當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-10-21 15:59:55 初中數(shù)學(xué) 我要投稿

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【范例15篇】

  總結(jié)是對過去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評(píng)價(jià)的書面材料,它在我們的學(xué)習(xí)、工作中起到呈上啟下的作用,因此,讓我們寫一份總結(jié)吧?偨Y(jié)你想好怎么寫了嗎?下面是小編為大家收集的初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎閱讀與收藏。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【范例15篇】

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  1、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

  2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  4、同圓或等圓的半徑相等

  5、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

  6、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  8、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  9、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

  10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  11、推論1:①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  12、推論2:圓的兩條平行弦所夾的弧相等

  13、圓是以圓心為對稱中心的中心對稱圖形

  14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  16、定理:一條弧所對的圓周角等于它所對的圓心角的一半

  17、推論:1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  18、推論:2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

  20、定理:圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角

  21、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

  22、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線23、切線的性質(zhì)定理圓的'切線垂直于經(jīng)過切點(diǎn)的半徑24、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)25、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  26、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等圓心和這一點(diǎn)的連線平分兩條切線的夾角

  27、圓的外切四邊形的兩組對邊的和相等

  28、弦切角定理:弦切角等于它所夾的弧對的圓周角

  29、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等30、相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

  32、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)

  33、推論:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等

  34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  35、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內(nèi)切d=R—r(Rr)⑤兩圓內(nèi)含dR—r(Rr)

  36、定理:相交兩圓的連心線垂直平分兩圓的公共弦

  37、定理:把圓分成n(n≥3):⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  39、正n邊形的每個(gè)內(nèi)角都等于(n—2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長42、正三角形面積√3a/4a表示邊長

  43、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k(n—2)180°/n=360°化為(n—2)(k—2)=444、弧長計(jì)算公式:L=n兀R/180

  45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內(nèi)公切線長=d—(R—r)外公切線長=d—(R+r)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  一次函數(shù)的圖象與性質(zhì)的口訣:

  一次函數(shù)是直線,圖象經(jīng)過三象限;

  正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;

  兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,k為正來右上斜,x增減y增減;

  k為負(fù)來左下展,變化規(guī)律正相反;

  k的絕對值越大,線離橫軸就越遠(yuǎn)。

  拓展閱讀:一次函數(shù)的解題方法

  理解一次函數(shù)和其它知識(shí)的聯(lián)系

  一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時(shí),等號(hào)的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個(gè)變量,而代數(shù)式可以是多個(gè)變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。

  掌握一次函數(shù)的解析式的特征

  一次函數(shù)解析式的結(jié)構(gòu)特征:kx+b是關(guān)于x的一次二項(xiàng)式,其中常數(shù)b可以是任意實(shí)數(shù),一次項(xiàng)系數(shù)k必須是非零數(shù),k≠0,因?yàn)楫?dāng)k = 0時(shí),y = b(b是常數(shù)),由于沒有一次項(xiàng),這樣的函數(shù)不是一次函數(shù);而當(dāng)b = 0,k≠0,y = kx既是正比例函數(shù),也是一次函數(shù)。

  應(yīng)用一次函數(shù)解決實(shí)際問題

  1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關(guān)聯(lián)的量,且其中一種量因另一種量的變化而變化;

  2、找出具有相關(guān)聯(lián)的兩種量的等量關(guān)系之后,明確哪種量是另一種量的函數(shù);

  3、在實(shí)際問題中,一般存在著三種量,如距離、時(shí)間、速度等等,在這三種量中,當(dāng)且僅當(dāng)其中一種量時(shí)間(或速度)不變時(shí),距離與速度(或時(shí)間)才成正比例,也就是說,距離(s)是時(shí)間(t)或速度( )的正比例函數(shù);

  4、求一次函數(shù)與正比例函數(shù)的關(guān)系式,一般采取待定系數(shù)法。

  數(shù)形結(jié)合

  方程,不等式,不等式組,方程組我們都可以用一次函數(shù)的觀點(diǎn)來理解。一元一次不等式實(shí)際上就看兩條直線上下方的關(guān)系,求出端點(diǎn)后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來認(rèn)識(shí),直線交點(diǎn)的橫坐標(biāo)就是方程的解,至于二元一次方程組就是對應(yīng)2條直線,方程組的解就是直線的交點(diǎn),結(jié)合圖形可以認(rèn)識(shí)兩直線的.位置關(guān)系也可以把握交點(diǎn)個(gè)數(shù)。

  如果一個(gè)交點(diǎn)時(shí)候兩條直線的k不同,如果無窮個(gè)交點(diǎn)就是k,b都一樣,如果平行無交點(diǎn)就是k相同,b不一樣。至于函數(shù)平移的問題可以化歸為對應(yīng)點(diǎn)平移。k反正不變?nèi)缓笥么ㄏ禂?shù)法得到平移后的方程。這就是化一般為特殊的解題方法。

  數(shù)學(xué)解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過配方解決數(shù)學(xué)問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。

  2、因式分解法

  因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

  3、換元法

  替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數(shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡單,更容易解決。

  4、判別式法與韋達(dá)定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質(zhì),還作為一個(gè)問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。

  韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對稱函數(shù)并量化二次方程根的符號(hào)。求解對稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應(yīng)用。

  5、待定系數(shù)法

  在解決數(shù)學(xué)問題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問題,這種問題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6、構(gòu)造法

  在解決問題時(shí),我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問題,這種解決問題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問題。

  數(shù)學(xué)經(jīng)常遇到的問題解答

  1、要提高數(shù)學(xué)成績首先要做什么?

  這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績,首先就應(yīng)該從基礎(chǔ)知識(shí)學(xué)起。不少同學(xué)覺得基礎(chǔ)知識(shí)過于簡單,看兩遍基本上就都會(huì)了。這種“自我感覺良好”其實(shí)是一種錯(cuò)覺,而真正考試時(shí)又覺得無從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績先要把基礎(chǔ)夯實(shí)。

  2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)?

  對于基礎(chǔ)差的同學(xué)來說,課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識(shí)學(xué)透有兩個(gè)好處,第一,強(qiáng)化基礎(chǔ);第二,提高得分能力。

  3、是否要采用題海戰(zhàn)術(shù)?

  方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實(shí)也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗(yàn),這樣才能取得理想成績。

  4、做題總是粗心怎么辦?

