當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說課稿> 《不等式的性質(zhì)》說課稿

《不等式的性質(zhì)》說課稿

時間:2024-06-12 20:01:51 說課稿 我要投稿

《不等式的性質(zhì)》說課稿

  作為一名老師,時常要開展說課稿準(zhǔn)備工作,說課稿有助于提高教師的語言表達(dá)能力。說課稿應(yīng)該怎么寫呢?下面是小編為大家收集的《不等式的性質(zhì)》說課稿,歡迎閱讀與收藏。

《不等式的性質(zhì)》說課稿

《不等式的性質(zhì)》說課稿1

  《不等式的基本性質(zhì)》它是北師大版八年級下冊第一章第二節(jié)的內(nèi)容。今天我將從教材分析,教學(xué)目標(biāo),教學(xué)重難點(diǎn),教法學(xué)法,教學(xué)過程這五個方面談?wù)勎覍@節(jié)課處理的一些不成熟的看法:

  本節(jié)內(nèi)容不等式,它是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用,所以對不等式的學(xué)習(xí)有著重要的實(shí)際意義。同時,不等式的基本性質(zhì)也為學(xué)生以后順利學(xué)習(xí)解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎(chǔ),起到重要的奠基作用。

  根據(jù)《新課程標(biāo)準(zhǔn)》的要求,教材的內(nèi)容兼顧我校八年級學(xué)生的特點(diǎn),我制定了如下教學(xué)目標(biāo):

  知識與技能:

  1. 感受生活中存在的不等關(guān)系,了解不等式的意義。

  2. 掌握不等式的基本性質(zhì)。

  過程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過程,初步體會不等式與等式的異同。

  情感態(tài)度與價值觀:經(jīng)歷由具體實(shí)例建立不等式模型的過程,進(jìn)一步符號感與數(shù)學(xué)化的能力。

  教學(xué)重難點(diǎn):

  重點(diǎn):不等式概念及其基本性質(zhì)

  難點(diǎn):不等式基本性質(zhì)3

  教法與學(xué)法:

  1. 教學(xué)理念: “ 人人學(xué)有用的數(shù)學(xué)”

  2. 教學(xué)方法:觀察法、引導(dǎo)發(fā)現(xiàn)法、討論法.

  3. 教學(xué)手段:多媒體應(yīng)用教學(xué)

  4. 學(xué)法指導(dǎo):嘗試,猜想,歸納,總結(jié)

  根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》的要求,教材和學(xué)生的特點(diǎn),我制定了以下四個教學(xué)環(huán)節(jié)。

  下面我將具體的教學(xué)過程闡述一下:

  一、創(chuàng)設(shè)情境,導(dǎo)入新課

  上課伊始,我將用一個公園買門票如何才劃算的例子導(dǎo)入課題。

  世紀(jì)公園的票價是:每人5元;一次購票滿30張,每張可少收1元。某班有27名團(tuán)員去世紀(jì)公園進(jìn)行活動。當(dāng)領(lǐng)隊(duì)王小華準(zhǔn)備好了零錢到售票處買27張票時,愛動腦筋的李敏同學(xué)喊住了王小華,提議買30張票。但有的同學(xué)不明白,明明我們只有27個人,買30張票,豈不是“浪費(fèi)”嗎?

 。ù颂帉W(xué)生是很容易得出買30張門票需要4X30=120(元), 買27張門票需要5X27=135(元),由于120〈135,所以買30張門票比買27張還要劃算。由此建立了一個數(shù)與數(shù)之間的不等關(guān)系式)

  緊接著進(jìn)一步提問:若人數(shù)是x時,又當(dāng)如何買票劃算?

  二、探求新知,講授新課

  引例列出了數(shù)與數(shù)之間的不等關(guān)系和含有未知量120<5x的不等關(guān)系。那么在不等式概念提出之前,先讓學(xué)生回顧等式的概念,“類比”等式的概念,嘗試著去總結(jié)歸納出不等式的概念。使學(xué)生從一個低起點(diǎn),通過獲得成功的體驗(yàn)和克服困難的經(jīng)歷,增進(jìn)應(yīng)用數(shù)學(xué)的自信心,為下面的學(xué)習(xí)調(diào)動了積極。

  接下來我用一組例題來鞏固一下對不等式概念的認(rèn)知,把表示不等量關(guān)系的`常用關(guān)鍵詞提出。

  (1)a是負(fù)數(shù);

  (2)a是非負(fù)數(shù);

  (3) a與b的和小于5;

