、將Rt△ABC各邊擴(kuò)大100倍,則sinA的值()
A.擴(kuò)大100倍B.縮小100倍C.不變D.不確定
5、平面直角坐標(biāo)系中點(diǎn)P(3,-4),OP與x軸的夾角為∠1,求sin∠1的值。
6、在Rt△ABC中,∠C=90°,BC=6,sinA=3/5,求:AB,AC的長。
設(shè)計(jì)意圖:例題及練習(xí)題由淺入深、由易到難、各有側(cè)重,體現(xiàn)新課標(biāo)提出的讓不同的學(xué)生在數(shù)學(xué)上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計(jì)意圖是反饋教學(xué),內(nèi)化知識。
。ㄋ模┳灾髟u價(jià)(小結(jié)歸納,拓展深化)
我的理解是,小結(jié)歸納不應(yīng)該僅僅是知識的簡單羅列,而應(yīng)該是優(yōu)化認(rèn)知結(jié)構(gòu),完善知識體系的一種有效手段,為充分發(fā)揮學(xué)生的主題作用,從學(xué)習(xí)的知識、方法、體驗(yàn)是那個(gè)方面進(jìn)行歸納,我設(shè)計(jì)了這么三個(gè)問題:
、偻ㄟ^本節(jié)課的學(xué)習(xí),你學(xué)會了哪些知識;
、谕ㄟ^本節(jié)課的學(xué)習(xí),你最大的體驗(yàn)是什么;
、弁ㄟ^本節(jié)課的學(xué)習(xí),你掌握了哪些學(xué)習(xí)數(shù)學(xué)的方法?
。ㄎ澹┳灾魍卣梗ㄌ岣呱A)
1、課本習(xí)題28.1第1、2、題。(只做與正弦函數(shù)有關(guān)的部分);
2、選做題:已知:在Rt△ABC中,∠C=900,sinA=1/3,周長為60,求:斜邊AB的長.
以作業(yè)的鞏固性和發(fā)展性為出發(fā)點(diǎn),我設(shè)計(jì)了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個(gè)反饋,選做題是對本節(jié)課知識的一個(gè)延伸?偟脑O(shè)計(jì)意圖是反饋教學(xué),鞏固提高。
以上幾個(gè)環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動,在教師的整體調(diào)控下,學(xué)生通過動腦思考、層層遞進(jìn),對知識的理解逐步深入,為了使課堂效益達(dá)到最佳狀態(tài),我設(shè)計(jì)以下問題加以追問:
1、sinA能為負(fù)嗎?
2、比較sin45°和sin30°的大小。
設(shè)計(jì)要求:
。1)先學(xué)生獨(dú)立思考后小組內(nèi)探究
(2)各組交流展示探究結(jié)果,并且組內(nèi)或各組之間自主評價(jià)。
設(shè)計(jì)意圖:
(1)有一定難度需要學(xué)生進(jìn)行合作探究,有利于培養(yǎng)學(xué)生善于反思的好習(xí)慣。
。2)學(xué)生通過互評自評,可以使學(xué)生全面了解自己的學(xué)習(xí)過程,感受自己的成長和進(jìn)步,同時(shí)促進(jìn)學(xué)生對學(xué)習(xí)及時(shí)進(jìn)行反思,為教師全面了解學(xué)生的學(xué)習(xí)狀況,改進(jìn)教學(xué),實(shí)施因材施教提供重要依據(jù)。
教學(xué)反思
1.本教學(xué)設(shè)計(jì)以直角三角形為主線,力求體現(xiàn)生活化課堂的理念,讓學(xué)生在經(jīng)歷“問題情境——形成概念——應(yīng)用拓展——反思提高”的基本過程中,體驗(yàn)知識間的內(nèi)在聯(lián)系,讓學(xué)生感受探究的樂趣,使學(xué)生在學(xué)中思,在思中學(xué)。
2.在教學(xué)過程中,重視過程,深化理解,通過學(xué)生的主動探究來體現(xiàn)他們的主體地位,教師是通過對學(xué)生參與學(xué)習(xí)的啟發(fā)、調(diào)整、激勵(lì)來體現(xiàn)自己的引導(dǎo)作用,對學(xué)生的主體意識和合作交流的能力起著積極作用。
3.正弦是生活中應(yīng)用較廣泛的三角函數(shù)。因而在本節(jié)課的設(shè)計(jì)中力求貼近生活。又從意大利比薩斜塔提煉出了數(shù)學(xué)問題,讓學(xué)生體會學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。
《三角函數(shù)》說課稿 2
在前一段我講了30度、45度、60度特殊角的三角函數(shù)值,它是北師大版九年級數(shù)學(xué)下冊的一節(jié)課,在前一節(jié)剛講過正弦、余弦、正切三角函數(shù)的定義和求法。現(xiàn)把我對本節(jié)課的做法和想法與大家交流一下,希望能得到同行和專家的指點(diǎn),以期取得更大的進(jìn)步。
一、說教學(xué)目標(biāo)
1、經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進(jìn)行有關(guān)的推理。進(jìn)一步體會三角函數(shù)的意義;能夠進(jìn)行30°、45°、60°角的三角函數(shù)值的計(jì)算;能夠根據(jù)30°、45°、60°的三角函數(shù)值說明相應(yīng)的銳角的大小。
2、發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)的能力;培養(yǎng)學(xué)生把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。
3、積極參與數(shù)學(xué)活動,對數(shù)學(xué)產(chǎn)生好奇心。培養(yǎng)學(xué)生獨(dú)立思考問題的習(xí)慣。
二、說教學(xué)重點(diǎn)
教學(xué)重點(diǎn):探索特殊銳角三角函數(shù)值的過程,進(jìn)行這些三角函數(shù)值的`計(jì)算并會比較不同銳角三角函數(shù)值大小
在引入時(shí)我采用創(chuàng)設(shè)情境法,“為了測量一棵大樹的高度,準(zhǔn)備了如下測量工具:
(1)含30、60度角的直角三角尺
(2)皮尺。請你設(shè)計(jì)一個(gè)方案,來測量一棵大樹的高度。這樣會增強(qiáng)學(xué)生的學(xué)習(xí)欲望,使學(xué)生對本節(jié)內(nèi)容更感興趣。
三、說教學(xué)設(shè)計(jì):
1、讓學(xué)生自主研習(xí),獨(dú)立探究。
。1)觀察一副三角尺,其中有幾個(gè)銳角?他們分別等于多少度?
。2)sin30度等于多少呢?你是怎樣得到的?cos30度呢,tan30度呢?
2、讓學(xué)生合作學(xué)習(xí)、生生互動
(1)請同學(xué)們完成下表:30°、45°、60°角的三角函數(shù)值(表格略)
。2)觀察表格中函數(shù)值的特點(diǎn)。先看第一列30°、45°、60°角的正弦值,你能發(fā)現(xiàn)什么規(guī)律呢?第二列、第三列呢?
。3)同桌之間可互相檢查一下對30°、45°、60°角的三角函數(shù)值的記憶情況。
3、精講細(xì)評,師生合作(先由學(xué)生獨(dú)立完成)
。1)計(jì)算:sin30°+cos45°;sin260°+cos260°—tan45°。
(2)鐘表上的鐘擺長度為25Cm,當(dāng)鐘擺向兩邊擺動時(shí),擺角恰好為60°,且兩邊的擺動角度相同,求它擺至最高位置時(shí)與其擺至最低位置時(shí)的高度之差。(結(jié)果精確到0.1Cm)
分析:引導(dǎo)學(xué)生自己根據(jù)題意畫出示意圖,培養(yǎng)學(xué)生把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力
4、延伸遷移,形成技能
。1)計(jì)算:sin60°—tan45°;cos60°+tan60°;
(2)某商場有一自動扶梯,其傾斜角為30°。高為7m,扶梯的長度是多少?
自主小結(jié):
講課后我讓學(xué)生自主小結(jié)本節(jié)收獲,并給他們提出困惑的時(shí)間和機(jī)會
在本節(jié)課中我感覺學(xué)生整體來說收獲不小,有百分之八十的學(xué)生都會進(jìn)行計(jì)算,只是對這些三角函數(shù)值的記憶還有欠缺,課下還需時(shí)間加以鞏固。課堂中學(xué)生積極性也很高,能體會到數(shù)學(xué)在生活中的應(yīng)用廣泛,學(xué)習(xí)數(shù)學(xué)對解決實(shí)際生活問題的幫助,體會到學(xué)習(xí)數(shù)學(xué)的重要性。
《三角函數(shù)》說課稿 3
我說課的課題是《任意角的三角函數(shù)》,內(nèi)容取自蘇教版高中實(shí)驗(yàn)教科書《數(shù)學(xué)》第四冊第1.2節(jié)
先對教材進(jìn)行分析
教學(xué)內(nèi)容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號。
地位和作用:任意角的三角函數(shù)是本章教學(xué)內(nèi)容的基本概念對三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要。同時(shí)它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備,通過這部分內(nèi)容的學(xué)習(xí),又可以幫助學(xué)生更加深入理解函數(shù)這一基本概念。所以這個(gè)內(nèi)容要認(rèn)真探討教材,精心設(shè)計(jì)過程。
教學(xué)重點(diǎn):任意角三角函數(shù)的定義
教學(xué)難點(diǎn):正確理解三角函數(shù)可以看作以實(shí)數(shù)為自變量的函數(shù)、初中用邊長比值來定義轉(zhuǎn)變?yōu)樽鴺?biāo)系下用坐標(biāo)比值定義的觀念的轉(zhuǎn)換以及坐標(biāo)定義的合理性的理解;
學(xué)情分析:
學(xué)生已經(jīng)掌握的內(nèi)容,學(xué)生學(xué)習(xí)能力
1、初中學(xué)生已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的.一些常見的知識和求法。
2、我們南山區(qū)經(jīng)過多年的初中課改,學(xué)生已經(jīng)具備較強(qiáng)的自學(xué)能力,多數(shù)同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。
3、在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強(qiáng)必須在老師一定的指導(dǎo)下才能進(jìn)行
針對對教材內(nèi)容重難點(diǎn)的和學(xué)生實(shí)際情況的分析我們制定教學(xué)目標(biāo)如下
知識目標(biāo):
。1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號,
能力目標(biāo):
。1)理解并掌握任意角的三角函數(shù)的定義;
。2)正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù);
。3)通過對定義域,三角函數(shù)值的符號的推導(dǎo),提高學(xué)生分析探究解決問題的能力。
德育目標(biāo):
(1)學(xué)習(xí)轉(zhuǎn)化的思想
。2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神;
針對學(xué)生實(shí)際情況為達(dá)到教學(xué)目標(biāo)須精心設(shè)計(jì)教學(xué)方法
教法學(xué)法:溫故知新,逐步拓展
。1)在復(fù)習(xí)初中銳角三角函數(shù)的定義的基礎(chǔ)上一步一步擴(kuò)展內(nèi)容,發(fā)展新知識,形成新的概念;
。2)通過例題講解分析,逐步引出新知識,完善三角定義
運(yùn)用多媒體工具
。1)提高直觀性增強(qiáng)趣味性。
教學(xué)過程分析
總體來說,由舊及新,由易及難,
逐步加強(qiáng),逐步推進(jìn)
先由初中的直角三角形中銳角三角函數(shù)的定義
過度到直角坐標(biāo)系中銳角三角函數(shù)的定義
再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義
給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。
具體教學(xué)過程安排
引入:復(fù)習(xí)提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?
由學(xué)生回答
SinA=對邊/斜邊=BC/AB
cosA=對邊/斜邊=AC/AB
tanA=對邊/斜邊=BC/AC
逐步拓展:在高中我們已經(jīng)建立了直角坐標(biāo)系,把“定義媒介”從直角三角形改為平面直角坐標(biāo)系。
我們知道,隨著角的概念的推廣,研究角時(shí)多放在直角坐標(biāo)系里,那么三角函數(shù)的定義能否也放到坐標(biāo)系去研究呢?