  很多學(xué)生成績不好,會(huì)說自己是因?yàn)榇中膶?dǎo)致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識(shí)不牢、沒有清晰的解題思路、計(jì)算能力不強(qiáng)。因此在平時(shí)的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點(diǎn),所以,要告訴自己,高中數(shù)學(xué)沒有“粗心”只有“不用心”。

  為什么要學(xué)習(xí)數(shù)學(xué)

  作為一門普及度極廣的學(xué)科,數(shù)學(xué)在人類文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會(huì)對數(shù)學(xué)產(chǎn)生排斥,認(rèn)為它枯燥無味,但事實(shí)上,數(shù)學(xué)是所有學(xué)科的基石之一,對我們?nèi)粘I钜约拔磥淼穆殬I(yè)發(fā)展有著重大影響。下面我將詳細(xì)闡述學(xué)習(xí)數(shù)學(xué)的重要性。

  首先,數(shù)學(xué)可以幫助我們提高邏輯思維能力。數(shù)學(xué)的學(xué)科性質(zhì)使我們在學(xué)習(xí)的過程中時(shí)時(shí)刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機(jī)會(huì)。通過長期的學(xué)習(xí)和練習(xí),我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復(fù)雜問題時(shí)更能得心應(yīng)手。

  其次,數(shù)學(xué)在現(xiàn)代科技中起著至關(guān)重要的作用。在計(jì)算機(jī)科學(xué)、物理學(xué)、經(jīng)濟(jì)學(xué)、工程學(xué)等領(lǐng)域,數(shù)學(xué)可以幫助我們建立模型、分析數(shù)據(jù)、預(yù)測趨勢,并且可以在實(shí)際應(yīng)用中優(yōu)化和改進(jìn)。例如,在人工智能領(lǐng)域,深度學(xué)習(xí)技術(shù)所涉及的數(shù)學(xué)概念包括線性代數(shù)、微積分和概率論等,如果沒有深厚的數(shù)學(xué)基礎(chǔ),很難理解和應(yīng)用這些技術(shù)。同時(shí),在工程學(xué)領(lǐng)域,許多機(jī)械、電子、化工等產(chǎn)品的設(shè)計(jì)和制造過程,也需要運(yùn)用到數(shù)學(xué)知識(shí),因此學(xué)習(xí)數(shù)學(xué)可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。

  除此之外,數(shù)學(xué)也是一種普遍使用的語言,許多學(xué)科和領(lǐng)域都使用數(shù)學(xué)語言進(jìn)行表達(dá)和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數(shù)學(xué)語言來描述自然世界的規(guī)律和現(xiàn)象。在社會(huì)科學(xué)和商科領(lǐng)域,經(jīng)濟(jì)學(xué)和金融學(xué)運(yùn)用的數(shù)學(xué)概念,如微積分、線性代數(shù)和統(tǒng)計(jì)學(xué)等,使得我們能夠更好地理解經(jīng)濟(jì)和財(cái)務(wù)數(shù)據(jù),并進(jìn)行決策。因此,學(xué)習(xí)數(shù)學(xué)可以讓我們更好地理解、溝通和交流各個(gè)領(lǐng)域的知識(shí)。

  最后,學(xué)習(xí)數(shù)學(xué)也可以為我們的職業(yè)發(fā)展帶來廣泛的機(jī)遇和發(fā)展空間。在許多領(lǐng)域,數(shù)學(xué)專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機(jī)會(huì),如金融界、數(shù)據(jù)科學(xué)、研究機(jī)構(gòu)、教育等。數(shù)學(xué)專業(yè)的人才,不只會(huì)提供理論支持,同時(shí)也能夠解決現(xiàn)實(shí)中具體的問題,使其在各自領(lǐng)域脫穎而出。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  課題

  3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)

  教學(xué)目標(biāo)

  1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)2、會(huì)用待定系數(shù)法確定函數(shù)的解析式

  教學(xué)重點(diǎn)

  掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

  教學(xué)難點(diǎn)

  掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

  教學(xué)方法

  講練結(jié)合法

  教學(xué)過程

 。↖)知識(shí)要點(diǎn)(見下表:)

  第三章第29頁函數(shù)名稱解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(diǎn)(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過點(diǎn)(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時(shí),y,4aR值域R4acb2a0時(shí),y,4aba0時(shí),在-,上為增2a函數(shù),在,-單調(diào)性k0時(shí),在,0,k0時(shí)為增函數(shù)0,上為減函數(shù)k0時(shí),為增函數(shù)b上為減函數(shù)2ak0時(shí)為減函數(shù)k0時(shí),在,0,k0時(shí),為減函數(shù)0,上為增函數(shù)ba0時(shí),在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時(shí)奇函數(shù)b=0時(shí)偶函數(shù)a0且x-ymin最值無無無b時(shí),2a24acb4ab時(shí),2a24acb4aa0且x-ymax

  第三章第30頁b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱軸x,頂點(diǎn)(,)

  2a2a4a2拋物線與x軸交點(diǎn)坐標(biāo)(m,0),(n,0)(II)例題講解

  例1、求滿足下列條件的二次函數(shù)的解析式:(1)拋物線過點(diǎn)A(1,1),B(2,2),C(4,2)(2)拋物線的頂點(diǎn)為P(1,5)且過點(diǎn)Q(3,3)

 。3)拋物線對稱軸是x2,它在x軸上截出的線段AB長為2且拋物線過點(diǎn)(1,7)。2,

  解:(1)設(shè)yax2bxc(a0),將A、B、C三點(diǎn)坐標(biāo)分別代入,可得方程組為

  abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設(shè)二次函數(shù)為ya(x1)25,將Q點(diǎn)坐標(biāo)代入,即a(31)253,得

  a2,故y2(x1)252x24x3

 。3)∵拋物線對稱軸為x2;

  ∴拋物線與x軸的.兩個(gè)交點(diǎn)A、B應(yīng)關(guān)于x2對稱;∴由題設(shè)條件可得兩個(gè)交點(diǎn)坐標(biāo)分別為A(2∴可設(shè)函數(shù)解析式為:ya(x2代入方程可得a1

  ∴所求二次函數(shù)為yx24x2,

  2,0)、B(222,0)

  2)(x22)a(x2)22a,將(1,7)

  5),例2:二次函數(shù)的圖像過點(diǎn)(0,8),(1,(4,0)

  (1)求函數(shù)圖像的頂點(diǎn)坐標(biāo)、對稱軸、最值及單調(diào)區(qū)間(2)當(dāng)x取何值時(shí),①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

  例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應(yīng)的x值

  113x1(x)2,知函數(shù)的圖像開口向上,對稱軸為x

  224111]上是增函數(shù)。∴依題設(shè)條件可得f(x)在[1,]上是減函數(shù),在[,22131]時(shí),函數(shù)取得最小值,且ymin∴當(dāng)x[1,24131又∵11

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  ∴當(dāng)x1時(shí)函數(shù)取得最大值,且ymax(1)2(1)13例4、已知函數(shù)f(x)x22(a1)x2

  4],求實(shí)數(shù)a的取值(1)若函數(shù)f(x)的遞減區(qū)間是(,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍(2)若函數(shù)f(x)在區(qū)間(,分析:二次函數(shù)的單調(diào)區(qū)間是由其開口方向及對稱軸決定的,要分清函數(shù)在區(qū)間A上是單調(diào)函數(shù)及單調(diào)區(qū)間是A的區(qū)別與聯(lián)系

  解:(1)f(x)的對稱軸是x可得函數(shù)圖像開口向上

  2(a1)21a,且二次項(xiàng)系數(shù)為1>0

  1a]∴f(x)的單調(diào)減區(qū)間為(,∴依題設(shè)條件可得1a4,解得a3

  4]上是減函數(shù)(2)∵f(x)在區(qū)間(,4]是遞減區(qū)間(,1a]的子區(qū)間∴(,∴1a4,解得a3

  例5、函數(shù)f(x)x2bx2,滿足:f(3x)f(3x)

 。1)求方程f(x)0的兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數(shù)圖像的對稱軸為x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的圖像與x軸交點(diǎn)(x1,0)、(x2,0)關(guān)于對稱軸x3對稱

  x1x223,可得x1x26

  第三章第32頁由二次項(xiàng)系數(shù)為1>0,可知拋物線開口向上又134,132,431

  ∴依二次函數(shù)的`對稱性及單調(diào)性可f(4)f(1)f(1)(III)課后作業(yè)練習(xí)六

 。á簦┙虒W(xué)后記:

  第三章第33頁

  擴(kuò)展閱讀:初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納

  學(xué)大教育

  初中數(shù)學(xué)函數(shù)板塊的知識(shí)點(diǎn)總結(jié)與歸類學(xué)習(xí)方法

  初中數(shù)學(xué)知識(shí)大綱中,函數(shù)知識(shí)占了很大的知識(shí)體系比例,學(xué)好了函數(shù),掌握了函數(shù)的基本性質(zhì)及其應(yīng)用,真正精通了函數(shù)的每一個(gè)模塊知識(shí),會(huì)做每一類函數(shù)題型,就讀于中考中數(shù)學(xué)成功了一大半,數(shù)學(xué)成績自然上高峰,同時(shí),函數(shù)的思想是學(xué)好其他理科類學(xué)科的基礎(chǔ)。初中數(shù)學(xué)從性質(zhì)上分,可以分為:一次函數(shù)、反比例函數(shù)、二次函數(shù)和銳角三角函數(shù),下面介紹各類函數(shù)的定義、基本性質(zhì)、函數(shù)圖象及函數(shù)應(yīng)用思維方式方法。

  一、一次函數(shù)

  1.定義:在定義中應(yīng)注意的問題y=kx+b中,k、b為常數(shù),且k≠0,x的指數(shù)一定為1。2.圖象及其性質(zhì)(1)形狀、直線

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  一、平移變換:

  1、概念:在平面內(nèi),將一個(gè)圖形沿著某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)叫做平移。

  2、性質(zhì):

 。1)平移前后圖形全等;

 。2)對應(yīng)點(diǎn)連線平行或在同一直線上且相等。

  3、平移的作圖步驟和方法:

 。1)分清題目要求,確定平移的方向和平移的距離。

  (2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點(diǎn)。

  (3)沿一定的方向,按一定的`距離平移各個(gè)關(guān)健點(diǎn)。

 。4)連接所作的各個(gè)關(guān)鍵點(diǎn),并標(biāo)上相應(yīng)的字母。

 。5)寫出結(jié)論。

  二、旋轉(zhuǎn)變換:

  1、概念:在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。

  說明:

 。1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;

 。2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動(dòng)。

 。3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。

 。4)旋轉(zhuǎn)過程靜止時(shí),圖形上一個(gè)點(diǎn)的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。

  2、性質(zhì):

 。1)對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

 。2)對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

 。3)旋轉(zhuǎn)前、后的圖形全等。

  3、旋轉(zhuǎn)作圖的步驟和方法:

  (1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;

 。2)找出圖形的關(guān)鍵點(diǎn);

 。3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個(gè)旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對應(yīng)點(diǎn);

 。4)按原圖形順次連接這些對應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形。

  說明:在旋轉(zhuǎn)作圖時(shí),一對對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。

  4、常見考法

 。1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;

 。2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計(jì)一些題目。

  誤區(qū)提醒

 。1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;

  (2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  一、圓

  1、圓的有關(guān)性質(zhì)

  在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。

  由圓的意義可知:

  圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長的點(diǎn)都在圓上。

  就是說:圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡稱弧。

  圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)。恍∮诎雸A的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個(gè)圓叫同心圓。

  能夠重合的兩個(gè)圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過三點(diǎn)的圓

  l、過三點(diǎn)的圓

  過三點(diǎn)的圓的作法:利用中垂線找圓心

  定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。

  經(jīng)過三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。

  2、反證法

  反證法的三個(gè)步驟:

  ①假設(shè)命題的結(jié)論不成立;

 、趶倪@個(gè)假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;

  ③由矛盾得出假設(shè)不正確,從而肯定命題的結(jié)論正確。

  例如:求證三角形中最多只有一個(gè)角是鈍角。

  證明:設(shè)有兩個(gè)以上是鈍角

  則兩個(gè)鈍角之和>180°

  與三角形內(nèi)角和等于180°矛盾。

  ∴不可能有二個(gè)以上是鈍角。

  即最多只能有一個(gè)是鈍角。

  三、垂直于弦的直徑

  圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

  弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

  平分弦所對的一條弧的`直徑,垂直平分弦,并且平分弦所對的另一個(gè)條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關(guān)系

  圓是以圓心為對稱中心的中心對稱圖形。

  實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來的圖形重合。

  頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

  推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。

  五、圓周角

  頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

  相關(guān)的角:

  1、對頂角:一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長線,這兩個(gè)角叫做對頂角。

  2、互為補(bǔ)角:如果兩個(gè)角的和是一個(gè)平角,這兩個(gè)角做互為補(bǔ)角。

  3、互為余角:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角叫做互為余角。

  4、鄰補(bǔ)角:有公共頂點(diǎn),一條公共邊,另兩條邊互為反向延長線的兩個(gè)角做互為鄰補(bǔ)角。

  注意:互余、互補(bǔ)是指兩個(gè)角的數(shù)量關(guān)系,與兩個(gè)角的位置無關(guān),而互為鄰補(bǔ)角則要求兩個(gè)角有特殊的位置關(guān)系。

  角的性質(zhì)

  1、對頂角相等。

  2、同角或等角的余角相等。

  3、同角或等角的補(bǔ)角相等。

  其實(shí)角的大小與邊的長短沒有關(guān)系,角的大小決定于角的兩條邊張開的程度。

  角的靜態(tài)定義

  具有公共端點(diǎn)的兩條射線組成的圖形叫做角(angle)。這個(gè)公共端點(diǎn)叫做角的頂點(diǎn),這兩條射線叫做角的兩條邊。

  角的動(dòng)態(tài)定義

  一條射線繞著它的端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點(diǎn)叫做角的頂點(diǎn),開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊

  角的符號(hào)

  角的符號(hào):∠

  角的種類

  在動(dòng)態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

  銳角:大于0°,小于90°的角叫做銳角。

  直角:等于90°的角叫做直角。

  鈍角:大于90°而小于180°的角叫做鈍角。

  平角:等于180°的角叫做平角。

  優(yōu)角:大于180°小于360°叫優(yōu)角。

  劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。

  角周角:等于360°的角叫做周角。

  負(fù)角:按照順時(shí)針方向旋轉(zhuǎn)而成的角叫做負(fù)角。

  正角:逆時(shí)針旋轉(zhuǎn)的角為正角。

  0角:等于零度的角。

  特殊角

  余角和補(bǔ)角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。

  對頂角:兩條直線相交后所得的只有一個(gè)公共頂點(diǎn)且兩個(gè)角的兩邊互為反向延長線,這樣的兩個(gè)角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角;閷斀堑膬蓚(gè)角相等。

  鄰補(bǔ)角:兩個(gè)角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關(guān)系的兩個(gè)角,互為鄰補(bǔ)角。

  內(nèi)錯(cuò)角:互相平行的兩條直線直線,被第三條直線所截,如果兩個(gè)角都在兩條直線的

  內(nèi)側(cè),并且在第三條直線的兩側(cè),那么這樣的一對角叫做內(nèi)錯(cuò)角(alternate interior angle )。如:∠1和∠6,∠2和∠5

  同旁內(nèi)角:兩個(gè)角都在截線的同一側(cè),且在兩條被截線之間,具有這樣位置關(guān)系的一對角互為同旁內(nèi)角。如:∠1和∠5,∠2和∠6

  同位角:兩個(gè)角都在截線的同旁,又分別處在被截的兩條直線同側(cè),具有這樣位置關(guān)系的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7