  (4) x與2的差大于-1;

  (5) x的4倍不大于7;

  (6) 的一半不小于3

  關(guān)鍵詞:非負(fù)數(shù),非正數(shù),不大于,不小于,不超過,至少

  回到引入課題時的門票問題120<5x,我們希望知道X的取植范圍,則須學(xué)習(xí)不等式的性質(zhì),通過性質(zhì)的學(xué)習(xí)解決X的取植

  難點(diǎn)突破:通過上面三組算式,學(xué)生已經(jīng)嘗試著歸納出不等式的三條基本性質(zhì)了。不等式性質(zhì)3是本節(jié)的難點(diǎn)。在不等式性質(zhì)3用數(shù)探討出以后,換一個角度讓學(xué)生想一想,是否能在數(shù)軸上任取兩個點(diǎn),用相反數(shù)的相關(guān)知識挖掘一下,乘以或除以一個負(fù)數(shù)時,任意兩個數(shù)比較是否性質(zhì)3都成立。通過“數(shù)形結(jié)合”的思想,使數(shù)的取值從特殊化到一般化,從對具體數(shù)的感知完成到字母代替數(shù)的升華。讓學(xué)生用實(shí)例對一些數(shù)學(xué)猜想作出檢驗(yàn),從而增加猜想的可信程度。同時,讓學(xué)生嘗試從不同角度尋求解決問題的方法并能有效地解決問題。

  反饋練習(xí):用一個小練習(xí)鞏固三條性質(zhì)。

  如果a>b,那么

  (1) a-3 b-3 (2) 2a 2b (3) -3a -3b

  提出疑問,我們討論性質(zhì)2,3是好象遺忘了一個數(shù)0。

  引出讓學(xué)生歸納,等式與不等式的區(qū)別與聯(lián)系

  三、拓展訓(xùn)練

  根據(jù)不等式基本性質(zhì),將下列不等式化為“<”或“>”的形式

  (1)x-1<3 (2)6x<5x-2 (3)x/3<5 -4x="">3

  [設(shè)計(jì)意圖:類比等式的基本性質(zhì),研究不等式的性質(zhì),讓學(xué)生體會數(shù)學(xué)思想

  方法中類比思想的應(yīng)用,并訓(xùn)練學(xué)生從類比到猜想到驗(yàn)證的研究問題的方法,

  讓學(xué)生在合作交流中完成任務(wù),體會合作學(xué)習(xí)的樂趣。]

  問題4:比較不等式基本性質(zhì)與等式基本性質(zhì)的異同?(學(xué)生小組合作交流。)

  [設(shè)計(jì)意圖:比較不等式基本性質(zhì)與等式基本性質(zhì)的異同,這樣不僅有利于學(xué)生認(rèn)識不等式,而且可以使學(xué)生體會知識之間的內(nèi)在聯(lián)系,整體上把握知識、發(fā)展學(xué)生的辨證思維。]

  3、嘗試練習(xí),應(yīng)用新知

  小黑板出示下列練習(xí)

  一:孫悟空火眼金睛:

  1、如果x+5>4,那么兩邊都可得x>-1

  2、在-7<8的兩邊都加上9可得。

  3、在5>-2的兩邊都減去6可得。

  4、在-3>-4的兩邊都乘以7可得。

  5、在-8<0的兩邊都除以8可得

  二:你來決策:

  如果a>b,那么

  1、a-3 b-3(不等式性質(zhì))

  2、2a 2b(不等式性質(zhì))

  3、-3a -3b(不等式性質(zhì))

  4、a-b 0(不等式性質(zhì))

  [設(shè)計(jì)意圖:數(shù)學(xué)練習(xí)是鞏固數(shù)學(xué)知識,形成技能、技巧的重要途徑,而機(jī)械、呆板的題海戰(zhàn)術(shù)只能把學(xué)生在學(xué)習(xí)新知識時的熱情無情地淹滅。兩道練習(xí)以別開生面的形式出現(xiàn),給學(xué)生一個充分展示自我的舞臺,在情感態(tài)度和一般能力方面都得到充分發(fā)展,并從中了解數(shù)學(xué)的價值,增進(jìn)了對數(shù)學(xué)的理解。]

  出示例題

  例1根據(jù)不等式的基本性質(zhì),把下列不等式化成x<a或x>a的形式:

 。1)x-5>-1(2)-2 x>3

 。ㄏ茸寣W(xué)生思考,如何根據(jù)不等式的基本性質(zhì)來進(jìn)行變形,然后教師書寫規(guī)范的步驟,并讓學(xué)生講解每一步的算理。)