引導(dǎo)學(xué)生發(fā)現(xiàn)B的坐標(biāo)和邊長的關(guān)系。進(jìn)一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導(dǎo)致OB上任一P點(diǎn)都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點(diǎn)的坐標(biāo)來表示,從而銳角三角函數(shù)可以使用直角坐標(biāo)系來定義,自然地,要想定義任意一個(gè)角三角函數(shù),便考慮放在直角坐標(biāo)中進(jìn)行合理進(jìn)行定義了
從而得到
知識點(diǎn)一:任意一個(gè)角的三角函數(shù)的定義
提醒學(xué)生思考:由于相似比相等,對于確定的角A,這三個(gè)比值的大小和P點(diǎn)在角的終邊上的位置無關(guān)。
精心設(shè)計(jì)例題,引出新內(nèi)容深化概念,完善定義
例1已知角A的終邊經(jīng)過P(2,—3),求角A的三個(gè)三角函數(shù)值
。ù祟}由學(xué)生自己分析獨(dú)立動手完成)
例題變式1,已知角A的大小是30度,由定義求角A的三個(gè)三角函數(shù)值
結(jié)合變式我們發(fā)現(xiàn)三個(gè)三角函數(shù)值的大小與角的大小有關(guān),只會隨角的大小而變化,符合當(dāng)初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),
提出問題:這三個(gè)新的定義確實(shí)問是函數(shù)嗎?為什么?
從而引出函數(shù)極其定義域
由學(xué)生分析討論,得出結(jié)論
知識點(diǎn)二:三個(gè)三角函數(shù)的定義域
同時(shí)教師強(qiáng)調(diào):由于弧度制使角和實(shí)數(shù)建立了一一對應(yīng)關(guān)系,所以三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù)
例題變式2,已知角A的終邊經(jīng)過P(—2a,—3a)(a不為0),求角A的三個(gè)三角函數(shù)值
解答中需要對變量的正負(fù)即角所在象限進(jìn)行討論,讓學(xué)生意識到三角函數(shù)值的正負(fù)與角所在象限有關(guān),從而導(dǎo)出第三個(gè)知識點(diǎn)
知識點(diǎn)三:三角函數(shù)值的正負(fù)與角所在象限的關(guān)系
由學(xué)生推出結(jié)論,教師總結(jié)符號記憶方法,便于學(xué)生記憶
例題2:已知A在第二象限且sinA=0。2求cosA,tanA
求cosA,tanA
綜合練習(xí)鞏固提高,更為下節(jié)的同角關(guān)系式打下基礎(chǔ)
拓展,如果不限制A的象限呢,可以留作課外探討
小結(jié)回顧課堂內(nèi)容
課堂作業(yè)和課外作業(yè)以加強(qiáng)知識的記憶和理解
課堂作業(yè)P161,2,4
。▽W(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)
課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)
必作P231(2),5(2),6(2)(4)選作P233,4
板書設(shè)計(jì)(見PPT)
《三角函數(shù)》說課稿 4
1、教學(xué)目標(biāo):
一、借助單位圓理解任意角的三角函數(shù)的定義。
二、根據(jù)三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號。
三、通過學(xué)生積極參與知識的"發(fā)現(xiàn)"與"形成"的過程,培養(yǎng)合情猜測的能力,從中感悟數(shù)學(xué)概念的嚴(yán)謹(jǐn)性與科學(xué)性。
四、讓學(xué)生在任意角三角函數(shù)概念的形成過程中,體會函數(shù)思想,體會數(shù)形結(jié)合思想。
2、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):任意角的正弦、余弦、正切的定義;三角函數(shù)值的符號。
難點(diǎn):任意角的三角函數(shù)概念的建構(gòu)過程。
授課過程:
一、引入
在我們的現(xiàn)實(shí)世界中的許多運(yùn)動變化都有循環(huán)往復(fù)、周而復(fù)始的現(xiàn)象,這種變化規(guī)律稱為周期性。如何用數(shù)學(xué)的方法來刻畫這種變化?從這節(jié)課開始,我們要來學(xué)習(xí)刻畫這種規(guī)律的數(shù)學(xué)模型之一――三角函數(shù)。
二、創(chuàng)設(shè)情境
三角函數(shù)是與角有關(guān)的函數(shù),在學(xué)習(xí)任意角概念時(shí),我們知道在直角坐標(biāo)系中研究角,可以給學(xué)習(xí)帶來許多方便,比如我們可以根據(jù)角終邊的位置把它們進(jìn)行歸類,現(xiàn)在大家考慮:若在直角坐標(biāo)系中來研究銳角,則銳角三角函數(shù)又可怎樣定義呢?
學(xué)生情況估計(jì):學(xué)生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點(diǎn)P的坐標(biāo)。
問題:
1、銳角三角函數(shù)能否表示成第二種比值方式?
2、點(diǎn)P能否取在終邊上的其它位置?為什么?
3、點(diǎn)P在哪個(gè)位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數(shù)依舊表示一個(gè)比值,不過其分母為1而已。
練習(xí):計(jì)算的各三角函數(shù)值。
三、任意角的三角函數(shù)的定義
角的概念已經(jīng)推廣道了任意角,那么三角函數(shù)的定義在任意角的范圍里改怎么定義呢?
嘗試:根據(jù)銳角三角函數(shù)的定義,你能嘗試著給出任意角三角函數(shù)的定義嗎?
評價(jià)學(xué)生給出的定義。給出任意角三角函數(shù)的定義。
四、解析任意角三角函數(shù)的定義
三角函數(shù)首先是函數(shù)。你能從函數(shù)觀點(diǎn)解析三角函數(shù)嗎?(定義域)
對于確定的角a,上面三個(gè)函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。由于角的`集合和實(shí)數(shù)集之間可以建立一一對應(yīng)的關(guān)系,三角函數(shù)可以看成是自變量為實(shí)數(shù)的函數(shù)。
五、三角函數(shù)的應(yīng)用。
1、已知角,求a的三角函數(shù)值。
2、已知角a終邊上的一點(diǎn)P(-3,-4),求各三角函數(shù)值。
以上兩道書上的例題,讓學(xué)生自習(xí)看書,學(xué)生看書的同時(shí),老師提出問題:
1、已知角如何求三角函數(shù)值?
2、利用角a的終邊上任意一點(diǎn)的坐標(biāo)也可以定義三角函數(shù),你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點(diǎn)?)
3、變式:已知角a終邊上點(diǎn)P(-3b,-4b),(b0),求角a的各三角函數(shù)值。
4、探究:三角函數(shù)的值在各象限的符號。
六、小結(jié)及作業(yè)
教案設(shè)計(jì)說明:
新教材的教學(xué)理念之一是讓學(xué)生去體驗(yàn)新知識的發(fā)生過程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點(diǎn)來設(shè)計(jì)。
首先,角的概念推廣了,那么銳角三角函數(shù)的定義是否也該推廣到任意角的三角函數(shù)的定義呢?通過這個(gè)問題,讓學(xué)生體會到新知識的發(fā)生是可能的,自然的。
其次,到底應(yīng)該怎樣去合理定義任意角的三角函數(shù)呢?讓學(xué)生提出自己的想法,同時(shí)讓學(xué)生去辨證這個(gè)想法是否是科學(xué)的?因?yàn)橐粋(gè)概念是嚴(yán)謹(jǐn)?shù),科學(xué)的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數(shù)的定義有所沖突。在這個(gè)立-破的過程中,讓學(xué)生去體驗(yàn)一個(gè)新的數(shù)學(xué)概念可能是如何形成,在形成的過程中可以從哪些角度加以科學(xué)的辯思。這樣也有助于學(xué)生對任意角三角函數(shù)概念的理解。
再次,讓學(xué)生充分體會在任意角三角函數(shù)定義的推廣中,是如何將直角三角形這個(gè)"形"的問題,轉(zhuǎn)換到直角坐標(biāo)系下點(diǎn)的坐標(biāo)這個(gè)"數(shù)"的過程的。培養(yǎng)數(shù)形結(jié)合的思想。
《三角函數(shù)》說課稿 5
一、教學(xué)內(nèi)容
本節(jié)主要內(nèi)容為:經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進(jìn)行含有30°、45°、60°角的三角函數(shù)值的計(jì)算。
二、教學(xué)目標(biāo)
1、經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進(jìn)行有關(guān)推理,進(jìn)一步體會三角函數(shù)的意義。
2、能夠進(jìn)行含有30°、45°、60°角的三角函數(shù)值的計(jì)算。
3、能夠根據(jù)30°、45°、60°角的三角函數(shù)值,說出相應(yīng)的.銳角的大小。
三、過程與方法
通過進(jìn)行有關(guān)推理,探索30°、45°、60°角的三角函數(shù)值。在具體教學(xué)過程中,教師可在教材的基礎(chǔ)上適當(dāng)拓展,使得內(nèi)容更為豐富。教師可以運(yùn)用和學(xué)生共同探究式的教學(xué)方法,學(xué)生可以采取自主探討式的學(xué)習(xí)方法。
四、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):進(jìn)行含有30°、45°、60°角的三角函數(shù)值的計(jì)算
難點(diǎn):記住30°、45°、60°角的三角函數(shù)值
五、教學(xué)準(zhǔn)備
教師準(zhǔn)備
預(yù)先準(zhǔn)備教材、教參以及多媒體課件
學(xué)生準(zhǔn)備
教材、同步練習(xí)冊、作業(yè)本、草稿紙、作圖工具等
六、教學(xué)步驟
教學(xué)流程設(shè)計(jì)
教師指導(dǎo)學(xué)生活動
新章節(jié)開場白
1.進(jìn)入學(xué)習(xí)狀態(tài)
2.進(jìn)行教學(xué)
3.配合學(xué)習(xí)
4.總結(jié)和指導(dǎo)學(xué)生練習(xí)。
教學(xué)過程設(shè)計(jì)
1、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
2、師生共同研究形成概念
3、隨堂練習(xí)
4、小結(jié)
5、作業(yè)
七、課后反思
本節(jié)課基本上能夠突出重點(diǎn)、弱化難點(diǎn),在時(shí)間上也能掌控得比較合理,學(xué)生也比較積極投入學(xué)習(xí)中,但是學(xué)生好像并不是掌握得很好,在今后的教學(xué)中應(yīng)該再加強(qiáng)關(guān)于這方面的學(xué)習(xí)。
《三角函數(shù)》說課稿 6
一、教材分析
1、教材的地位與作用:《同角三角函數(shù)的基本關(guān)系》是學(xué)習(xí)三角函數(shù)定義后安排的一節(jié)繼續(xù)深入學(xué)習(xí)的內(nèi)容,是求三角函數(shù)值,化簡三角函數(shù)式,證明三角恒等式的基本工具,是整個(gè)三角函數(shù)的基礎(chǔ),起承上啟下的作用,同時(shí),它體現(xiàn)的數(shù)學(xué)思想方法在整個(gè)中學(xué)學(xué)習(xí)中起重要作用。