  外錯(cuò)角:兩條直線被第三條直線所截,構(gòu)成了八個(gè)角。如果兩個(gè)角都在兩條被截線的外側(cè),并且在截線的兩側(cè),那么這樣的一對角叫做外錯(cuò)角。例如:∠4與∠7,∠3與∠8。

  同旁外角:兩個(gè)角都在截線的同一側(cè),且在兩條被截線之外,具有這樣位置關(guān)系的一對角互為同旁外角。如:∠4和∠8,∠3和∠7

  終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:

  A{bb=k_360+a,k∈Z}表示角度制;

  B{bb=2kπ+a,k∈Z}表示弧度制

 、僦本和圓無公共點(diǎn),稱相離。 AB與圓O相離,d>r。

  ②直線和圓有兩個(gè)公共點(diǎn),稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

 、壑本和圓有且只有一公共點(diǎn),稱相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的距離)

  平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程

  如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。

  如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。

  如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。

  2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規(guī)定x1

  當(dāng)x=-C/Ax2時(shí),直線與圓相離;

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  首先你要有一個(gè)好的態(tài)度,有些人學(xué)習(xí)數(shù)學(xué),可能有的階段會(huì)喜歡學(xué)習(xí),但是某一階段,對數(shù)學(xué)就沒有什么興趣了,可能每個(gè)人都會(huì)有這樣一個(gè)階段,但是如果發(fā)現(xiàn)自己不喜歡學(xué)習(xí)數(shù)學(xué)了,一定要克制自己,在學(xué)習(xí)數(shù)學(xué)上,保持一個(gè)良好的學(xué)習(xí)態(tài)度,這是你學(xué)好數(shù)學(xué)的第一步。

  充分的利用好上課的時(shí)間,上課時(shí)間你所掌握的'知識(shí),會(huì)比你在課下學(xué)很長時(shí)間都有用,所以珍惜課堂老師所講的內(nèi)容,老師的某些話對我們以后做數(shù)學(xué)題都很有幫助,如果你上課走神,這些話沒有聽到,你在做題的時(shí)候,可能會(huì)走很多彎路,做題的效率也會(huì)降低,一旦有這樣的情況,可能你就會(huì)不喜歡數(shù)學(xué)了。

  學(xué)習(xí)最重要的是思考,會(huì)思考數(shù)學(xué)才能學(xué)好,數(shù)學(xué)中的題都是需要我們?nèi)ヅe一反三的,沒做一道題,都要思考一下,圍繞著這道題的知識(shí)點(diǎn),還會(huì)有什么樣的題型出現(xiàn),哪怕是遇到不會(huì)的題,也要勤加的思考,如果你把知識(shí)點(diǎn)自認(rèn)為學(xué)習(xí)透徹,那么就用做題檢驗(yàn)吧,數(shù)學(xué)中多做題是必須的,成績都是用題堆積出來的,很少會(huì)有人不做題數(shù)學(xué)成績很高的。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  初中數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)

  平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。

  實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。

  初中數(shù)學(xué)平行四邊形的性質(zhì)知識(shí)點(diǎn)

  1.定義:兩組對邊分別平行的.四邊形叫平行四邊形

  2.平行四邊形的性質(zhì)

  (1)平行四邊形的對邊平行且相等;

  (2)平行四邊形的鄰角互補(bǔ),對角相等;

  (3)平行四邊形的對角線互相平分;

  3.平行四邊形的判定

  平行四邊形是幾何中一個(gè)重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對平行四邊形的五種判定方法,進(jìn)行劃分:

  第一類:與四邊形的對邊有關(guān)

  (1)兩組對邊分別平行的四邊形是平行四邊形;

  (2)兩組對邊分別相等的四邊形是平行四邊形;

  (3)一組對邊平行且相等的四邊形是平行四邊形;

  第二類:與四邊形的對角有關(guān)

  (4)兩組對角分別相等的四邊形是平行四邊形;

  第三類:與四邊形的對角線有關(guān)

  (5)對角線互相平分的四邊形是平行四邊形

  初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

  1.一次函數(shù)

  (1)定義:形如y=kx+b(k、b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù)。特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)

  所以,正比例函數(shù)是特殊的一次函數(shù)。

  (2)一次函數(shù)的圖像及性質(zhì):

  1在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

  2一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)。

  3正比例函數(shù)的圖像總是過原點(diǎn)。

  4k,b與函數(shù)圖像所在象限的關(guān)系:

  當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。

  當(dāng)k>0,b>0時(shí),直線通過一、二、三象限;

  當(dāng)k>0,b<0時(shí),直線通過一、三、四象限;

  當(dāng)k<0,b>0時(shí),直線通過一、二、四象限;

  當(dāng)k<0,b<0時(shí),直線通過二、三、四象限;

  當(dāng)b=0時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

  這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。

  2.二次函數(shù)

  (1)定義:一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c(a,b,c為常數(shù),a≠0,),稱y為x的二次函數(shù)。

  (2)二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0);

  頂點(diǎn)式:y=a(x-h)^2+k(拋物線的頂點(diǎn)P(h,k));

  交點(diǎn)式:

  (3)二次函數(shù)的圖像與性質(zhì)

  1二次函數(shù)的圖像是一條拋物線。

  2拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

  特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0)。

  3二次項(xiàng)系數(shù)a決定拋物線的開口方向。

  當(dāng)a>0時(shí),拋物線向上開口;

  當(dāng)a<0時(shí),拋物線向下開口。

  4一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。

  當(dāng)a與b同號(hào)時(shí)(即ab>0),對稱軸在y軸左;

  當(dāng)a與b異號(hào)時(shí)(即ab<0),對稱軸在y軸右。

  5拋物線與x軸交點(diǎn)個(gè)數(shù)

  Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);

  Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);

  Δ=b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。

  3.反比例函數(shù)

  (1)定義:形如y=k/x(k為常數(shù)且k≠0) 的函數(shù),叫做反比例函數(shù)。

  (2)反比例函數(shù)圖像性質(zhì):

  1反比例函數(shù)的圖像為雙曲線;

  當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù);

  當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù);

  反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

  2由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對稱。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  一、投影

  1、投影:一般地,用光線照射物體,在某個(gè)平面(地面、墻壁等)上得到的影子叫做物體的投影,照射光線叫做投影線,投影所在的平面叫做投影面。

  2、平行投影:由平行光線形成的投影是平行投影。(光源特別遠(yuǎn))

  3、中心投影:由同一點(diǎn)(點(diǎn)光源發(fā)出的光線)形成的投影叫做中心投影

  4、正投影:投影線垂直于投影面產(chǎn)生的投影叫做正投影。物體正投影的形狀、大小與它相對于投影面的位置有關(guān)。

  5、當(dāng)物體的某個(gè)面平行于投影面時(shí),這個(gè)面的正投影與這個(gè)面的形狀、大小完全相同。當(dāng)物體的某個(gè)面頂斜于投影面時(shí),這個(gè)面的正投影變小。當(dāng)物體的某個(gè)面垂直于投影面時(shí),這個(gè)面的正投影成為一條直線。

  二、三視圖

  1、三視圖:是觀測者從三個(gè)不同位置(正面、水平面、側(cè)面)觀察同一個(gè)空間幾何體而畫出的圖形。三視圖就是主視圖、俯視圖、左視圖的總稱。另外還有如剖面圖、半剖面圖等做為輔助,基本能完整的表達(dá)物體的結(jié)構(gòu)。