  解(1)根據(jù)不等式的性質(zhì)1,兩邊都加上5得:

  x-5+5>-1+5

  即x>4

  (2)根據(jù)不等式的性質(zhì)3,兩邊都除以-2得:

  即x<-3/2

  練習(xí):根據(jù)不等式的基本性質(zhì),把下列不等式化成x<a或x>a的形式:

 。1)3x>5(4)-4 x<3-x

  [設(shè)計(jì)意圖:由于新教材中例題較少,學(xué)生對于書寫格式了解太少,因此教師應(yīng)該加以規(guī)范。]

  4、總結(jié)反思,獲得升華

  讓學(xué)生從知識方面、能力方面、思想方面進(jìn)行總結(jié)。鼓勵學(xué)生暢所欲言總結(jié)對本節(jié)課的收獲與體會。

  [設(shè)計(jì)意圖:讓學(xué)生通過總結(jié)反思,一是進(jìn)一步引導(dǎo)學(xué)生反思自己的學(xué)習(xí)方式,有利于培養(yǎng)歸納,總結(jié)的習(xí)慣,讓學(xué)生自主構(gòu)建知識體系;二也是為了激起學(xué)生感受成功的喜悅,力爭用成功蘊(yùn)育成功,用自信蘊(yùn)育自信,激勵學(xué)生以更大的熱情投入到以后的學(xué)習(xí)中去。]

  5、布置作業(yè),深化鞏固

  必做作業(yè):習(xí)題11.2第二題推薦作業(yè):課本中的試一試。

  [設(shè)計(jì)意圖:這樣做的目的在于,讓不同層次的學(xué)生都有不同程度的提高。]

  七、板書設(shè)計(jì):

  為了能直觀地顯現(xiàn)知識的脈絡(luò),精當(dāng)?shù)耐怀鼋虒W(xué)重點(diǎn),加深學(xué)生對知識的理解和記憶,培養(yǎng)學(xué)生思維的連貫性。本著板書的科學(xué)性,條理性原則,設(shè)計(jì)板書如下:

  11.2不等式的基本性質(zhì) 不等式的基本性質(zhì) 1:如果ab,那么a+c>b+c,a-c>b-c(2)-2 x>3 2:如果a>b,c>0,那么ac>bc 如果a0,那么acb,c<0,那么acbc

《不等式的性質(zhì)》說課稿7

  我今天說課的題目是《不等式的基本性質(zhì)》,主要分四塊內(nèi)容進(jìn)行說課:教材分析;教學(xué)方法的選擇;學(xué)法指導(dǎo);教學(xué)流程。

  一、教材分析:

  1.教材的地位和作用

  本節(jié)課的內(nèi)容是選自人教版義務(wù)課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書七年級下第九章第一節(jié)第二課時《不等式的基本性質(zhì)》,這是繼方程后的又一種代數(shù)形式,繼承了方程的有關(guān)思想,并實(shí)現(xiàn)了數(shù)形結(jié)合的思想。是初中數(shù)學(xué)教學(xué)的重點(diǎn)和難點(diǎn),對進(jìn)一步學(xué)習(xí)一次函數(shù)的性質(zhì)及應(yīng)用有著及其重大的作用。

  2.教學(xué)目標(biāo)的確定

  教學(xué)目標(biāo)分為三個層次的目標(biāo):

 、胖R目標(biāo):主要是理解并掌握不等式的三個基本性質(zhì)。

 、颇芰δ繕(biāo):培養(yǎng)學(xué)生利用類比的思想來探索新知的能力,擴(kuò)充和完善不等式的性質(zhì)的能力。

 、乔楦心繕(biāo):讓學(xué)生感受到數(shù)學(xué)學(xué)習(xí)的猜想與歸納的思維方式,體會類比思想和獲得成功的喜悅。

  3.教學(xué)重點(diǎn)和難點(diǎn)

  不等式的三個基本性質(zhì)是本節(jié)課的中心,是學(xué)生必須掌握的內(nèi)容,所以我確定本節(jié)的教學(xué)重點(diǎn)是不等式三個基本性質(zhì)的學(xué)習(xí)以及用不等式的性質(zhì)解不等式。本節(jié)課的難點(diǎn)是用不等式的性質(zhì)化簡。

  二、教學(xué)方法、教學(xué)手段的選擇:

  本節(jié)課在性質(zhì)講解中我采取探索式教學(xué)方法,即采取觀察猜測---直觀驗(yàn)證---托盤實(shí)驗(yàn)---得出性質(zhì)。使學(xué)生主動參與提出問題和探索問題的'過程,從而激發(fā)學(xué)生的學(xué)習(xí)興趣,活躍學(xué)生的思維。為了突破學(xué)生對不等式性質(zhì)應(yīng)用的困難,采取了類比操作化抽象為具體的方法來設(shè)置教學(xué)。整節(jié)課采取精講多練、講練結(jié)合的方法來落實(shí)知識點(diǎn)。

  三、學(xué)法指導(dǎo):

  鑒于七年級的學(xué)生理解能力和邏輯推理能力還比較薄弱,應(yīng)以激勵的原則進(jìn)行有效的教學(xué)。鼓勵學(xué)生一種類型的題多練,并及時引導(dǎo)學(xué)生用小結(jié)方法,克服思維定勢。

  例題講解采取數(shù)形結(jié)合的方法,使學(xué)生樹立“轉(zhuǎn)化”的數(shù)學(xué)思想。充分復(fù)習(xí)舊知識,使獲取新知識的過程成為水到渠成,增強(qiáng)學(xué)生學(xué)習(xí)的成就感及自信心,從而培養(yǎng)濃厚的學(xué)習(xí)興趣。

  四、(主要環(huán)節(jié))教學(xué)流程:

  1.創(chuàng)設(shè)情境,復(fù)習(xí)引入

  等式的基本性質(zhì)是什么?

  學(xué)生活動:獨(dú)立思考,指名回答.

  教師活動:注意強(qiáng)調(diào)等式兩邊都乘以或除以(除數(shù)不為0)同一個數(shù),所得結(jié)果仍是等式.

  請同學(xué)們繼續(xù)觀察習(xí)題:

  觀察:用“”或“”填空,并找一找其中的規(guī)律.

  (1)55+2____3+2,5-2____3-2

  (2)–1,-1+2____3+2,-1-3____3-3

  (3)6>2,6×5____2×5,6×(-5)____2×(-5)

  (4)–2(-2)×6____3×6,(-2)×(-6)____3×(-6)

  學(xué)生活動:觀察思考,兩個(或幾個)學(xué)生回答問題,由其他學(xué)生判斷正誤.

  五、教法說明

  設(shè)置上述習(xí)題是為了溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.

  不等式有哪些基本性質(zhì)呢?研究時要與等式的性質(zhì)進(jìn)行對比,大家知道,等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式(實(shí)質(zhì)是移項(xiàng)法則),請同學(xué)們觀察①②題,并猜想出不等式的性質(zhì).

  學(xué)生活動:觀察思考,猜想出不等式的性質(zhì).

  教師活動:及時糾正學(xué)生敘述中出現(xiàn)的問題,特別強(qiáng)調(diào)指出:“仍是不等式”包括兩種情況,說法不確切,一定要改為“不等號的方向不變或者不等號的方向改變.”

  師生活動:師生共同敘述不等式的性質(zhì),同時教師板書.

  不等式基本性質(zhì)1不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變.

  對比等式兩邊都乘(或除以)同一個數(shù)的性質(zhì)(強(qiáng)調(diào)所乘的數(shù)可正、可負(fù)、也可為0)請大家思考,不等式類似的性質(zhì)會怎樣?

  學(xué)生活動:觀察③④題,并將題中的5換成2,-5換成一2,按題的要求再做一遍,并猜想討論出結(jié)論.

  六、教法說明

  觀察時,引導(dǎo)學(xué)生注意不等號的方向,用彩色粉筆標(biāo)出來,并設(shè)疑“原因何在?”兩邊都乘(或除以)同一個負(fù)數(shù)呢?為什么?

  師生活動:由學(xué)生概括總結(jié)不等式的其他性質(zhì),同時教師板書.

  不等式基本性質(zhì)2不等式兩邊都乘(或除以)同一個正數(shù),不等號的方向不變.

  不等式基本性質(zhì)3不等式兩邊都乘(或除以)同一個負(fù)數(shù),不等號的方向改變.

  師生活動:將不等式-2<3兩邊都加上7,-9,兩邊都乘3,-3試一試,進(jìn)一步驗(yàn)證上面得出的三條結(jié)論.

  學(xué)生活動:看課本第124頁有關(guān)不等式性質(zhì)的敘述,理解字句并默記.

  強(qiáng)調(diào):要特別注意不等式基本性質(zhì)3.