2、教學(xué)目標(biāo)的確定及依據(jù)
A、知識與技能目標(biāo):通過觀察猜想出兩個(gè)公式,運(yùn)用數(shù)形結(jié)合的思想讓學(xué)生掌握公式的推導(dǎo)過程,理解同角三角函數(shù)的基本關(guān)系式,掌握基本關(guān)系式在兩個(gè)方面的應(yīng)用:
1)已知一個(gè)角的一個(gè)三角函數(shù)值能求這個(gè)角的其他三角函數(shù)值;
2)證明簡單的三角恒等式。
B、過程與方法:培養(yǎng)學(xué)生觀察——猜想——證明的科學(xué)思維方式;通過公式的推導(dǎo)過程培養(yǎng)學(xué)生用舊知識解決新問題的思想;通過求值、證明來培養(yǎng)學(xué)生邏輯推理能力;通過例題與練習(xí)提高學(xué)生動手能力、分析問題解決問題的能力以及其知識遷移能力。
C、情感、態(tài)度與價(jià)值觀:經(jīng)歷數(shù)學(xué)研究的過程,體驗(yàn)探索的樂趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣。
3、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用。
難點(diǎn):同角三角函數(shù)函數(shù)基本關(guān)系在解題中的靈活選取及使用公式時(shí)由函數(shù)值正、負(fù)號的選取而導(dǎo)致的角的范圍的討論。
二、學(xué)情分析:
學(xué)生剛開始接觸三角函數(shù)的內(nèi)容,學(xué)習(xí)了任意角的三角函數(shù),對這一方面的內(nèi)容既感到新鮮又感到陌生,很有好奇心,躍躍欲試,學(xué)習(xí)熱情高漲。
三、教法分析與學(xué)法分析:
1、教法分析:采取誘思探究性教學(xué)方法,在教學(xué)中提出問題,創(chuàng)設(shè)情景引導(dǎo)學(xué)生主動觀察、思考、類比、討論、總結(jié)、證明,讓學(xué)生做學(xué)習(xí)的主人,在主動探究中汲取知識,提高能力。
。病W(xué)法分析:從學(xué)生原有的知識和能力出發(fā),在教師的帶領(lǐng)下,通過合作交流,共同探索,逐步解決問題。數(shù)學(xué)學(xué)習(xí)必須注重概念、原理、公式、法則的形成過程,突出數(shù)學(xué)本質(zhì)。
四、教學(xué)過程設(shè)計(jì)
例1、設(shè)計(jì)意圖:已知一個(gè)角的某一個(gè)三角函數(shù)值,便可運(yùn)用基本關(guān)系式求出其它三角函數(shù)值。在求值中,確定角的終邊位置是關(guān)鍵和必要的。有時(shí),由于角的終邊位置的不確定,因此解的情況不止一種。本題主要利用的數(shù)學(xué)解題思想是:分類討論
例2、設(shè)計(jì)意圖:
。1)分子、分母是正余弦的一次(或二次)齊次式,注意所求值式的分子、分母均為一次齊次式,把分子、分母同除以,將分子、分母轉(zhuǎn)化為的代數(shù)式;還可以利用商數(shù)關(guān)系解決。
(2)“化1法”,可利用平方關(guān)系,將分子、分母都變?yōu)槎锡R次式,再利用商數(shù)關(guān)系化歸為的分式求值;
五、教學(xué)反思:
如此設(shè)計(jì)教學(xué)過程,既復(fù)習(xí)了上一節(jié)的內(nèi)容,又充分利用舊知識帶出新知識,讓學(xué)生明白到數(shù)學(xué)的`知識是相互聯(lián)系的,所以每一節(jié)內(nèi)容都應(yīng)該把它牢固掌握;在公式的推導(dǎo)中,教師是用創(chuàng)設(shè)問題的形式引導(dǎo)學(xué)生去發(fā)現(xiàn)關(guān)系式,多讓學(xué)生動手去計(jì)算,體現(xiàn)了&qut;教師為引導(dǎo),學(xué)生為主體,體驗(yàn)為紅線,探索得材料,研究獲本質(zhì),思維促發(fā)展&qut;的教學(xué)思想。通過兩種不同的例題的對比,讓學(xué)生能夠明白到關(guān)系式中的開方,是需要考慮正負(fù)號,而正負(fù)號是與角的象限有關(guān),角的象限題目可以直接給出來,但有時(shí)是需要已知條件來推出角可能所在的象限,通過分析,把本節(jié)課的教學(xué)難點(diǎn)解決了。
由于課堂在完成例題及變式時(shí)要給予學(xué)生充分的時(shí)間思考與嘗試,故對學(xué)生的檢測只能安排在課后的作業(yè)中,作業(yè)可以檢測學(xué)生對本節(jié)課內(nèi)容掌握的情況,能否靈活運(yùn)用知識進(jìn)行合理的遷移,可以發(fā)現(xiàn)學(xué)生在解題中存在的問題,下節(jié)課教師再根據(jù)學(xué)生完成的情況加以評講,并設(shè)計(jì)相應(yīng)的訓(xùn)練題,使學(xué)生的認(rèn)識再上一個(gè)臺階。
《三角函數(shù)》說課稿 7
一、教材分析
1、教材的地位與作用:《同角三角函數(shù)的基本關(guān)系》是學(xué)習(xí)三角函數(shù)定義后安排的一節(jié)繼續(xù)深入學(xué)習(xí)的內(nèi)容,是求三角函數(shù)值,化簡三角函數(shù)式,證明三角恒等式的基本工具,是整個(gè)三角函數(shù)的基礎(chǔ),起承上啟下的作用,同時(shí),它體現(xiàn)的數(shù)學(xué)思想方法在整個(gè)中學(xué)學(xué)習(xí)中起重要作用。
2、教學(xué)目標(biāo)的確定及依據(jù)
A、知識與技能目標(biāo):通過觀察猜想出兩個(gè)公式,運(yùn)用數(shù)形結(jié)合的思想讓學(xué)生掌握公式的推導(dǎo)過程,理解同角三角函數(shù)的基本關(guān)系式,掌握基本關(guān)系式在兩個(gè)方面的應(yīng)用:
1)已知一個(gè)角的一個(gè)三角函數(shù)值能求這個(gè)角的其他三角函數(shù)值;
2)證明簡單的三角恒等式。
B、過程與方法:培養(yǎng)學(xué)生觀察——猜想——證明的科學(xué)思維方式;通過公式的推導(dǎo)過程培養(yǎng)學(xué)生用舊知識解決新問題的思想;通過求值、證明來培養(yǎng)學(xué)生邏輯推理能力;通過例題與練習(xí)提高學(xué)生動手能力、分析問題解決問題的能力以及其知識遷移能力。
C、情感、態(tài)度與價(jià)值觀:經(jīng)歷數(shù)學(xué)研究的過程,體驗(yàn)探索的樂趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣。
3、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用。
難點(diǎn):同角三角函數(shù)函數(shù)基本關(guān)系在解題中的靈活選取及使用公式時(shí)由函數(shù)值正、負(fù)號的選取而導(dǎo)致的角的范圍的討論。
二、學(xué)情分析
學(xué)生剛開始接觸三角函數(shù)的內(nèi)容,學(xué)習(xí)了任意角的三角函數(shù),對這一方面的內(nèi)容既感到新鮮又感到陌生,很有好奇心,躍躍欲試,學(xué)習(xí)熱情高漲。
三、教法分析與學(xué)法分析
1、教法分析:采取誘思探究性教學(xué)方法,在教學(xué)中提出問題,創(chuàng)設(shè)情景引導(dǎo)學(xué)生主動觀察、思考、類比、討論、總結(jié)、證明,讓學(xué)生做學(xué)習(xí)的主人,在主動探究中汲取知識,提高能力。
。病W(xué)法分析:從學(xué)生原有的知識和能力出發(fā),在教師的帶領(lǐng)下,通過合作交流,共同探索,逐步解決問題。數(shù)學(xué)學(xué)習(xí)必須注重概念、原理、公式、法則的形成過程,突出數(shù)學(xué)本質(zhì)。
四、教學(xué)過程設(shè)計(jì)
1、強(qiáng)調(diào):sin是(sin)并不是sin
設(shè)計(jì)意圖:從具體到抽象,引導(dǎo)學(xué)生完成抽象與具體之間的相互轉(zhuǎn)換
2、思考:
問題1:從以上的過程中,你能發(fā)現(xiàn)什么一般規(guī)律?
問題2:你能否用代數(shù)式表示這兩個(gè)規(guī)律?
設(shè)計(jì)意圖:引導(dǎo)學(xué)生用特殊到一般的思維來處理問題,通過觀察思考,感知同角三角函數(shù)的基本關(guān)系。
3、證明公式:(同角三角函數(shù)基本關(guān)系)
。1)、平方關(guān)系:
。2)、商的關(guān)系:
回憶:任意角三角函數(shù)的定義?
學(xué)生回答:設(shè)α是一個(gè)任意角,它的終邊與單位圓交于點(diǎn)P(x,y)則:
sin=y;cos=x,
引導(dǎo)學(xué)生注意:單位圓中
所以:sin+cos=;=
設(shè)計(jì)意圖:引導(dǎo)學(xué)生運(yùn)用已知知識解決未知知識,體會數(shù)學(xué)知識的形成過程。
4、辨析討論—深化公式
辨析1思考:上述兩個(gè)公式成立有什么要求嗎?
設(shè)計(jì)意圖:注意這些關(guān)系式都是對于使它們有意義的角而言的。如(2)式中
辨析2判斷下列等式是否成立:
設(shè)計(jì)意圖:注意“同角”,至于角的形式無關(guān)重要,突破難點(diǎn)。
辨析3思考:你能將兩個(gè)公式變形么?
。◣熒顒樱簩τ诠阶兪降恼J(rèn)識,強(qiáng)調(diào)靈活運(yùn)用公式的幾大要點(diǎn)。)
設(shè)計(jì)意圖:對這些關(guān)系式不僅要牢固掌握,還要能靈活運(yùn)用(正用、反用、變形用)如:
。怠⑦\(yùn)用新知、培養(yǎng)能力。
自然界的萬物都有著千絲萬縷的聯(lián)系,大家只要養(yǎng)成善于觀察的習(xí)慣,也許每天都會有新的發(fā)現(xiàn)。剛才我們發(fā)現(xiàn)了同角三角函數(shù)的基本關(guān)系式,那么這些關(guān)系式能用于解決哪些問題呢?
例1、
思考1:條件“α是第四象限的角”有什么作用?
思考2:如何建立cosα與sinα的聯(lián)系?如何建立他們與tanα的聯(lián)系?
設(shè)計(jì)意圖:借助學(xué)生對于剛學(xué)習(xí)的知識所擁有的探求心理,讓他們學(xué)習(xí)使用兩個(gè)公式來求三角函數(shù)值。
思考:本題與例題一的主要區(qū)別在哪兒?如何解決這個(gè)問題?
設(shè)計(jì)意圖:對比之前例題,強(qiáng)調(diào)他們之間的區(qū)別,并且說明解決問題的方法:針對α可能所處的象限分類討論。
變式2、
設(shè)計(jì)意圖:類比練習(xí),已知正弦,也可求余弦、正切。
變式3、
設(shè)計(jì)意圖:通過例題與變式使學(xué)生掌握基本關(guān)系式的應(yīng)用:已知一個(gè)角的一個(gè)三角函數(shù)值能求這個(gè)角的其他三角函數(shù)值,并在求三角函數(shù)值的過程中注意由函數(shù)值正、負(fù)號的選取而導(dǎo)致的角的范圍的討論,培養(yǎng)學(xué)生分類討論思想。突破重難點(diǎn)。
小結(jié):(由學(xué)生自己總結(jié),師生共同歸納得出)
3,注意:若α所在象限未定,應(yīng)討論α所在象限。
設(shè)計(jì)意圖:利用例題與變式,共同總結(jié)兩類問題的解決方法,培養(yǎng)學(xué)生歸納分析能力。
例2、已知tan=2,求的值
設(shè)計(jì)意圖:
利用商的關(guān)系的靈活使用,解法多樣,通過對公式正向、逆向、變式使用加深對公式的理解與認(rèn)識。
證法2:通過變形等式,先把分式化為整式,再利用同角三角函數(shù)的平方關(guān)系即可證得.
設(shè)計(jì)意圖:同角三角函數(shù)平方關(guān)系靈活使用,通過對公式正向、逆向、變式使用加深對公式的理解與認(rèn)識。
思考:是否還有其他的證明方法?