  2、主視圖:在正面內(nèi)得到的由前向后觀察物體的視圖。

  3、俯視圖:在水平面內(nèi)得到的由上向下觀察物體的視圖。

  4、左視圖:在側(cè)面內(nèi)得到的由左向右觀察物體的視圖。

  5、三個(gè)視圖的位置關(guān)系:

 、僦饕晥D在上、俯視圖在下、左視圖在右;

  ②主視、俯視表示物體的長,主視、左視表示物體的高,左視、俯視表示物體的寬。

 、壑饕、俯視長對正,主視、左視高平齊,左視、俯視寬相等。

  6、畫法:看得見的部分的輪廓線畫成實(shí)線,因被其它部分遮檔而看不見的部分的輪廓線畫成虛線。

  鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。

  對頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長線,像這樣的兩個(gè)角互為對頂角。

  垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。

  平行線:在同一平面內(nèi),不相交的'兩條直線叫做平行線。

  同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:

  同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。

  內(nèi)錯(cuò)角:∠2與∠6像這樣的一對角叫做內(nèi)錯(cuò)角。

  同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。

  命題:判斷一件事情的語句叫命題。

  平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡稱平移。

  對應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對應(yīng)點(diǎn)。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  第十一章三角形

  一、知識(shí)框架:

  二、知識(shí)概念:

  1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.

  2.三邊關(guān)系:三角形任意兩邊的和(大于或小于)第三邊,任意兩邊的差(大于或小于)第三邊.

  3.高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線作,頂點(diǎn)和間的線段叫做三角形的高.4.中線:在三角形中,連接一個(gè)頂點(diǎn)和它對邊的線段叫做三角形的中線.

  5.角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和之間的線段叫做三角形的角平分線.

  6.三角形的穩(wěn)定性:三角形的形狀是,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性.

  7.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形.

  8.多邊形的內(nèi)角:多邊形兩邊組成的角叫做它的內(nèi)角.

  9.多邊形的外角:多邊形的一邊與它的鄰邊的線組成的角叫做多邊形的外角.

  10.多邊形的對角線:連接多邊形的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對角線.

  11.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形.

  12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,

  13.公式與性質(zhì):

 、湃切蔚膬(nèi)角和:三角形的'內(nèi)角和為度。

 、迫切瓮饨堑男再|(zhì):

  性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的的和.

  性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它的內(nèi)角.

 、嵌噙呅蝺(nèi)角和公式:n邊形的內(nèi)角和等于。

  學(xué)無慮課后輔導(dǎo)中心編制

 、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑槎.

  ⑸多邊形對角線的條數(shù):

 、購膎邊形的一個(gè)頂點(diǎn)出發(fā)可以引條對角線,把多邊形分成個(gè)三角形.

  ②n邊形共有條對角線.

  第十二章全等三角形

  一、知識(shí)框架:

  二、知識(shí)概念:

  1.基本定義:

 、湃刃危耗軌蛲耆膬蓚(gè)圖形叫做全等形.

  ⑵全等三角形:能夠完全的兩個(gè)三角形叫做全等三角形.

 、菍(yīng)頂點(diǎn):全等三角形中互相的頂點(diǎn)叫做對應(yīng)頂點(diǎn).

  ⑷對應(yīng)邊:全等三角形中互相的邊叫做對應(yīng)邊.

 、蓪(yīng)角:全等三角形中互相的角叫做對應(yīng)角.

  2.基本性質(zhì):

  ⑴三角形的穩(wěn)定性:三角形三邊的確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩(wěn)定性.

  ⑵全等三角形的性質(zhì):全等三角形的相等,對應(yīng)角相等.

  3.全等三角形的判定定理:

  ⑴邊邊邊(SSS):。

 、七吔沁叄⊿AS):。

 、墙沁吔牵ˋSA):。

 、冉墙沁叄ˋAS):。

 、尚边、直角邊(HL):。

  4.角平分線:⑴畫法:⑵性質(zhì)定理:角平分線上的點(diǎn)到角的兩邊的距離.⑶性質(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的上.

  5.證明的基本方法:

  ⑴明確命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)⑵根據(jù)題意,畫出圖形,并用數(shù)字符號(hào)表示已知和求證.⑶經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程.

  第十三章軸對稱

  一、知識(shí)框架:

  二、知識(shí)概念:

  1.基本概念:

 、泡S對稱圖形:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相,這個(gè)圖形就叫做軸對稱圖形.

 、苾蓚(gè)圖形成軸對稱:把一個(gè)圖形沿某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對稱.⑶線段的垂直平分線:經(jīng)過線段中點(diǎn)并且這條線段的直線,叫做這條線段的垂直平分線.

 、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.

 、傻冗吶切危憾枷嗟鹊娜切谓凶龅冗吶切.2.基本性質(zhì):⑴對稱的性質(zhì):①不管是軸對稱圖形還是兩個(gè)圖形關(guān)于某條直線對稱,對稱軸都是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線.②對稱的圖形都全等.⑵線段垂直平分線的性質(zhì):①線段垂直平分線上的點(diǎn)與這條線段的距離相等.②與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的上.⑶關(guān)于坐標(biāo)軸對稱的點(diǎn)的坐標(biāo)性質(zhì)①點(diǎn)P(x,y)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為P"(,).②點(diǎn)P(x,y)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為P"(,).⑷等腰三角形的性質(zhì):

 、俚妊切蝺裳.

 、诘妊切蝺傻捉窍嗟龋ǖ冗厡Φ冉牵.

  ③等腰三角形的、,相互重合.④等腰三角形是圖形,對稱軸是三線合一(1條).⑸等邊三角形的性質(zhì):

 、俚冗吶切稳叾枷嗟.

 、诘冗吶切稳齻(gè)內(nèi)角都相等,都等于度。③等邊三角形每條邊上都存在三線合一.

  ④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).3.基本判定:

  ⑴等腰三角形的判定:

 、傧嗟鹊娜切问堑妊切.

 、谌绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也(等角對等邊).

  ⑵等邊三角形的判定:

 、俣枷嗟鹊娜切问堑冗吶切.②三個(gè)角都相等的三角形是三角形.

 、塾幸粋(gè)角是度。的等腰三角形是等邊三角形.

  4.基本方法:

 、抛鲆阎本的垂線:

 、谱鲆阎段的垂直平分線:

  ⑶作對稱軸:連接兩個(gè)對應(yīng)點(diǎn),作所連線段的垂直平分線.

 、茸饕阎獔D形關(guān)于某直線的對稱圖形:

  ⑸在直線上做一點(diǎn),使它到該直線同側(cè)的兩個(gè)已知點(diǎn)的距離之和最短.

  第十四章整式的乘除與分解因式

  一、知識(shí)框架:

  整式乘法乘法法則整式除法因式分解

  二、知識(shí)概念:

  基本運(yùn)算:⑴同底數(shù)冪的乘法公式:。⑵冪的乘方公式:。⑶積的乘方公式:。

  2.整式的乘法:⑴單項(xiàng)式單項(xiàng)式:系數(shù),同字母,不同字母為積的因式.⑵單項(xiàng)式多項(xiàng)式:。⑶多項(xiàng)式多項(xiàng)式:.