  實(shí)質(zhì):不等式的三條基本性質(zhì)實(shí)質(zhì)上是對不等式兩邊進(jìn)行“+”、“-”、“×”、“÷”四則運(yùn)算,當(dāng)進(jìn)行“+”、“-”法時,不等號方向不變;當(dāng)乘(或除以)同一個正數(shù)時,不等號方向不變;只有當(dāng)乘(或除以)同一個負(fù)數(shù)時,不等號的方向才改變.

  學(xué)生活動:思考、同桌討論.

  歸納:只有乘(或除以)負(fù)數(shù)時不同,此外都類似.

  (1)如果x-54,那么兩邊都可得到x9

  (2)如果在-78的兩邊都加上9可得到

  (3)如果在5-2的兩邊都加上a+2可得到

  (4)如果在-3-4的兩邊都乘以7可得到

  (5)如果在80的兩邊都乘以8可得到

  師生活動:學(xué)生思考出答案,教師訂正,并強(qiáng)調(diào)不等式性質(zhì)的應(yīng)用.

  2.嘗試反饋,鞏固知識

  請學(xué)生先根據(jù)自己的理解,解答下面習(xí)題.

  例1 利用不等式的性質(zhì)解下列不等式并用數(shù)軸表示解集.

  (1)x-7>26(2)-4x≥3

  學(xué)生活動:學(xué)生獨(dú)立思考完成,然后一個(或幾個)學(xué)生回答結(jié)果.

  教師板書(1)(2)題解題過程.(3)(4)題由學(xué)生在練習(xí)本上完成,指定兩個學(xué)生板演,然后師生共同判斷板演是否正確.

  七、教法說明

  解題時要引導(dǎo)學(xué)生與解一元一次方程的思路進(jìn)行對比,并將原題與或?qū)φ眨从媚臈l性質(zhì)能達(dá)到題目要求,要強(qiáng)調(diào)每步的理論依據(jù),尤其要注意不等式基本性質(zhì)3與基本性質(zhì)2的區(qū)別,解題時書寫要規(guī)范.【教法說明】要讓學(xué)生明白推理要有依據(jù),以后作類似的練習(xí)時,都寫出根據(jù),逐步培養(yǎng)學(xué)生的邏輯思維能力.

  (四)總結(jié)、擴(kuò)展

  本節(jié)重點(diǎn):

 。1)掌握不等式的三條基本性質(zhì),尤其是性質(zhì)3.

 。2)能正確應(yīng)用性質(zhì)對不等式進(jìn)行變形.

 。ㄎ澹┱n外思考

  對比不等式性質(zhì)與等式性質(zhì)的異同點(diǎn).

  八、布置作業(yè)

《不等式的性質(zhì)》說課稿8

  《不等式的基本性質(zhì)》它是北師大版八年級下冊第二章第二節(jié)的內(nèi)容。今天我將從教材分析,教學(xué)目標(biāo),教學(xué)重難點(diǎn),教法學(xué)法,教學(xué)過程這五個方面談?wù)勎覍@節(jié)課處理的一些不成熟的看法:

  本節(jié)內(nèi)容不等式的基本性質(zhì),它是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用,所以對不等式的學(xué)習(xí)有著重要的實(shí)際意義。同時,不等式的基本性質(zhì)也為學(xué)生以后順利學(xué)習(xí)解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎(chǔ),起到重要的奠基作用。

  根據(jù)《新課程標(biāo)準(zhǔn)》的要求,教材的內(nèi)容兼顧我班學(xué)生的特點(diǎn),我制定了如下教學(xué)目標(biāo):

   知識與技能:

  1. 感受生活中存在的不等關(guān)系,了解不等式的意義。

  2. 掌握不等式的基本性質(zhì)。

   過程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過程,初步體會不等式與等式的異同。

   情感態(tài)度與價值觀:經(jīng)歷由具體實(shí)例建立不等式模型的過程,進(jìn)一步符號感與數(shù)學(xué)化的能力。

   教學(xué)重難點(diǎn):

  重點(diǎn):不等式概念及其基本性質(zhì)

  難點(diǎn):不等式基本性質(zhì)3

   教法與學(xué)法:

  1. 教學(xué)理念: “ 人人學(xué)有用的數(shù)學(xué)”

  2. 教學(xué)方法:觀察法、引導(dǎo)發(fā)現(xiàn)法、討論法.