方法3:左邊減去右邊,如果等于零,則等式成立。
方法4:左邊除以右邊,如果等于一,則等式成立。(保證分母不為零)
設(shè)計(jì)意圖:發(fā)散學(xué)生的思維,為下面的總結(jié)做好鋪墊,突破本節(jié)難點(diǎn)
總結(jié)證明三角恒等式經(jīng)常使用的'方法:
1.從等式左邊變形到右邊;
2.從恒等式出發(fā),轉(zhuǎn)化到所要證明的等式上;
3.左邊減去右邊等于0;
4.左邊除以右邊等于1(保證分母不為零)。
6、課堂小結(jié),深化認(rèn)識
讓學(xué)生自己總結(jié)本節(jié)課的重點(diǎn)、難點(diǎn)和學(xué)習(xí)目標(biāo),教師再補(bǔ)充。這樣做,會檢測出學(xué)生聽課、分析、思考和掌握知識的情況,對本節(jié)課的教學(xué)起到畫龍點(diǎn)睛的作用。
公式推導(dǎo):具體算式→觀察→猜想→論證→基本關(guān)系式
公式應(yīng)用:
一般方法(例1):先確定象限角再求值。分類討論思想
特殊方法(例2):化切為弦和化弦為切。整體思想、化歸思想
靈活運(yùn)用公式(例3):證明恒等式
7、作業(yè)布置:
(1)、已知,求、
變式1、
變式2、
設(shè)計(jì)意圖:鞏固所學(xué)公式,并靈活運(yùn)用;分層設(shè)計(jì),題(1)是在課堂例題的延伸,題(2)是在課堂上沒講的題型,檢測學(xué)生對知識的遷移能力。
8、板書設(shè)計(jì)
同角三角函數(shù)基本關(guān)系式
一、公式二、例題例2
1、sin2+cos2=1;例1
2、tan=變式1
五、教學(xué)反思:
如此設(shè)計(jì)教學(xué)過程,既復(fù)習(xí)了上一節(jié)的內(nèi)容,又充分利用舊知識帶出新知識,讓學(xué)生明白到數(shù)學(xué)的知識是相互聯(lián)系的,所以每一節(jié)內(nèi)容都應(yīng)該把它牢固掌握;在公式的推導(dǎo)中,教師是用創(chuàng)設(shè)問題的形式引導(dǎo)學(xué)生去發(fā)現(xiàn)關(guān)系式,多讓學(xué)生動手去計(jì)算,體現(xiàn)了"教師為引導(dǎo),學(xué)生為主體,體驗(yàn)為紅線,探索得材料,研究獲本質(zhì),思維促發(fā)展"的教學(xué)思想。通過兩種不同的例題的對比,讓學(xué)生能夠明白到關(guān)系式中的開方,是需要考慮正負(fù)號,而正負(fù)號是與角的象限有關(guān),角的象限題目可以直接給出來,但有時(shí)是需要已知條件來推出角可能所在的象限,通過分析,把本節(jié)課的教學(xué)難點(diǎn)解決了。由于課堂在完成例題及變式時(shí)要給予學(xué)生充分的時(shí)間思考與嘗試,故對學(xué)生的檢測只能安排在課后的作業(yè)中,作業(yè)可以檢測學(xué)生對本節(jié)課內(nèi)容掌握的情況,能否靈活運(yùn)用知識進(jìn)行合理的遷移,可以發(fā)現(xiàn)學(xué)生在解題中存在的問題,下節(jié)課教師再根據(jù)學(xué)生完成的情況加以評講,并設(shè)計(jì)相應(yīng)的訓(xùn)練題,使學(xué)生的認(rèn)識再上一個(gè)臺階。
《三角函數(shù)》說課稿 8
我說課的課題是《任意角的三角函數(shù)》,內(nèi)容取自人教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》④(必修)第1、2、1節(jié)。
一、教材結(jié)構(gòu)與內(nèi)容簡析
本節(jié)內(nèi)容在全書及章節(jié)的地位:三角函數(shù)是描述周期運(yùn)動現(xiàn)象的重要的數(shù)學(xué)模型,有非常廣泛的應(yīng)用。三角函數(shù)的定義是在初中對銳角三角函數(shù)的定義以及剛學(xué)過的“角的概念的推廣”的基礎(chǔ)上討論和研究的。三角函數(shù)的定義是本章最基本的概念,對三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要,是其他所有知識的出發(fā)點(diǎn)。緊緊扣住三角函數(shù)定義這個(gè)寶貴的源泉,可以自然地導(dǎo)出本章的具體內(nèi)容:三角函數(shù)線、定義域、符號判斷、值域、同角三角函數(shù)關(guān)系、多組誘導(dǎo)公式、多組變換公式、圖象和性質(zhì)。三角函數(shù)的定義在教材中起著承前啟后的作用,一方面,通過這部分內(nèi)容的學(xué)習(xí),可以幫助學(xué)生更加深入理解函數(shù)這一基本概念,另一方面它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備。三角函數(shù)知識還是物理學(xué)、高等數(shù)學(xué)、測量學(xué)、天文學(xué)的重要基礎(chǔ)。
三角函數(shù)定義必然是學(xué)好全章內(nèi)容的關(guān)鍵,如果學(xué)生掌握不好,將直接影響到后續(xù)內(nèi)容的學(xué)習(xí),由三角函數(shù)定義的基礎(chǔ)性和應(yīng)用的廣泛性決定了本節(jié)教材的重點(diǎn)就是定義本身。
數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識,因此本節(jié)課在教學(xué)中力圖向?qū)W生展示嘗試類比、數(shù)形結(jié)合等數(shù)學(xué)思想方法。
二、教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵
教學(xué)重點(diǎn):任意角的三角函數(shù)的定義,三角函數(shù)的符號規(guī)律。
教學(xué)難點(diǎn):任意角的三角函數(shù)概念的建構(gòu)過程。
教學(xué)關(guān)鍵:如何想到建立直角坐標(biāo)系;六個(gè)比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化)。
三、學(xué)情分析
學(xué)生已經(jīng)掌握的內(nèi)容及學(xué)生學(xué)習(xí)能力
1、學(xué)生在初中時(shí)已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。
2、學(xué)生的運(yùn)算能力較差。
3、部分同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。
4、在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,必須在老師一定的指導(dǎo)下才能進(jìn)行。
四、教學(xué)目標(biāo)
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,我制定如下教學(xué)目標(biāo):
1、基礎(chǔ)知識目標(biāo):使學(xué)生正確理解任意角的正弦、余弦、正切的定義,了解余切、正割、余割的定義;
2、能力訓(xùn)練目標(biāo):通過學(xué)生積極參與知識的“發(fā)現(xiàn)”與“形成”的過程,培養(yǎng)合情猜測的能力。
3、情感目標(biāo):通過學(xué)習(xí),滲透數(shù)形結(jié)合和類比的數(shù)學(xué)思想,培養(yǎng)學(xué)生良好的思維習(xí)慣。
下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劊?/p>
五、教學(xué)理念和方法
教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不僅要接受、記憶、模仿和練習(xí),而且要自主探索、合作交流、師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程。
根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點(diǎn)和我自己的教學(xué)風(fēng)格,本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學(xué)教法,在課堂結(jié)構(gòu)上,設(shè)計(jì)了
、賱(chuàng)設(shè)情境——揭示課題
、谕茝V認(rèn)知——形成概念
③鞏固新知——探求規(guī)律
、芸偨Y(jié)反思——提高認(rèn)識
⑤任務(wù)后延——自主探究五個(gè)層次的學(xué)法,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學(xué)目標(biāo)。接下來,我再具體談一談這堂課的教學(xué)過程:
六、教學(xué)程序及設(shè)想
總體來說,由舊及新,由易及難,逐步加強(qiáng),逐步推進(jìn),給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識,拓展、完善定義、
先由初中的直角三角形中銳角三角函數(shù)的定義,過度到直角坐標(biāo)系中銳角三角函數(shù)的定義,再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義。
。ㄒ唬﹦(chuàng)設(shè)情境——揭示課題
問題1:在初中我們學(xué)習(xí)了銳角三角函數(shù),那么銳角三角函數(shù)是如何定義的?
【設(shè)計(jì)意圖】學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實(shí)數(shù)的擴(kuò)展)。溫故知新,要讓學(xué)生體會知識的產(chǎn)生、發(fā)展過程,就要從源頭上開始,從學(xué)生現(xiàn)有認(rèn)知狀況開始,對銳角三角函數(shù)的復(fù)習(xí)就必不可少。
問題2:角的概念推廣之后,這樣的三角函數(shù)定義還適用嗎?
問題3:若將銳角放入直角坐標(biāo)系中,你能用角的終邊上的點(diǎn)的坐標(biāo)來表示銳角三角函數(shù)嗎?
留時(shí)間讓學(xué)生獨(dú)立思考或自由討論,教師參與討論或巡回對學(xué)困生作啟發(fā)引導(dǎo)。
能表示嗎?怎樣表示?針對剛才的問題點(diǎn)名讓學(xué)生回答。用角的對邊、鄰邊、斜邊比值的說法顯然是受到阻礙了,由于前面已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生一般會想到(否則教師進(jìn)行提示)繼續(xù)用直角坐標(biāo)系來研究任意角的三角函數(shù)。
【設(shè)計(jì)意圖】
從學(xué)生現(xiàn)有知識水平和認(rèn)知能力出發(fā),創(chuàng)設(shè)問題情景,讓學(xué)生產(chǎn)生認(rèn)知沖突,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的“再創(chuàng)造”征程。
教師對學(xué)生回答情況進(jìn)行點(diǎn)評后布置任務(wù)情景:請同學(xué)們用直角坐標(biāo)系重新研究銳角三角函數(shù)定義!
師生共做(學(xué)生口述,教師板書圖形和比值)。
問題4:對于確定的角,這三個(gè)比值是否與P在的終邊上的位置有關(guān)?為什么?