  3.計(jì)算公式:

 、牌椒讲罟剑篴babab

  222222⑵完全平方公式:aba2abb;aba2abb

  224.整式的除法:

 、磐讛(shù)冪的除法:aaamnmn

  ⑵單項(xiàng)式單項(xiàng)式:系數(shù),同字母,不同字母作為商的因式.⑶多項(xiàng)式單項(xiàng)式:.⑷多項(xiàng)式多項(xiàng)式:用豎式.

  5.因式分解:把一個(gè)多項(xiàng)式化成的積的形式,這種變形叫做把這個(gè)式子因式分解.

  6.因式分解方法:

 、盘峁蚴椒ǎ赫页鲎畲蠊蚴.⑵公式法:①平方差公式:。②完全平方公式:。③立方和:。④立方差:。⑶十字相乘法:。⑷拆項(xiàng)法⑸添項(xiàng)法第十五章分式一、知識(shí)框架:

  二、知識(shí)概念:A1.分式:形如,A、B是整式,B中含有字母且B不等于的整式叫做分式.其中AB叫做分式的,B叫做分式的2.分式有意義的條件:分母不等于.3.分式的基本性質(zhì):分式的分子和分母同時(shí)乘以(或除以)同一個(gè)不為的整式,分式的值不變.4.約分:把一個(gè)分式的分子和分母的(不為1的數(shù))約去,這種變形稱為約分.5.通分:異分母的分式可以化成的分式,這一過程叫做通分.

  6.最簡分式:一個(gè)分式的分子和分母沒有時(shí),這個(gè)分式稱為最簡分式,約分時(shí),一般將一個(gè)分式化為最簡分式.7.分式的四則運(yùn)算:

  ⑴同分母分式加減法則:同分母的分式相加減,分母,把相加減.用字

  母表示

  為:。

 、飘惙帜阜质郊訙p法則:異分母的分式相加減,先,化為同分母的分

  式,然后再按同分母分式的加減法法則進(jìn)行計(jì)算.用字母表示為:。

 、欠质降某朔ǚ▌t:兩個(gè)分式相乘,把相乘的積作為積的分子,把相乘的積作為積的分母.用字母表示為:。

 、确质降某ǚ▌t:兩個(gè)分式相除,把除式的和顛倒位置后再與被除式相乘.用字母表示為:。⑸分式的乘方法則:、分別乘方.用字母表示為:。8.整數(shù)指數(shù)冪:⑴aaam⑵amnmn(m、n是正整數(shù))namn(m、n是正整數(shù))nn⑶abab(n是正整數(shù))n⑷aaanmnmn(a0,m、n是正整數(shù),mn)ana⑸n(n是正整數(shù))bb⑹an1(a0,n是正整數(shù))na9.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.10.分式方程的解法:

 、(方程兩邊同時(shí)乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的值;

  ③(求出未知數(shù)的值后必須驗(yàn)根,因?yàn)樵诎逊质椒匠袒癁檎椒匠痰倪^程中,擴(kuò)大了未知數(shù)的取值范圍,可能產(chǎn)生增根).

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  [關(guān)鍵詞]課堂小結(jié);初中數(shù)學(xué);理解提升

  德國作家、科學(xué)家利希頓堡說過:“當(dāng)你還不能對自己說今天學(xué)到了什么東西時(shí),你就不要去睡覺。 ”這句話從側(cè)面闡明了總結(jié)對于知識(shí)學(xué)習(xí)的重要性。課堂小結(jié)作為一項(xiàng)提煉收獲、分析問題、概括經(jīng)驗(yàn)的學(xué)習(xí)手段,對于初中數(shù)學(xué)課堂教學(xué)具有很好的促進(jìn)作用。這是因?yàn)槌踔袛?shù)學(xué)與其他學(xué)科相比,有更強(qiáng)的思維性、邏輯性和綜合性,這使得初中數(shù)學(xué)的知識(shí)體系、概念內(nèi)容更龐雜,更不容易消化吸收,這就需要我們尋求一項(xiàng)有效的手段來將這些知識(shí)進(jìn)行聚合、鞏固、提升,而課堂小結(jié)恰恰解決了這一問題。課堂教學(xué)形式多變、內(nèi)涵豐富,并非時(shí)時(shí)刻刻都應(yīng)該總結(jié)、都需要總結(jié),課堂小結(jié)只有在合適的時(shí)間運(yùn)用,才能發(fā)揮效果。筆者正是基于此,對初中數(shù)學(xué)如何有效運(yùn)用課堂小結(jié)進(jìn)行策略探析,通過對初中數(shù)學(xué)教學(xué)規(guī)律、學(xué)生數(shù)學(xué)知識(shí)吸收特點(diǎn)進(jìn)行整理、分析后,提出如下四點(diǎn)建議。

  在知識(shí)講解之后小結(jié),掌握新

  知強(qiáng)調(diào)重點(diǎn)

  我們在進(jìn)行新知識(shí)的課堂教學(xué)時(shí),一堂課里一般會(huì)有多個(gè)小知識(shí)點(diǎn),我們在帶入新知識(shí)的同時(shí),還會(huì)引入一些老問題,幫助學(xué)生進(jìn)行對比、區(qū)分,增進(jìn)理解。但這同時(shí)也加大了課堂容量,容易讓學(xué)生在知識(shí)吸收中出現(xiàn)遺漏、錯(cuò)讀。所以,在新知識(shí)教學(xué)完成之后進(jìn)行課堂小結(jié),幫助學(xué)生將所學(xué)的新知識(shí)進(jìn)行統(tǒng)一規(guī)整,能夠很好地幫助學(xué)生理清思路,明確知識(shí)重點(diǎn),快速掌握新知。在對新知識(shí)進(jìn)行課堂小結(jié)時(shí),我們講究全而美,即小結(jié)涵蓋的內(nèi)容要全,要將本節(jié)課的所有知識(shí)都涵蓋進(jìn)來;美是指總結(jié)的語言要生動(dòng),要將新知識(shí)的特點(diǎn)用趣味的語言表現(xiàn)出來,讓學(xué)生更容易理解,更方便記憶。

  例如,教學(xué)蘇教版初中數(shù)學(xué)“合并同類項(xiàng)”這一部分內(nèi)容時(shí),筆者進(jìn)行了這樣的小結(jié):“同學(xué)們,我們今天學(xué)習(xí)了合并同類項(xiàng),合并同類項(xiàng)我們要掌握兩個(gè)關(guān)鍵,一是什么是同類項(xiàng),另一個(gè)是怎么合并,你們說對不對?”筆者先拋出一個(gè)問題,學(xué)生回答:“對。 ”“那你們誰能告訴老師答案呢?”筆者繼續(xù)問,學(xué)生思考后回答:“老師,是同類項(xiàng)的話,首先所含字母要相同!薄巴粋(gè)字母的指數(shù)也必須一樣!绷硪粋(gè)學(xué)生回答。 “合并同類項(xiàng)就是把同類項(xiàng)的系數(shù)加起來。 ”還有學(xué)生補(bǔ)充。筆者笑著說:“同學(xué)們說得很好呢,其實(shí)合并同類項(xiàng)只要掌握兩同、兩無關(guān),常數(shù)也是同類項(xiàng)就可以了。兩同就是字母同、指數(shù)同,兩無關(guān)是字母順序無關(guān)、系數(shù)大小無關(guān)。 ”像這樣,通過教師引導(dǎo)學(xué)生思考,再進(jìn)行總結(jié),能夠有效幫助學(xué)生了解新知識(shí)的重點(diǎn),促進(jìn)學(xué)生理解掌握。