  3. 教學(xué)手段:多媒體應(yīng)用教學(xué)

  4. 學(xué)法指導(dǎo):嘗試,猜想,歸納,總結(jié)

  根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》的要求,教材和學(xué)生的'特點(diǎn),我制定了以下四個教學(xué)環(huán)節(jié)。下面我將具體的教學(xué)過程闡述一下:

  一、復(fù)習(xí)導(dǎo)入新課

  上課開始,我首先帶領(lǐng)學(xué)生學(xué)習(xí)本節(jié)課的教學(xué)目標(biāo),讓學(xué)生明白本節(jié)課學(xué)習(xí)的目標(biāo)。

  1.探索并掌握不等式的基本性質(zhì),并運(yùn)用它對不等式進(jìn)行變形.

  2.理解不等式性質(zhì)與等式性質(zhì)的聯(lián)系與區(qū)別.

  3.提高觀察、比較、歸納的能力,滲透類比的思想方法.

  二、探求新知,講授新課

  第一部分:學(xué)前練習(xí)

  1. -7 ≤ -5, 3+4>1+4

  5+3≠12-5, x ≥ 8

  a+2>a+1, x+3 <6

  (1)上述式子有哪些表示數(shù)量關(guān)系的符號?這些符號表示什么關(guān)系?

  (2)這些符號兩側(cè)的代數(shù)式可隨意交換位置嗎?

  (3)什么叫不等式?

  目的:設(shè)計(jì)該部分是為了讓學(xué)生上新課之前先回顧一下上節(jié)課學(xué)習(xí)的內(nèi)容。

  第二部分:探究新知:

  1.商場A種服裝的價格為60元,B種服裝的價格為80元

 。1)兩種服裝都漲價10元,哪種服裝價格高?漲價15元呢?

 。2)兩種服裝都降價5元,哪種服裝價格高?降價15元呢?

 。3)兩種服裝都打8折出售,哪種服裝價格高?

  2.已知 4 > 3,填空:

  4×(-1)——3 ×(-1)

  4×(-5)——3 ×(-5)

  目的:設(shè)計(jì)該部分的目的是為了引出不等式的基本性質(zhì)做鋪墊。

  第三部分:不等式的基本性質(zhì)的探究

  1:填空: 60 < 80

  60+10 80+10

  60-5 80-5

  60+a 80+a

  性質(zhì)1,不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變.

  2:填空(1):60 < 80

  60 ×0.8 80 ×0.8

  填空(2): 4 > 3

  4×5 3×5

  4÷2 3÷2

  性質(zhì)2,不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變。

  3:填空: 4 > 3

  4×(-1) 3×(-1)

  4×(-5) 3×(-5)

  4÷(-2) 3÷(-2)

  性質(zhì)3,不等式的兩邊都乘以(或除以)同一個負(fù)數(shù),不等號的方向改變。

  三、小結(jié)不等式的三條基本性質(zhì)

  1. 不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變;

  2. 不等式兩邊都乘(或除以)同一個正數(shù),不等號的方向不變;

  3.*不等式兩邊都乘(或除以)同一個負(fù)數(shù),不等號的方向改變 ;

  與等式的基本性質(zhì)有什么聯(lián)系與區(qū)別?

  四、典型例題

  例1.根據(jù)不等式的基本性質(zhì),把下列不等式化成x<a或x>a的形式:

  (1) x-2< 3 (2) 6x< 5x-1

  (3) 1/2 x>5 (4) -4x>3

  解:(1)根據(jù)不等式基本性質(zhì)1,兩邊都加上2,

  得: x-2+2<3+2

  x<5

  (2)根據(jù)不等式基本性質(zhì)1,兩邊都減去5x,

  得: 6x-5x<5x-1-5x

  x<-1

  例2.設(shè)a>b,用“<”或“>”填空:

  (1)a-3 b-3 (2) -4a -4b

  解:(1) ∵a>b

  ∴兩邊都減去3,由不等式基本性質(zhì)1

  得 a-3>b-3

  (2) ∵a>b,并且-4<0

  ∴兩邊都乘以-4,由不等式基本性質(zhì)3

  得 -4a<-4b

  五、變式訓(xùn)練:

  1、已知x<y,用“<”或“>”填空。

 。1)x+2 y+2 (不等式的基本性質(zhì) )

  (2) 3x 3y (不等式的基本性質(zhì) )

  (3)-x -y (不等式的基本性質(zhì) )

  (4)x-m y-m (不等式的基本性質(zhì) )

  2、若a-b<0,則下列各式中一定成立的是( )

  A.a>b B.ab>0

  C. D.-a>-b

  3、若x是任意實(shí)數(shù),則下列不等式中,恒成立的是( )

  A.3x>2x B.3x2>2x2

  C.3+x>2 D.3+x2>2

  六 、小結(jié)

  七、作業(yè)的布置

  八、 以上是我對這節(jié)課的教學(xué)的看法,希望各位專家指正。謝謝!