先讓學(xué)生想象思考,作出主觀判斷,再引導(dǎo)學(xué)生觀察右圖,聯(lián)系相似三角形知識,探索發(fā)現(xiàn):對于銳角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會隨P在終邊上的移動而變化。
得出結(jié)論(強(qiáng)調(diào)):當(dāng)α為銳角時(shí),六個(gè)比值隨α的變化而變化;但對于銳角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會隨P在終邊上的移動而變化、所以,六個(gè)比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù)。
(二)推廣認(rèn)知——形成概念
將銳角的比值情形推廣到任意角α后,水到渠成,師生共同進(jìn)行探索和推廣出:任意角的`三角函數(shù)定義。同時(shí)教師強(qiáng)調(diào):由于弧度制使角和實(shí)數(shù)建立了一一對應(yīng)關(guān)系,所以三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù),對數(shù)學(xué)學(xué)習(xí)能力較好的同學(xué)起到了很好的指導(dǎo)作用。
教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎(chǔ)上記熟,cotα、cscα、secα的定義域不要求記憶。
(關(guān)于值域,到后面再學(xué)習(xí))。
【設(shè)計(jì)意圖】定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域、指導(dǎo)學(xué)生根據(jù)定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎(chǔ)上記住它、應(yīng)用它,也增進(jìn)對三角函數(shù)概念的掌握。
。ㄈ╈柟绦轮角笠(guī)律
為了使學(xué)生達(dá)到對知識的深化理解,進(jìn)而達(dá)到鞏固提高的效果,
例1、已知角的終邊過點(diǎn),求的六個(gè)三角函數(shù)值
要求:讀完題目,思考:計(jì)算什么?需要準(zhǔn)備什么?閉目心算,對照板書,模仿書面表達(dá)格式。
鞏固定義之后,我特地設(shè)計(jì)了一組即時(shí)訓(xùn)練題,以鞏固和加深對三角函數(shù)概念的理解,通過課堂積極主動的練習(xí)活動,培養(yǎng)學(xué)生分析解決問題的能力。
例2、求的正弦、余弦和正切值。
分析:終邊上有無窮多個(gè)點(diǎn),根據(jù)三角函數(shù)的定義,只要知道終邊上任意一個(gè)點(diǎn)的坐標(biāo),就可以計(jì)算這個(gè)角的三角函數(shù)值(或判斷其無意義)
師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點(diǎn)。終邊在哪兒呢?取定哪一點(diǎn)呢?任意點(diǎn)、還是特殊點(diǎn)?要靈活,只要能夠算出三角函數(shù)值,都可以。
取特殊點(diǎn)能使計(jì)算更簡明。
等待學(xué)生基本理解和掌握三角函數(shù)定義后,觀察、分析初、高中所計(jì)算的函數(shù)值有何變化,讓學(xué)生意識到三角函數(shù)值的正負(fù)與角所在象限有關(guān),然后引導(dǎo)學(xué)生緊緊抓住三角函數(shù)定義來分析,從而導(dǎo)出三角函數(shù)值的正負(fù)與角所在象限的關(guān)系,進(jìn)而由教師總結(jié)符號記憶方法,便于學(xué)生記憶。
【設(shè)計(jì)意圖】判斷三角函數(shù)值的正負(fù)符號,是本章教材的一項(xiàng)重要的知識、技能要求、要引導(dǎo)學(xué)生抓住定義、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負(fù)符號,并總結(jié)出形象的“才”字符號法則,這也是理解和記憶的關(guān)鍵。
(四)總結(jié)反思——提高認(rèn)識
由學(xué)生總結(jié)本節(jié)課所學(xué)習(xí)的主要內(nèi)容:
、湃我饨堑娜呛瘮(shù)的定義及其定義域;
⑵三角函數(shù)的符號規(guī)律。讓學(xué)生通過知識性內(nèi)容的小結(jié),把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);通過數(shù)學(xué)思想方法的小結(jié),使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo)。
。ㄎ澹┤蝿(wù)后延——自主探究
學(xué)生經(jīng)過以上四個(gè)環(huán)節(jié)的學(xué)習(xí),已經(jīng)初步掌握了任意角的三角函數(shù)的定義及三角函數(shù)的符號規(guī)律,有待進(jìn)一步提高認(rèn)知水平,因此我針對學(xué)生素質(zhì)的差異設(shè)計(jì)了有層次的作業(yè),其中思考題的設(shè)計(jì)思想是:綜合練習(xí)鞏固提高,更為下節(jié)的學(xué)習(xí)內(nèi)容打下基礎(chǔ),同時(shí)留給學(xué)生課后自主探究,這樣既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有佘力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的,以有利于全體學(xué)生的發(fā)展。
七、簡述板書設(shè)計(jì)。
cotα、cscα、secα的定義寫在sinα、cosα、tanα的左下方,突出本節(jié)重要內(nèi)容的主體地位。
結(jié)束:以上,我僅從說教材,說學(xué)情,說教法,說學(xué)法,說教學(xué)程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。
《三角函數(shù)》說課稿 9
一、教材分析
(一)內(nèi)容說明
函數(shù)是中學(xué)數(shù)學(xué)的重要內(nèi)容,中學(xué)數(shù)學(xué)對函數(shù)的研究大致分成了三個(gè)階段。
三角函數(shù)是最具代表性的一種基本初等函數(shù)。4.8節(jié)是第二章《函數(shù)》學(xué)習(xí)的延伸,也是第四章《三角函數(shù)》的核心內(nèi)容,是在前面已經(jīng)學(xué)習(xí)過正、余弦函數(shù)的圖象、三角函數(shù)的有關(guān)概念和公式基礎(chǔ)上進(jìn)行的,其知識和方法將為后續(xù)內(nèi)容的學(xué)習(xí)打下基礎(chǔ),有承上啟下的作用。
本節(jié)課是數(shù)形結(jié)合思想方法的良好素材。數(shù)形結(jié)合是數(shù)學(xué)研究中的重要思想方法和解題方法。
著名數(shù)學(xué)家華羅庚先生的詩句:數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休......可以說精辟地道出了數(shù)形結(jié)合的重要性。
本節(jié)通過對數(shù)形結(jié)合的進(jìn)一步認(rèn)識,可以改進(jìn)學(xué)習(xí)方法,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心和興趣。另外,三角函數(shù)的曲線性質(zhì)也體現(xiàn)了數(shù)學(xué)的對稱之美、和諧之美。
因此,本節(jié)課在教材中的知識作用和思想地位是相當(dāng)重要的。
(二)課時(shí)安排
4.8節(jié)教材安排為4課時(shí),我計(jì)劃用5課時(shí)
(三)目標(biāo)和重、難點(diǎn)
1.教學(xué)目標(biāo)
教學(xué)目標(biāo)的確定,考慮了以下幾點(diǎn):
(1)高一學(xué)生有一定的抽象思維能力,而形象思維在學(xué)習(xí)中占有不可替代的地位,所以本節(jié)要緊緊抓住數(shù)形結(jié)合方法進(jìn)行探索;
(2)本班學(xué)生對數(shù)學(xué)科特別是函數(shù)內(nèi)容的學(xué)習(xí)有畏難情緒,所以在內(nèi)容上要降低深難度。
(3)學(xué)會方法比獲得知識更重要,本節(jié)課著眼于新知識的探索過程與方法,鞏固應(yīng)用主要放在后面的三節(jié)課進(jìn)行。
由此,我確定了以下三個(gè)層面的教學(xué)目標(biāo):
(1)知識層面:結(jié)合正弦曲線、余弦曲線,師生共同探索發(fā)現(xiàn)正(余)弦函數(shù)的性質(zhì),讓學(xué)生學(xué)會正確表述正、余函數(shù)的單調(diào)性和對稱性,理解體會周期函數(shù)性質(zhì)的研究過程和數(shù)形結(jié)合的研究方法;
(2)能力層面:通過在教師引導(dǎo)下探索新知的過程,培養(yǎng)學(xué)生觀察、分析、歸納的自學(xué)能力,為學(xué)生學(xué)習(xí)的可持續(xù)發(fā)展打下基礎(chǔ);
(3)情感層面:通過運(yùn)用數(shù)形結(jié)合思想方法,讓學(xué)生體會(數(shù)學(xué))問題從抽象到形象的轉(zhuǎn)化過程,體會數(shù)學(xué)之美,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的信心和興趣。
2.重、難點(diǎn)
由以上教學(xué)目標(biāo)可知,本節(jié)重點(diǎn)是師生共同探索,正、余函數(shù)的性質(zhì),在探索中體會數(shù)形結(jié)合思想方法。
難點(diǎn)是:函數(shù)周期定義、正弦函數(shù)的單調(diào)區(qū)間和對稱性的理解。
為什么這樣確定呢?
因?yàn)橹芷诟拍钍菍W(xué)生第一次接觸,理解上易錯(cuò);單調(diào)區(qū)間從圖上容易看出,但用一個(gè)區(qū)間形式表示出來,學(xué)生感到困難。
如何克服難點(diǎn)呢?
其一,抓住周期函數(shù)定義中的關(guān)鍵字眼,舉反例說明;
其二,利用函數(shù)的周期性規(guī)律,抓住“橫向距離”和“k∈Z"的含義,充分結(jié)合圖象來理解單調(diào)性和對稱性
二、教法分析
(一)教法說明教法的確定基于如下考慮:
(1)心理學(xué)的研究表明:只有內(nèi)化的東西才能充分外顯,只有學(xué)生自己獲取的知識,他才能靈活應(yīng)用,所以要注重學(xué)生的自主探索。
(2)本節(jié)目的是讓學(xué)生學(xué)會如何探索、理解正、余弦函數(shù)的性質(zhì)。教師始終要注意的是引導(dǎo)學(xué)生探索,而不是自己探索、學(xué)生觀看,所以教師要引導(dǎo),而且只能引導(dǎo)不能代辦,否則不但沒有教給學(xué)習(xí)方法,而且會讓學(xué)生產(chǎn)生依賴和倦怠。
(3)本節(jié)內(nèi)容屬于本源性知識,一般采用觀察、實(shí)驗(yàn)、歸納、總結(jié)為主的方法,以培養(yǎng)學(xué)生自學(xué)能力。
所以,根據(jù)以人為本,以學(xué)定教的原則,我采取以問題為解決為中心、啟發(fā)為主的教學(xué)方法,形成教師點(diǎn)撥引導(dǎo)、學(xué)生積極參與、師生共同探討的課堂結(jié)構(gòu)形式,營造一種民主和諧的課堂氛圍。
(二)教學(xué)手段說明:
為完成本節(jié)課的教學(xué)目標(biāo),突出重點(diǎn)、克服難點(diǎn),我采取了以下三個(gè)教學(xué)手段:
(1)精心設(shè)計(jì)課堂提問,整個(gè)課堂以問題為線索,帶著問題探索新知,因?yàn)闆]有問題就沒有發(fā)現(xiàn)。
(2)為便于課堂操作和知識條理化,事先制作正弦函數(shù)、余弦函數(shù)性質(zhì)表,讓學(xué)生當(dāng)堂完成表格的填寫;
(3)為節(jié)省課堂時(shí)間,制作幻燈片演示正、余弦函數(shù)圖象和性質(zhì),也可以使教學(xué)更生動形象和連貫。
三、學(xué)法和能力培養(yǎng)
我發(fā)現(xiàn),許多學(xué)生的學(xué)習(xí)方法是:直接記住函數(shù)性質(zhì),在解題中套用結(jié)論,對結(jié)論的來源不理解,知其然不知其所以然,應(yīng)用中不能變通和遷移。
本節(jié)的學(xué)習(xí)方法對后續(xù)內(nèi)容的學(xué)習(xí)具有指導(dǎo)意義。為了培養(yǎng)學(xué)法,充分關(guān)注學(xué)生的可持續(xù)發(fā)展,教師要轉(zhuǎn)換角色,站在初學(xué)者的位置上,和學(xué)生共同探索新知,共同體驗(yàn)數(shù)形結(jié)合的研究方法,體驗(yàn)周期函數(shù)的研究思路;幫助學(xué)生實(shí)現(xiàn)知識的意義建構(gòu),幫助學(xué)生發(fā)現(xiàn)和總結(jié)學(xué)習(xí)方法,使教師成為學(xué)生學(xué)習(xí)的高級合作伙伴。
教師要做到:
授之以漁,與之合作而漁,使學(xué)生享受漁之樂趣。因此
1.本節(jié)要教給學(xué)生看圖象、找規(guī)律、思考提問、交流協(xié)作、探索歸納的學(xué)習(xí)方法。
2.通過本課的探索過程,培養(yǎng)學(xué)生觀察、分析、交流、合作、類比、歸納的學(xué)習(xí)能力及數(shù)形結(jié)合(看圖說話)的意識和能力。
四、教學(xué)程序
指導(dǎo)思想是:兩條線索、三大特點(diǎn)、四個(gè)環(huán)節(jié)
(一)導(dǎo)入
引出數(shù)形結(jié)合思想方法,強(qiáng)調(diào)其含義和重要性,告訴學(xué)生,本節(jié)課將利用數(shù)形結(jié)合方法來研究,會使學(xué)習(xí)變得輕松有趣。
采用這樣的引入方法,目的是打消學(xué)生對函數(shù)學(xué)習(xí)的畏難情緒,引起學(xué)生注意,也激起學(xué)生好奇和興趣。
(二)新知探索主要環(huán)節(jié),分為兩個(gè)部分
教學(xué)過程如下:
第一部分————師生共同研究得出正弦函數(shù)的性質(zhì)
定義域、值域
周期性
3.單調(diào)性(重難點(diǎn)內(nèi)容)
為了突出重點(diǎn)、克服難點(diǎn),采用以下手段和方法:
(1)利用多媒體動態(tài)演示函數(shù)性質(zhì),充分體現(xiàn)數(shù)形結(jié)合的重要作用;
(2)以層層深入,環(huán)環(huán)相扣的課堂提問,啟發(fā)學(xué)生思維,反饋課堂信息,使問題成為探索新知的線索和動力,隨著問題的.解決,學(xué)生的積極性將被調(diào)動起來。
(3)單調(diào)區(qū)間的探索過程是:
先在靠近原點(diǎn)的一個(gè)單調(diào)周期內(nèi)找出正弦函數(shù)的一個(gè)增區(qū)間,由此表示出所有的增區(qū)間,體現(xiàn)從特殊到一般的知識認(rèn)識過程。
xx教師結(jié)合圖象幫助學(xué)生理解并強(qiáng)調(diào)“距離”(“長度”)是周期的多少倍
為什么要這樣強(qiáng)調(diào)呢?