  在答疑解惑之后小結(jié),突出要

  點(diǎn)指明問題

  學(xué)必有疑,學(xué)生在數(shù)學(xué)學(xué)習(xí)過程中,一定會(huì)碰到一些麻煩,提出一些問題。對于學(xué)生提出的疑問,教師都會(huì)認(rèn)真講解、仔細(xì)分析,直到學(xué)生明白為止,但有時(shí)候會(huì)出現(xiàn)同一知識(shí)點(diǎn)學(xué)生聽了忘、反復(fù)問的現(xiàn)象,出現(xiàn)這種情況的原因是學(xué)生對于教師的講解沒理解透徹。而如何才能讓學(xué)生參透呢?教師在幫學(xué)生答疑解惑之后的課堂小結(jié),很多時(shí)候剛好能起到這樣的點(diǎn)撥作用。教師在答疑解惑之后的課堂小結(jié)要注意兩個(gè)問題:一是小結(jié)要指明問題,就學(xué)生所出現(xiàn)的問題進(jìn)行分析,讓學(xué)生根據(jù)自身情況認(rèn)領(lǐng)問題,以便對癥下藥;二是小結(jié)要注重方法的啟發(fā),針對學(xué)生的問題闡明解決辦法,引導(dǎo)學(xué)生領(lǐng)會(huì)方法,運(yùn)用原則,破獲解題密碼,得到新的收獲與啟發(fā)。

  例如,教學(xué)蘇教版初中數(shù)學(xué)“一元一次方程”時(shí),有一位學(xué)生向筆者提出疑問:“老師,這道題目:+=2,我算了好幾遍,答案都是—1,跟老師給的答案不一樣,這是為什么呢?”筆者稍稍看了學(xué)生的解題步驟后發(fā)現(xiàn),原來這個(gè)學(xué)生犯了解一元一次方程非常常見的錯(cuò)誤,即他去分母的時(shí)候,沒有分母的項(xiàng)忘記乘相同的系數(shù)了。于是筆者在向他講解完之后進(jìn)行小結(jié):“同學(xué)們,我們在給一元一次方程去分母的時(shí)候,要注意什么呢?方程兩邊要同時(shí)乘以所有分母的最小公倍數(shù),只有這么做,方程的大小才會(huì)保持不變。一旦你漏乘了誰,特別是沒有分母的項(xiàng),那就不公平了,等式大小就發(fā)生了改變,那么答案肯定就錯(cuò)了。 ”像這樣,根據(jù)學(xué)生的問題,直指關(guān)鍵,幫助學(xué)生答疑解惑,能促進(jìn)學(xué)生吃一塹長一智,規(guī)避錯(cuò)誤,更加進(jìn)步。

  在遷移發(fā)散之后小結(jié),明確關(guān)

  系梳理聯(lián)系

  數(shù)學(xué)知識(shí)盤絲錯(cuò)節(jié),各個(gè)知識(shí)點(diǎn)之間的聯(lián)系十分多樣、緊密,因此要幫助學(xué)生真正深入掌握知識(shí),明晰知識(shí)點(diǎn)間的靈活運(yùn)用,就必須適當(dāng)對這些知識(shí)進(jìn)行遷移發(fā)散。遷移發(fā)散是一種舉一反三的'教學(xué)手段,通過一個(gè)數(shù)學(xué)概念遷移出舊識(shí)新知,通過一種方法發(fā)散出多種不同形式。遷移發(fā)散是數(shù)學(xué)萬紫千紅總是春的集中體現(xiàn),是數(shù)學(xué)學(xué)習(xí)的較高階段,同時(shí)也是學(xué)生較難理解掌握的部分,因此,在遷移發(fā)散之后進(jìn)行課堂小結(jié)很有必要。教師要注意通過小結(jié)引導(dǎo)學(xué)生明確各個(gè)知識(shí)點(diǎn)之間的因果先后關(guān)系,梳理多個(gè)知識(shí)點(diǎn)之間聯(lián)系的條件和影響因素,讓學(xué)生通過小結(jié)可以在腦中形成更為準(zhǔn)確的印象。

  例如,教學(xué)蘇教版初中數(shù)學(xué)“梯形中位線”這部分內(nèi)容時(shí),筆者遷移出三角形中位線的相關(guān)概念,引導(dǎo)學(xué)生進(jìn)行比對、思考、拓展。遷移發(fā)散之后,筆者做了如下總結(jié):“同學(xué)們,通過遷移我們可以得出,三角形中位線是梯形中位線的一種特殊形式,所有梯形通過割補(bǔ)平移都可以轉(zhuǎn)換成一個(gè)三角形。另外,通過式子的轉(zhuǎn)化我們知道,梯形的面積可以看做是中位線乘以梯形高的積,那么作為梯形中位線的特例,三角形的面積同樣也可以是中位線與第三邊上的高的乘積。 ”像這樣,在遷移之后進(jìn)行小結(jié),明確了知識(shí)之間的聯(lián)系,能幫助學(xué)生進(jìn)行梳理歸納,有助于學(xué)生理解掌握。

  在整體復(fù)習(xí)之后小結(jié),高屋建

  瓴全面吸收

  復(fù)習(xí)是數(shù)學(xué)學(xué)習(xí)中非常重要的一個(gè)環(huán)節(jié),是對學(xué)生一段時(shí)間以來學(xué)習(xí)的回顧。整體復(fù)習(xí)一般具有復(fù)習(xí)量大、知識(shí)跨度大、知識(shí)整合度高等特點(diǎn),一堂整體復(fù)習(xí)課下來,學(xué)生需要重新理順和溫習(xí)的知識(shí)點(diǎn)非常多,初中生注意力容易分散,對于過于繁多的知識(shí)概念會(huì)出現(xiàn)“消化不良”的現(xiàn)象。整體復(fù)習(xí)之后的課堂小結(jié),是對整個(gè)復(fù)習(xí)過程的凝練、概括,起到高屋建瓴的作用,能幫助學(xué)生更為系統(tǒng)、全面地知悉內(nèi)容、吸收知識(shí)。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  一、可能性:

  1. 必然事件:有些事情我們能確定他一定會(huì)發(fā)生,這些事情稱為必然事件;

  2.不可能事件:有些事情我們能肯定他一定不會(huì)發(fā)生,這些事情稱為不可能事件;

  3.確定事件:必然事件和不可能事件都是確定的;

  4.不確定事件:有很多事情我們無法肯定他會(huì)不會(huì)發(fā)生,這些事情稱為不確定事件。

  5.一般來說,不確定事件發(fā)生的可能性是有大小的。.