《不等式的性質(zhì)》說課稿9

  一、教材

  不等式基本性質(zhì)是八年級下冊第一章第二節(jié)內(nèi)容,本節(jié)課是建立在學(xué)生已認(rèn)識了不等關(guān)系基礎(chǔ)上來學(xué)習(xí)的,也是為進(jìn)一步學(xué)習(xí)解不等式及應(yīng)用不等關(guān)系解決實(shí)際問題的重要依據(jù),因此本節(jié)課內(nèi)容在不等關(guān)系這一章占有重要位置。由此本節(jié)重點(diǎn)內(nèi)容是不等式三條基本性質(zhì),難點(diǎn)是不等式第三條基本性質(zhì),在不等式兩端同時乘以(或除以)同一個負(fù)數(shù)不等號方向改變學(xué)生在這一點(diǎn)應(yīng)用上很難掌握。

  另外,本節(jié)課在教材安排上意在通過等式基本性質(zhì)引入新課教學(xué),在新課教學(xué)中用不等式實(shí)例進(jìn)行操作,進(jìn)而推出不等式基本性質(zhì),學(xué)生通過觀察、質(zhì)疑、發(fā)問易于接受新知,根據(jù)新課程標(biāo)準(zhǔn)確定學(xué)習(xí)目標(biāo)如下:

  (一)知識與技能目標(biāo)

  掌握不等式基本性質(zhì),能熟練運(yùn)用不等式性質(zhì)解決簡單的不等式問題問題

  (二)過程與方法目標(biāo)

  1. 經(jīng)歷探索不等式基本性質(zhì)的過程,體驗(yàn)數(shù)學(xué)學(xué)習(xí)探究的方法

  2.通過觀察、實(shí)驗(yàn)、猜想、推理等數(shù)學(xué)學(xué)習(xí)活動過程,發(fā)展合理的推理和初步論證能力

  (三)情感態(tài)度與價值觀目標(biāo)

  1.學(xué)生在探索過程中感受成功、建立自信

  2.體驗(yàn)在研究過程中創(chuàng)造的快樂,并學(xué)會與人交流合作形成良好的人格品質(zhì)

  二、重點(diǎn)、難點(diǎn)

  重點(diǎn):掌握不等式基本性質(zhì)及熟練應(yīng)用性質(zhì)解決實(shí)際問題

  難點(diǎn):第三條性質(zhì)的應(yīng)用

  三、教法

  以引導(dǎo)發(fā)現(xiàn)、活動參與、交流討論為主,學(xué)生自己舉出實(shí)際不等式例子,教師根據(jù)認(rèn)識規(guī)律引導(dǎo)學(xué)生由等式性質(zhì)向不等式知識的.遷移,安排學(xué)生用一組數(shù)在不等式兩端參與四則運(yùn)算,學(xué)生通過與其他學(xué)生的交流討論,總結(jié)規(guī)律得出不等式基本性質(zhì)

  在這一環(huán)節(jié)教師一方面不斷引導(dǎo)學(xué)生積極參與教學(xué)過程,為適應(yīng)學(xué)生思維發(fā)展水平有序引導(dǎo)學(xué)生觀察分析,由認(rèn)識到實(shí)踐再到認(rèn)識完成認(rèn)識上的飛躍,圓滿完成教學(xué)任務(wù),另一方面,教師根據(jù)練習(xí)情況設(shè)疑引導(dǎo),重在理解不等式性質(zhì)應(yīng)用,展開學(xué)生思維。

  四、學(xué)情

  一般說來,這個年齡段的學(xué)生開始有比較強(qiáng)烈的自我和自我發(fā)展的意識,對于與自己直觀相沖突的現(xiàn)象和“挑戰(zhàn)性“的任務(wù)很感興趣,要在教學(xué)過程中給學(xué)生探究問題這樣的做數(shù)學(xué)機(jī)會,學(xué)生能夠在這些活動中 表現(xiàn)自我發(fā)展自我從而感到數(shù)學(xué)學(xué)習(xí)的重要性及其中的樂趣。