因?yàn)檫@是對知識的一種意義建構(gòu),有助于以后理解記憶正弦型函數(shù)的相關(guān)性質(zhì)。
4.對稱性
設(shè)計(jì)意圖:
(1)因?yàn)槠媾夹允翘厥獾膶ΨQ性,掌握了對稱性,容易得出奇偶性,所以著重講清對稱性。體現(xiàn)了從一般到特殊的知識再現(xiàn)過程。
(2)從正弦函數(shù)的對稱性看到了數(shù)學(xué)的對稱之美、和諧之美,體現(xiàn)了數(shù)學(xué)的審美功能。
5.最值點(diǎn)和零值點(diǎn)
有了對稱性的理解,容易得出此性質(zhì)。
第二部分————學(xué)習(xí)任務(wù)轉(zhuǎn)移給學(xué)生
設(shè)計(jì)意圖:
(1)通過把學(xué)習(xí)任務(wù)轉(zhuǎn)移給學(xué)生,激發(fā)學(xué)生的主體意識和成就動機(jī),利于學(xué)生作自我評價(jià);
(2)通過學(xué)生自主探索,給予學(xué)生解決問題的自主權(quán),促進(jìn)生生交流,利于教師作反饋評價(jià);
(3)通過課堂教學(xué)結(jié)構(gòu)的改革,提高課堂教學(xué)效率,最終使學(xué)生成為獨(dú)立的學(xué)習(xí)者,這也符合建構(gòu)主義的教學(xué)原則。
(三)鞏固練習(xí)
補(bǔ)充和選作題體現(xiàn)了課堂要求的差異性。
(四)結(jié)課
五、板書說明既要體現(xiàn)原則性又要考慮靈活性
1.板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識;同時(shí)不完全按課本上的呈現(xiàn)方式來編排板書。即體現(xiàn)系統(tǒng)性、程序性、概括性、指導(dǎo)性、啟發(fā)性、創(chuàng)造性的原則;(原則性)
2.使用幻燈片輔助板書,節(jié)省課堂時(shí)間,使課堂進(jìn)程更加連貫。(靈活性)
六、效果及評價(jià)說明
(一)知識診斷
(二)評價(jià)說明
1.針對本班學(xué)生情況對課本進(jìn)行了適當(dāng)改編、細(xì)化,有利于難點(diǎn)克服和學(xué)生主體性的調(diào)動。
2.根據(jù)課堂上師生的雙邊活動,作出適時(shí)調(diào)整、補(bǔ)充(反饋評價(jià));根據(jù)學(xué)生課后作業(yè)、提問等情況,反復(fù)修改并指導(dǎo)下節(jié)課的設(shè)計(jì)(反復(fù)評價(jià))。
3.本節(jié)課充分體現(xiàn)了面向全體學(xué)生、以問題解決為中心、注重知識的建構(gòu)過程與方法、重視學(xué)生思想與情感的設(shè)計(jì)理念,積極地探索和實(shí)踐我校的科研課題——努力推進(jìn)課堂教學(xué)結(jié)構(gòu)改革。
通過這樣的探索過程,相信學(xué)生能從中有所體會,對后續(xù)內(nèi)容的學(xué)習(xí)和學(xué)生的可持續(xù)發(fā)展會有一定的幫助。希望很久以后留在學(xué)生記憶中的不是知識本身,而是方法與思想,是學(xué)習(xí)的習(xí)慣和熱情,這正是我們教育工作者追求的結(jié)果。
《三角函數(shù)》說課稿 10
一、教材分析:
1、教材的地位與作用:本節(jié)課要講的是正、余弦函數(shù)的性質(zhì),它是歷年高考的重點(diǎn)內(nèi)容之一,在高考中常以選擇題、填空題的形式出現(xiàn)。有時(shí)與其它三角變換、函數(shù)的一般性質(zhì)綜合?疾殪`活,常有創(chuàng)新性。這就要求我們注意運(yùn)用三角函數(shù)的性質(zhì)培養(yǎng)學(xué)生善于運(yùn)用三角函數(shù)的性質(zhì)解決問題。因此,學(xué)好這節(jié)課不僅可以為我們今后學(xué)習(xí)正切、余切函數(shù)的性質(zhì)打下基礎(chǔ),還可以進(jìn)一步提高學(xué)生分析問題和解決問題的能力,它對知識起到了承上啟下的作用。
2、教學(xué)目標(biāo)的確定:根據(jù)教參及教學(xué)大綱的要求,依據(jù)教學(xué)目的以及學(xué)生的實(shí)際情況,制定如下的教學(xué)目標(biāo):
(1)知識目標(biāo):正、余弦函數(shù)的性質(zhì)及應(yīng)用(定義域、值域、最大、最小值、奇偶性、單調(diào)性)
(2)能力目標(biāo):
a:掌握正、余弦函數(shù)的性質(zhì);
b:靈活利用正、余弦函數(shù)的性質(zhì)
(3)德育目標(biāo):
a:滲透數(shù)形結(jié)合的思想
b:培養(yǎng)聯(lián)合變化的觀點(diǎn)
c:提高數(shù)學(xué)素質(zhì)
3、教學(xué)重點(diǎn)和難點(diǎn)的確定及依據(jù);
由于正、余弦函數(shù)的主要性質(zhì)在本節(jié)中有著重要的地位。因此,成為本節(jié)課的重點(diǎn),在教學(xué)中,單調(diào)性、奇偶性和周期性是學(xué)生第一次接觸的三個(gè)概念,而函數(shù)的單調(diào)性、奇偶性以及周期函數(shù),周期,最小正周期的意義是本節(jié)教學(xué)中學(xué)生第一次接觸的內(nèi)容。這在學(xué)生的基礎(chǔ)上理解有一定的難度。因此成為本節(jié)課的難點(diǎn)。那么克服本節(jié)課的難點(diǎn)的關(guān)鍵在于復(fù)習(xí)好正、余弦函數(shù)圖象的意義,充分利用圖形講清正、余弦函數(shù)的特點(diǎn),梳理好講解順序,使學(xué)生通過適當(dāng)?shù)木毩?xí)正確理解概念、圖象、特性、實(shí)現(xiàn)教學(xué)目標(biāo)和進(jìn)一步提高學(xué)生的學(xué)習(xí)探索能力,充分發(fā)揮學(xué)生的主體作用。
二、教材處理:
正、余弦函數(shù)的性質(zhì),其中定義域、值域、最大值、最小值,學(xué)生以前已接觸過,所以只需簡單提示。但是單調(diào)性,奇偶性,周期性是學(xué)生第一次接觸到的,考慮到學(xué)生的基礎(chǔ)參差不齊,接受能力不同,因此在教學(xué)中要顧全局,耐心講解,并通過適當(dāng)?shù)慕叹邌l(fā)調(diào)動學(xué)生的主觀能動性。
三、教學(xué)方法和手段:
1、教學(xué)方法:啟發(fā)誘導(dǎo)式教學(xué)方法,為增強(qiáng)圖象的形象直觀性,增大教學(xué)內(nèi)容,提高效率。我利用計(jì)算機(jī)軟件,在此基礎(chǔ)上,學(xué)生運(yùn)用觀察法、發(fā)現(xiàn)法、學(xué)習(xí)法、歸納法以及練習(xí)法進(jìn)行學(xué)習(xí),在教學(xué)過程中,首先我以習(xí)提問形式引入課題,意義使學(xué)生利用類比思想,認(rèn)識到研究三角函數(shù)的方向所在,減少盲目性。為了有利于學(xué)生正確了解正、余弦圖形的.性質(zhì),我又指導(dǎo)了學(xué)生復(fù)習(xí)正、余弦函數(shù)的圖象。再從介紹圖象的特點(diǎn)讓學(xué)生觀察、發(fā)現(xiàn)、歸納函數(shù)的性質(zhì)。同時(shí)結(jié)合不同例子鞏固所學(xué)的知識,訓(xùn)練學(xué)生的知識應(yīng)用能力。軟件輔助教的充分利用使得教學(xué)生動而有條理,使學(xué)生認(rèn)識到數(shù)歸思想、數(shù)形結(jié)合在學(xué)習(xí)知識中的作用。
2、教學(xué)手段:根據(jù)本節(jié)課的特點(diǎn),要在正、余弦函數(shù)的圖象的基礎(chǔ)上操作性質(zhì),所以有條件的話不防可用動畫的形式表現(xiàn),給學(xué)生一種直觀形象,不僅激發(fā)了學(xué)生的創(chuàng)造性思維能力,更起到了事半功倍的效果。
四、教學(xué)過程:
1、復(fù)習(xí)導(dǎo)入:
通過復(fù)習(xí)已學(xué)過的正、余弦函數(shù)的圖象,不妨叫學(xué)生自己作圖,這樣不僅復(fù)習(xí)了上節(jié)課的五點(diǎn)作圖法,還可以引出新課,正、余弦函數(shù)的性質(zhì)
2、新課
a:打出多媒體課件,不妨叫學(xué)生自己觀察正、余弦函數(shù)的圖象,定義域和值域,最大值,最小值,學(xué)生應(yīng)該都能觀察出來,只須稍微強(qiáng)調(diào)一下。
b:周期函數(shù)的定義:可有誘導(dǎo)公式sin(x+2kn)=sinx
得出函數(shù)值是按一定的規(guī)律重復(fù)取的,給出定義,講解定義時(shí),要特別強(qiáng)調(diào)“作零常數(shù)t”,及“對于定義域的每一值,都要有f(x+t)=f(x)成立,也就是說,如果在定義域內(nèi)的每一個(gè)值使得f(x+t)=f(x)成立。非零常數(shù)t就是周期了,不妨舉一個(gè)例子,是否正弦函數(shù)的周期,sin(n/2+x)是否等于sin(x)還應(yīng)強(qiáng)調(diào)并不是所有的函數(shù)都會有最小正周期。
c:奇偶性:在講解定義時(shí),應(yīng)該強(qiáng)調(diào),在判斷函數(shù)是否為奇偶函數(shù)時(shí),必須先看其定義域是否關(guān)于原點(diǎn)對稱,后再由f(x)=f(-x)或f(-x)=-f(x),也就是說,定義域關(guān)于原點(diǎn)對稱,一個(gè)函數(shù)有奇偶性的必要條件,還應(yīng)強(qiáng)調(diào)并不是所有的函數(shù)都有奇偶性,但也有函數(shù)既是奇函數(shù),也是偶函數(shù)?梢耘e例說明:奇函數(shù)一定關(guān)于原點(diǎn)對稱,偶函數(shù)一定關(guān)于y軸對稱。反之也成立。
d:在講解周期性、奇偶性、單調(diào)性時(shí)可有多媒體課件實(shí)現(xiàn)。
(1)、對稱軸:y=sinx的對稱軸是x=kn+n/2;y=cosx的對稱軸是x=kn;對稱性;
(2)對稱中心:y=sinx的對稱中心是(kn,0)y=cosx的對稱中心是(kn+n/2,0)
當(dāng)y=sinxx∈[-n/2+2kn,n/2+2kn]時(shí),曲線逐漸上升,y的值由-1逐漸增加到1;
單調(diào)性x∈[n/2+2kn,n/2+2kn]時(shí),曲線逐漸下降,y的值由1逐漸減少到-1;
當(dāng)y=cosxx∈[-n+2kn,2kn]時(shí),曲線逐漸上升,y的值由-1逐漸增加到1;
x∈[2kn,n+2kn]時(shí),曲線逐漸下降,y的值由1逐漸減少到-1;
五、例題講解:
例1:
cos(-23n/5)-cos(-17n/4)
問:能否求出上式的值?能否求出其值比0大還是小?須運(yùn)用我們這節(jié)課所學(xué)的哪部分知識?
求上式的值大于0還是小于0?
∵y=cosx是偶函數(shù),∴原式為cos(23n/5)-cos(17n/4)
可知cos(23n/5)
即cos(-23n/5)-cos(-17n/4)<0
例2:y=√sinx+1
提出問題:學(xué)生能提出什么問題?
教師引導(dǎo):上式有沒有最大值,最小值,值域,什么時(shí)候取得最大值?什么時(shí)候取得最小值?奇偶性如何?能不能畫出它的圖象?圖象與y=cosx有什么關(guān)系?
求取的最大值的x的值所有集合。
當(dāng)x取最大值時(shí)的取值為x=kn+n/2(k∈r)
即取的最大值的x的值的所有集合為[x∣x=kn+n/2(k∈r)]
例3:y=√sinx的定義域。
由0≦sinx≦1可得:
x的定義域?yàn)椋?kn≦x≦&pro
d;+2kn(k∈r)
即x的定義域?yàn)閇2kn,n+2kn](k∈r)
問:可不可以求值域?有沒有奇偶性?如果有的話,是奇函數(shù)還是偶函數(shù)?
拓展:求上式函數(shù)的奇偶性。一般來講,學(xué)生會用定義法求出上式既不是奇函數(shù),也不是偶函數(shù)。
結(jié)果:上式既不是奇函數(shù),也不是偶函數(shù)。
問:為什么呢?
強(qiáng)調(diào):函數(shù)有奇偶性的必要條件是定義域關(guān)于原點(diǎn)對稱。
六、課堂小結(jié):
通過本節(jié)學(xué)習(xí),要求掌握正、余弦函數(shù)的性質(zhì)以及性質(zhì)的簡單應(yīng)用,解決一些相關(guān)問題。
七、作業(yè)布置:
使學(xué)生通過作業(yè)進(jìn)一步掌握和鞏固本節(jié)內(nèi)容
《三角函數(shù)》說課稿 11
我是今天的x號考生,今天我說課的題目是《兩角和與差的三角函數(shù)》。
現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者。教學(xué)的一切活動都必須以強(qiáng)調(diào)學(xué)生的主動性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生年齡特征,今天我將從教材分析、學(xué)情分析、教學(xué)過程等幾個(gè)方面展開我的說課。
一、說教材
首先談?wù)勎覍滩牡睦斫,《兩角和與差的三角函數(shù)》是北師大版高中數(shù)學(xué)必修四第三章第二節(jié)的內(nèi)容,主要講授了運(yùn)用平面向量的數(shù)量積推導(dǎo)兩角差的余弦公式以及兩角和與差的正、余弦公式的應(yīng)用。本節(jié)課的內(nèi)容是在熟練掌握了部分特殊角的正弦、余弦和正切等三角函數(shù)值和平面向量知識的基礎(chǔ)上進(jìn)行教學(xué),既是三角函數(shù)和平面向量知識的延伸,又是學(xué)習(xí)兩角和與差的正切公式、二倍角公式、半角公式等后繼內(nèi)容的基礎(chǔ),起著承上啟下的重要作用。
二、說學(xué)情
教學(xué)的基本前提是為了學(xué)生而進(jìn)行的教學(xué),其根本目的在于促進(jìn)學(xué)生的.主動發(fā)展,因此在備課時(shí)要充分考慮所面對學(xué)生的特點(diǎn)。本階段學(xué)生已擁有三角函數(shù)和平面向量等相關(guān)知識的儲備,也具備一定的推理能力和計(jì)算能力,但是本章三角恒等變換公式較多,學(xué)生不能靈活利用轉(zhuǎn)化思想進(jìn)行公式的變形、逆用,所以,學(xué)生對本節(jié)課的學(xué)習(xí)是相對具有復(fù)雜度的。
三、說教學(xué)目標(biāo)
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):
(一)知識與技能
掌握用向量法推導(dǎo)兩角差的余弦公式的過程,能夠利用兩角差的余弦公式以及誘導(dǎo)公式推導(dǎo)出兩角差的正弦公式、兩角和的正、余弦公式。
。ǘ┻^程與方法
通過經(jīng)歷兩角差余弦公式的探索、發(fā)現(xiàn)過程,提升動手操作、自主探究的能力。
(三)情感、態(tài)度與價(jià)值觀
在自主探索中感受到成功的喜悅,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。
四、說教學(xué)重難點(diǎn)
根據(jù)學(xué)生現(xiàn)有的知識儲備和知識點(diǎn)本身的難易程度,學(xué)生很難構(gòu)建知識點(diǎn)之間的聯(lián)系,這也確定了本節(jié)課的教學(xué)重點(diǎn)為兩角和與差的正弦、余弦公式及其推導(dǎo)。本節(jié)課的教學(xué)難點(diǎn)是:結(jié)合兩角和與差的正弦、余弦公式的推導(dǎo)過程,靈活運(yùn)用公式進(jìn)行求值、化簡。
五、說教法和學(xué)法
為了突破重點(diǎn),解決難點(diǎn),順利達(dá)成教學(xué)目標(biāo),我結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、自主探究等教學(xué)方法。
六、說教學(xué)過程
下面我將重點(diǎn)談?wù)勎覍虒W(xué)過程的設(shè)計(jì)。
《三角函數(shù)》說課稿 12
在前一段我講了30度、45度、60度特殊角的三角函數(shù)值,它是北師大版九年級數(shù)學(xué)下冊的一節(jié)課,在前一節(jié)剛講過正弦、余弦、正切三角函數(shù)的定義和求法。現(xiàn)把我對本節(jié)課的做法和想法與大家交流一下,希望能得到同行和專家的指點(diǎn),以期取得更大的進(jìn)步。
一、說教學(xué)目標(biāo)
1、經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進(jìn)行有關(guān)的推理。進(jìn)一步體會三角函數(shù)的意義;能夠進(jìn)行30°、45°、60°角的三角函數(shù)值的計(jì)算;能夠根據(jù)30°、45°、60°的三角函數(shù)值說明相應(yīng)的銳角的.大小。
2、發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)的能力;培養(yǎng)學(xué)生把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。
3、積極參與數(shù)學(xué)活動,對數(shù)學(xué)產(chǎn)生好奇心。培養(yǎng)學(xué)生獨(dú)立思考問題的習(xí)慣。
二、說教學(xué)重點(diǎn)
教學(xué)重點(diǎn):探索特殊銳角三角函數(shù)值的過程,進(jìn)行這些三角函數(shù)值的計(jì)算并會比較不同銳角三角函數(shù)值大小
在引入時(shí)我采用創(chuàng)設(shè)情境法,“為了測量一棵大樹的高度,準(zhǔn)備了如下測量工具:
。1)含30、60度角的直角三角尺
(2)皮尺。請你設(shè)計(jì)一個(gè)方案,來測量一棵大樹的高度。這樣會增強(qiáng)學(xué)生的學(xué)習(xí)欲望,使學(xué)生對本節(jié)內(nèi)容更感興趣。
三、說教學(xué)設(shè)計(jì):
1、讓學(xué)生自主研習(xí),獨(dú)立探究。
(1)觀察一副三角尺,其中有幾個(gè)銳角?他們分別等于多少度?
。2)sin30度等于多少呢?你是怎樣得到的?cos30度呢,tan30度呢?
2、讓學(xué)生合作學(xué)習(xí)、生生互動
。1)請同學(xué)們完成下表:30°、45°、60°角的三角函數(shù)值(表格略)
。2)觀察表格中函數(shù)值的特點(diǎn)。先看第一列30°、45°、60°角的正弦值,你能發(fā)現(xiàn)什么規(guī)律呢?第二列、第三列呢?
。3)同桌之間可互相檢查一下對30°、45°、60°角的三角函數(shù)值的記憶情況。
3、精講細(xì)評,師生合作(先由學(xué)生獨(dú)立完成)
(1)計(jì)算:sin30°+cos45°;sin260°+cos260°—tan45°。
(2)鐘表上的鐘擺長度為25Cm,當(dāng)鐘擺向兩邊擺動時(shí),擺角恰好為60°,且兩邊的擺動角度相同,求它擺至最高位置時(shí)與其擺至最低位置時(shí)的高度之差。(結(jié)果精確到0.1Cm)
分析:引導(dǎo)學(xué)生自己根據(jù)題意畫出示意圖,培養(yǎng)學(xué)生把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力
4、延伸遷移,形成技能
。1)計(jì)算:sin60°—tan45°;cos60°+tan60°;
。2)某商場有一自動扶梯,其傾斜角為30°。高為7m,扶梯的長度是多少?