  學(xué)生在學(xué)習(xí)本節(jié)內(nèi)容時,可能會在應(yīng)用第三條性質(zhì)時遇到困難,盡可能引導(dǎo)學(xué)生多練習(xí)多總結(jié)最終完成學(xué)習(xí)過程,達(dá)到教學(xué)目標(biāo)。

  五、教學(xué)過程

  本節(jié)課我安排了四個教學(xué)過程:

  (一)回憶舊知,引出新知

  經(jīng)過以前的學(xué)習(xí)我們知道在等式的兩端同時加上(或減去)同一個整式依然成立,這是等式的性質(zhì)那么對于上節(jié)課我們所學(xué)的不等式又有哪些性質(zhì)呢?這就是今天我們要共同探討的問題——不等式基本性質(zhì)。

  在這一環(huán)節(jié)通過對等式性質(zhì)的回憶進(jìn)而導(dǎo)出不等式的基本性質(zhì),

  不僅對舊知的鞏固也激發(fā)了學(xué)生對新知的興趣。

  (二)自主參與探索,交流討論總結(jié)性質(zhì)規(guī)律

  教師安排學(xué)生自己舉出一個具體不等式,根據(jù)認(rèn)識規(guī)律有序引導(dǎo)學(xué)生在不等式兩端同時加上(或減去)同一個數(shù),學(xué)生會發(fā)現(xiàn)不等號兩端經(jīng)運(yùn)算比較大小后不等號方向沒有發(fā)生改變,由此推出不等式第一條性質(zhì)。

  在引出第二條性質(zhì)時,教師有意引導(dǎo)學(xué)生用正數(shù)參與兩端的乘法(或除法)的運(yùn)算,同學(xué)會發(fā)現(xiàn)不等號方向仍然沒改變,這時可能會有學(xué)生發(fā)問:用負(fù)數(shù)呢?這就引起了學(xué)生的好奇心和探究熱情,經(jīng)學(xué)生自己動手實(shí)驗(yàn)與其他同學(xué)討論得出用負(fù)數(shù)不等號方向發(fā)生了改變,至此就得到不等式的第二三條性質(zhì)。

  在這一環(huán)節(jié)教師運(yùn)用了“自主參與”和“交流討論”的教學(xué)方式,通過引導(dǎo)和質(zhì)疑,突出重點(diǎn),化解難點(diǎn),從而完成教學(xué)任務(wù),收到良好教學(xué)效果。

  (三)應(yīng)用新知,解決問題

  我將上節(jié)課沒圓滿完成的問題再次提出:通過一棵樹的樹圍可計(jì)算其生長年齡,某樹栽種時樹圍是5cm ,以后每年樹圍增長3cm ,問這棵樹至少生長多少年才能超過2.4m ?

  上節(jié)課我們已經(jīng)列出不等關(guān)系

  設(shè) 至少生長x 年才能超過2.4m 則有不等關(guān)系

  0.03x 0.05 > 2.4

  現(xiàn)我們根據(jù)這節(jié)課所學(xué)將這個問題徹底解決。(將不等式性質(zhì)應(yīng)用全過程在板書出來)

  再在黑板上列出兩個例題 5x 3 < 2 - 2x – 1 > 3

  要求學(xué)生仿照剛才不等式應(yīng)用過程將其表示“x < a (x > a) ”形式,并找兩名同學(xué)板書。在這一環(huán)節(jié)根據(jù)初中學(xué)生開始對“有用”數(shù)學(xué)感興趣選取第一道例題,學(xué)生會感到數(shù)學(xué)就在身邊

  在練習(xí)過程中教師根據(jù)普遍存在的問題加以強(qiáng)調(diào)并幫助學(xué)生改正,針對個別(較慢)學(xué)生再具體教學(xué)

  (四)引導(dǎo)學(xué)生總結(jié)全課

  在這節(jié)課我們知道了不等式三條基本性質(zhì),并能熟練應(yīng)用解決簡單的不等式問題

【《不等式的性質(zhì)》說課稿】相關(guān)文章:

《不等式的基本性質(zhì)》說課稿07-02

不等式的性質(zhì)與解集說課稿06-24

《不等式的基本性質(zhì)》說課稿范文02-24

《不等式的基本性質(zhì)》說課稿(精選8篇)07-04

不等式的性質(zhì)教學(xué)反思05-24

不等式的性質(zhì)教學(xué)反思07-01

《氧氣的性質(zhì)》說課稿03-25

《小數(shù)性質(zhì)》說課稿11-22

菱形的性質(zhì)的說課稿10-29

《矩形的性質(zhì)》說課稿05-27