自主小結(jié):
講課后我讓學(xué)生自主小結(jié)本節(jié)收獲,并給他們提出困惑的時(shí)間和機(jī)會
在本節(jié)課中我感覺學(xué)生整體來說收獲不小,有百分之八十的學(xué)生都會進(jìn)行計(jì)算,只是對這些三角函數(shù)值的記憶還有欠缺,課下還需時(shí)間加以鞏固。課堂中學(xué)生積極性也很高,能體會到數(shù)學(xué)在生活中的應(yīng)用廣泛,學(xué)習(xí)數(shù)學(xué)對解決實(shí)際生活問題的幫助,體會到學(xué)習(xí)數(shù)學(xué)的重要性。
《三角函數(shù)》說課稿 13
一、教學(xué)背景
《同角三角函數(shù)基本關(guān)系式》是人教版高中數(shù)學(xué)必修第四冊第一章第二節(jié)中的內(nèi)容。本節(jié)課的內(nèi)容在教材中有著承上啟下的作用,是在學(xué)習(xí)了任意角和弧度,并了解正弦、余弦、正切的基本概念之后進(jìn)行教學(xué)的,同時(shí)同角三角函數(shù)的基本關(guān)系也為之后學(xué)習(xí)兩角和差公式奠定了基礎(chǔ),起著銜接作用。運(yùn)用同角三角函數(shù)關(guān)系,能夠更好的解決有關(guān)三角函數(shù)中求同角的其他三角函數(shù)值使解題更方便。學(xué)生在獲得三角函數(shù)定義的過程中已經(jīng)充分認(rèn)識到了借助單位圓、利用數(shù)形結(jié)合思想是研究三角函數(shù)的重要工具。本節(jié)課內(nèi)容中所體現(xiàn)的數(shù)學(xué)思想與方法在整個(gè)中學(xué)數(shù)學(xué)學(xué)習(xí)中起重要作用。
高中學(xué)生已經(jīng)具備了初等代數(shù)、初等幾何的相關(guān)知識,以及一定的抽象思維能力和邏輯推理能力。學(xué)生已經(jīng)比較熟練的掌握了三角函數(shù)定義的兩種推導(dǎo)方法,從方法上看,學(xué)生已經(jīng)對數(shù)形結(jié)合,猜想證明有所了解。從學(xué)習(xí)情感方面看,大部分學(xué)生愿意主動學(xué)習(xí)。從能力上看,學(xué)生主動學(xué)習(xí)能力、探究能力較弱。因而通過本節(jié)課的學(xué)習(xí),學(xué)生能較好地培養(yǎng)學(xué)生的思維能力、推理能力、探究能力及創(chuàng)新意識。
根據(jù)新課標(biāo)的要求,以及對教材和學(xué)情的分析,我確立了如下三維教學(xué)目標(biāo):
1、知識與技能目標(biāo):掌握三種基本關(guān)系式之間的聯(lián)系,熟練掌握已知一個(gè)角的三角函數(shù)值求其它三角函數(shù)值的方法。
2、過程與方法目標(biāo):牢固掌握同角三角函數(shù)的八個(gè)關(guān)系式,并能靈活運(yùn)用于解題,提高學(xué)生分析、解決三角的思維能力,能靈活運(yùn)用同角三角函數(shù)關(guān)系式的不同變形,提高三角恒等變形的能力。
3、情感與態(tài)度目標(biāo):通過用數(shù)學(xué)知識解決實(shí)際問題,讓學(xué)生體會數(shù)學(xué)與自然及人類社會的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的信心。
根據(jù)本節(jié)課的地位和作用以及新課程標(biāo)準(zhǔn)的具體要求,確定本節(jié)課的重點(diǎn)為:同角三角函數(shù)基本關(guān)系式sin2α+cos2α=1;tanα=sinα/cosα的運(yùn)用。教學(xué)難點(diǎn)為:理三角函數(shù)值的符號的確定,同角三角函數(shù)的基本關(guān)系式的變式應(yīng)用。
二、活動評價(jià)
在課堂教學(xué)過程中,我將對學(xué)生的學(xué)習(xí)情況進(jìn)行及時(shí)而有效的評價(jià)。注重課程中的過程性評價(jià),無論是在學(xué)生開始遇到問題、產(chǎn)生疑惑、給出猜想的時(shí)候,還是在逐步思考、交流、探索的教學(xué)過程中,我都會注重對于學(xué)生學(xué)習(xí)成果的評價(jià)。比如,在課堂討論較難理解的問題時(shí),我將先請一位平時(shí)善于解決數(shù)學(xué)問題的學(xué)生來回答,并請其他同學(xué)對其進(jìn)行評價(jià),然后再請大家給出不同的意見,從而形成良性的互動,在學(xué)生們的思維碰撞之中,正確、完善的結(jié)論將自然形成。從始至終,我都將貫徹以學(xué)生為主體、教師為主導(dǎo)的教學(xué)思想。
三、課程設(shè)計(jì)
在新課改理念的指導(dǎo)下,針對本課的教學(xué)目標(biāo)和重難點(diǎn),我將采用故事法、探究法、自主學(xué)習(xí)和合作探究等教學(xué)法,先從一個(gè)情境問題出發(fā),然后引導(dǎo)學(xué)生循序漸進(jìn)地對一組問題進(jìn)行思考和探究,逐步歸納總結(jié)出同角三角函數(shù)的.基本關(guān)系式,并在期間采用學(xué)生自評、小組互評、教師評價(jià)等多種方式,培養(yǎng)學(xué)生積極主動參與學(xué)習(xí)的興趣。下面我將詳細(xì)闡述本節(jié)課的教學(xué)過程。
1、趣味導(dǎo)入:上課伊始,我會通過多媒體講述“蝴蝶效應(yīng)”的故事,引導(dǎo)學(xué)生理解事物是普遍聯(lián)系的觀點(diǎn),如果說南美亞馬遜雨林中的一只蝴蝶與北美德克薩斯的龍卷風(fēng)這兩種看來是毫不相干的事物,都會有這樣的聯(lián)系,那么同一個(gè)角的三角函數(shù)應(yīng)當(dāng)也會有著非常密切的關(guān)系。通過這樣的故事導(dǎo)入,能夠激發(fā)學(xué)生的學(xué)習(xí)興趣和探索熱情,活躍其思維,為本節(jié)課的學(xué)習(xí)埋下伏筆。
2、溫故知新:在這一環(huán)節(jié),我將引導(dǎo)學(xué)生回顧三種常見三角函數(shù)的概念,單位圓中的任意角概念,以及初中學(xué)段學(xué)習(xí)的同角三角函數(shù)的兩個(gè)基本關(guān)系式,進(jìn)而引導(dǎo)學(xué)生思考如何證明任意角的三角函數(shù)也具備相應(yīng)的基本關(guān)系。在這個(gè)過程中,我會請不同層次的學(xué)生起來回答,并請其他學(xué)生進(jìn)行補(bǔ)充,引導(dǎo)全體學(xué)生進(jìn)行復(fù)習(xí)和思考。學(xué)生依據(jù)以往證明三角函數(shù)平方關(guān)系的思路,能夠較快想到利用單位圓中的勾股定理關(guān)系,證明得到sin2α+cos2α=1,同樣的,根據(jù)任意角的正切函數(shù)定義,得到tanα=sinα/cosα。
接下來,我將引導(dǎo)學(xué)生思考例1,(已知sinα=3/5,且α是第二象限角,求角α的余弦和正切值。)學(xué)生可能會躍躍欲試,先用平方關(guān)系式計(jì)算余弦值,但卻會遇到開方時(shí)判別正負(fù)號的問題,于是才會根據(jù)α是第二象限角這個(gè)條件進(jìn)行判斷。這時(shí)我將會引導(dǎo)學(xué)生學(xué)會先判斷任意角的區(qū)間及其三角函數(shù)的符號,再利用公式進(jìn)行計(jì)算的解題思路。這樣學(xué)生就能夠更輕松地探索出例2的解答方法。例2當(dāng)中,由于根據(jù)余弦值的范圍,確定α可能在第二或第三象限出現(xiàn),于是學(xué)生就能夠想到采用分類思想進(jìn)行解答。通過學(xué)生的自主思考和我的適當(dāng)引導(dǎo),可以自然而然地突破本課的難點(diǎn)。
3、歸納總結(jié)
經(jīng)過前面的師生共同參與的探究討論,就逐步歸納總結(jié)出了同角三角函數(shù)的基本關(guān)系式。在這個(gè)過程中,我會根據(jù)不同學(xué)生的特點(diǎn),分別請他們發(fā)言,并請其他同學(xué)進(jìn)行補(bǔ)充,在師生互動中,共同推導(dǎo)出結(jié)論,這種方法既可以有效地突出本課的重點(diǎn),又自然而然地突破了本課的難點(diǎn)。
4、實(shí)踐應(yīng)用
為鞏固所學(xué)知識,我會從教材中分梯度選取習(xí)題,給學(xué)生進(jìn)行課堂練習(xí),并請2-3位同學(xué)在黑板上完成,在練習(xí)后我會進(jìn)行及時(shí)講解。
在布置作業(yè)時(shí),為了使所有學(xué)生都能夠根據(jù)自身情況鞏固所學(xué)知識,我將布置一類“必做題”和一類“探究題”,其中“探究題”是提供給那些學(xué)有余力的學(xué)生在課余時(shí)間完成的,幫助其拓展思維,培養(yǎng)興趣。
5、課程總結(jié)
本節(jié)課的內(nèi)容是極富探索性,我通過提問式復(fù)習(xí)和情境問題導(dǎo)入,學(xué)生產(chǎn)生好奇心和探索熱情。接著,以學(xué)生為主體,我來引導(dǎo)學(xué)生根據(jù)已學(xué)的知識和方法,循序漸進(jìn)地進(jìn)行探究,逐步歸納總結(jié)出同角三角函數(shù)的基本關(guān)系式,從而自然地完成本課的教學(xué)過程,同時(shí)幫助學(xué)生體會數(shù)形結(jié)合的思想方法。
在板書設(shè)計(jì)方面,我會用簡潔、工整的方式給出相關(guān)探究問題,同時(shí)以多媒體輔助展示平移動畫,便于學(xué)生進(jìn)行觀察和探究。
四、教學(xué)體會
本節(jié)課我主要采用的是“引導(dǎo)發(fā)現(xiàn)、合作探究”的教學(xué)方法,以學(xué)生熟知的足球運(yùn)動為情境引入新課,以問題為載體,以師生合作探究為主線,以思維訓(xùn)練為核心,以能力發(fā)展為目標(biāo),充分調(diào)動一切可利用的因素,激發(fā)學(xué)生的參與意識,使學(xué)生經(jīng)歷知識的形成、發(fā)展和應(yīng)用的過程,在和諧、愉悅的氛圍中獲取知識,掌握方法。整個(gè)教學(xué)中既突出了學(xué)生的主體地位,又發(fā)揮了教師的指導(dǎo)作用。在課堂隨機(jī)提問以及討論結(jié)果的過程中,我采用多層次多角度的評價(jià)方式,不僅能促使學(xué)生思考問題,掌握學(xué)習(xí)知識的技巧和方法,還能調(diào)動學(xué)生積極性,激發(fā)課堂氣氛。
《三角函數(shù)》說課稿 14
1.課程引入
生活實(shí)例引入:通過日常生活中的例子,如建筑物的高度測量、音樂中的頻率分析,引出角度與邊長之間關(guān)系的重要性,激發(fā)學(xué)生好奇心。
學(xué)習(xí)目標(biāo)明確:闡述本節(jié)課旨在掌握正弦、余弦、正切的`基本定義,理解它們在直角三角形中的幾何意義,以及學(xué)習(xí)它們的圖像和周期性質(zhì)。
2.知識點(diǎn)概述
定義解析:詳細(xì)解釋正弦(sin)、余弦(cos)、正切(tan)的定義,強(qiáng)調(diào)它們是直角三角形中邊長比值的固定表達(dá)。
圖像與性質(zhì):利用動態(tài)幾何軟件展示三角函數(shù)的圖像,探討其周期性、奇偶性等基本性質(zhì)。
3.教學(xué)流程
理論講解:結(jié)合圖形,逐步推導(dǎo)三角函數(shù)的定義式,確保學(xué)生理解各比值的實(shí)際意義。
公式推導(dǎo):引導(dǎo)學(xué)生推導(dǎo)一些基礎(chǔ)的三角恒等變換,如sinθ+cosθ=1,加深對三角函數(shù)相互關(guān)系的認(rèn)識。
4.課堂互動
小組討論:分組討論不同角度下三角函數(shù)值的變化規(guī)律,每組選派代表分享觀點(diǎn)。
動手實(shí)踐:使用量角器和直尺,測量并計(jì)算特定角度的三角函數(shù)值,理論聯(lián)系實(shí)際。
5.實(shí)例分析
應(yīng)用實(shí)例:選取工程測量、物理運(yùn)動等問題,分析如何運(yùn)用三角函數(shù)解決實(shí)際問題,強(qiáng)化應(yīng)用意識。
6.總結(jié)回顧
知識點(diǎn)總結(jié):快速回顧三角函數(shù)的定義、性質(zhì)和基本應(yīng)用。
疑問解答:開放提問環(huán)節(jié),鼓勵(lì)學(xué)生提出疑惑,進(jìn)行現(xiàn)場解答。
7.課后作業(yè)
書面作業(yè):練習(xí)冊上的基礎(chǔ)計(jì)算題,鞏固課堂所學(xué)。
探索作業(yè):查找并分析一個(gè)生活中三角函數(shù)應(yīng)用的案例,準(zhǔn)備下次課上分享。
【《三角函數(shù)》說課稿】相關(guān)文章:
高二數(shù)學(xué)《任意角三角函數(shù)定義》說課稿01-06
《任意角三角函數(shù)定義》高三數(shù)學(xué)說課稿06-08
三角函數(shù)教學(xué)反思02-28
三角函數(shù)的教案(精選12篇)04-25
銳角三角函數(shù)教學(xué)反思03-04