  二、概率:

  1.概率的意義:表示一個(gè)事件發(fā)生的可能性大小的這個(gè)數(shù)叫做該事件的概率。

  2.必然事件發(fā)生的概率為1,記作P(必然事件)=1;不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;如果A為不確定事件,那么0

  3.一步試驗(yàn)事件發(fā)生的概率的計(jì)算公式是P=k/n,n為該事件所有等可能出現(xiàn)的結(jié)果數(shù),k為事件包含的結(jié)果數(shù)。兩步試驗(yàn)事件發(fā)生的概率的發(fā)生的概率的計(jì)算方法有兩種,一種是列表法,另一種是畫樹狀圖,利用這兩種方法計(jì)算兩步實(shí)驗(yàn)時(shí),應(yīng)用樹狀圖或列表將簡單的兩步試驗(yàn)所有可能的'情況表示出來,從而計(jì)算隨機(jī)事件的概率。

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

  下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的。數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

  三個(gè)規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

  對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  通過上面對平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

  下面是對數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點(diǎn)的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

  對于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  希望上面對點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績的。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

  通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

  相信上面對因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  初中數(shù)學(xué)的學(xué)科地位很高,一直以來是三大學(xué)科之一,影響著物理化學(xué)的學(xué)習(xí)。

  圓心角

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

  推理過程

  根據(jù)旋轉(zhuǎn)的性質(zhì),將∠aob繞圓心o旋轉(zhuǎn)到∠a'ob'的位置時(shí),顯然∠aob=∠a'ob',射線oa與oa'重合,ob與ob'重合,而同圓的半徑相等,oa=oa',ob=ob',從而點(diǎn)a與a'重合,b與b'重合。

  因此,弧ab與弧a'b'重合,ab與a'b'重合。即

  弧ab=弧a'b',ab=a'b'。

  則得到上面定理。

  同樣還可以得到:

  在同圓或等圓中,如果兩條弧相等,那么他們所對的'圓心角相等,所對的弦相等,所對的弦心距也相等。

  在同圓或等圓中,如果兩條弦相等,那么他們所對的圓心角相等,所對的弧相等,所對的弦心距也相等。

  所以,在同圓或等圓中,兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,它們所對應(yīng)的其余各組量也相等。

  圓的圓心角知識(shí)要領(lǐng)很容易掌握,經(jīng)常會(huì)出現(xiàn)在關(guān)于圓的證明題中。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  一.圓的定義

  1.平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。

  2.平面上一條線段,繞它的一端旋轉(zhuǎn)360°,留下的軌跡叫圓。

  二.圓心

  1.定義1中的定點(diǎn)為圓心。

  2.定義2中繞的那一端的端點(diǎn)為圓心。

  3.圓任意兩條對稱軸的交點(diǎn)為圓心。

  4.垂直于圓內(nèi)任意一條弦且兩個(gè)端點(diǎn)在圓上的線段的二分點(diǎn)為圓心。

  注:圓心一般用字母O表示

  5.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

  6.半徑:連接圓心和圓上任意一點(diǎn)的線段,叫做圓的半徑。半徑一般用字母r表示。

  7.圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。

  8.圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。

  三.圓的基本性質(zhì)

  1.圓的對稱性

  (1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。

  (2)圓是中心對稱圖形,它的對稱中心是圓心。

  (3)圓是旋轉(zhuǎn)對稱圖形。

  2.垂徑定理

  (1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

  (2)推論:

  平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。

  平分弧的直徑,垂直平分弧所對的弦。

  3.圓心角的度數(shù)等于它所對弧的度數(shù)。圓周角的度數(shù)等于它所對弧度數(shù)的一半。

  (1)同弧所對的圓周角相等。

  (2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

  4.在同圓或等圓中,兩條弦、兩條弧、兩個(gè)圓周角、兩個(gè)圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。

  5.夾在平行線間的兩條弧相等。

  (1)過兩點(diǎn)的圓的圓心一定在兩點(diǎn)間連線段的中垂線上。

  (2)不在同一直線上的三點(diǎn)確定一個(gè)圓,圓心是三邊中垂線的交點(diǎn),它到三個(gè)點(diǎn)的距離相等。

  (直角三角形的外心就是斜邊的'中點(diǎn)。)

  6.直線與圓的位置關(guān)系。d表示圓心到直線的距離,r表示圓的半徑。

  直線與圓有兩個(gè)交點(diǎn),直線與圓相交;直線與圓只有一個(gè)交點(diǎn),直線與圓相切;直線與圓沒有交點(diǎn),直線與圓相離。

  四.圓和圓

  1.兩個(gè)圓沒有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓的外離。

  2.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部,叫做兩個(gè)圓的外切。

  3.兩個(gè)圓有兩個(gè)交點(diǎn),叫做兩個(gè)圓的相交。

  4.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的內(nèi)部,叫做兩個(gè)圓的內(nèi)切。

  5.兩個(gè)圓沒有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的內(nèi)部時(shí),叫做這兩個(gè)圓的內(nèi)含。

  五.正多邊形和圓

  1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。

  2.正多邊形與圓的關(guān)系:

  (1)將一個(gè)圓n(n≥3)等分(可以借助量角器),依次連結(jié)各等分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正多邊形。

  (2)這個(gè)圓是這個(gè)正多邊形的外接圓。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  一、初中數(shù)學(xué)基本概念

  1.方程:含有未知數(shù)的等式叫做方程。

  2.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。

  3.二元一次方程:含有兩個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1的二元一次方程。

  4.二元一次方程組:由兩個(gè)二元一次方程組成的方程組。

  5.一元二次方程:含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程。

  6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數(shù)的值。

  7.一元二次方程的根:一元二次方程的解。

  8.一元二次方程的判別式:當(dāng)a是正數(shù)時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)a是負(fù)數(shù)時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程沒有實(shí)數(shù)根;當(dāng)a是零時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程有兩個(gè)相等的實(shí)數(shù)根。

  9.函數(shù):在某變化過程中有兩個(gè)變量x、y,如果對于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對應(yīng),那么稱y是x的函數(shù),x叫做自變量。

  10.一次函數(shù):在某個(gè)變化過程中有兩個(gè)變量x、y,如果對于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對應(yīng),那么稱y是x的一次函數(shù)。

  11.正比例函數(shù):在某個(gè)變化過程中有兩個(gè)變量x、y,如果對于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一的值與它對應(yīng),并且這個(gè)數(shù)值在比例上成正比,那么稱y是x的比例函數(shù)。

  12.反比例函數(shù):在某個(gè)變化過程中有兩個(gè)變量x、y,如果對于x在某一范圍內(nèi)的每一個(gè)確定的'值,y都有唯一的值與它對應(yīng),并且這個(gè)數(shù)值在比例上成反比,那么稱y是x的反比例函數(shù)。

  13.平行四邊形:在同一個(gè)平面內(nèi)兩組對角分別平行的四邊形叫做平行四邊形。

  14.矩形:有一個(gè)內(nèi)角是直角的平行四邊形叫做矩形。

  15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。

  16.正方形:四邊相等的矩形叫做正方形。

  17.等腰梯形:兩條腰相等的梯形叫做等腰梯形。

  18.三角形:在同一個(gè)平面內(nèi)由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  19.中線:連接一個(gè)頂點(diǎn)和它對邊的中點(diǎn)的線段叫做中線。

  20.高線:從三角形的一個(gè)頂點(diǎn)向它的對邊作垂線,垂足與頂點(diǎn)之間的線段叫做高線。

  21.角平分線:三角形的一個(gè)內(nèi)角的平分線與它的對邊相交,這個(gè)角的頂點(diǎn)與交點(diǎn)之間的線段叫做角平分線。

  22.中位線:連接三角形兩邊中點(diǎn)的線段叫做中位線。

  23.軸對稱圖形:一條物體沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱圖形。

  24.直接開平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程的方法。

  25.配方法:把一元二次方程的常數(shù)項(xiàng)移到方程的右邊,兩邊加上一次項(xiàng)系數(shù)的一半的平方,再用右邊的式子除以左邊的式子,得到一個(gè)平方的形式,再用直接開平方的方法求解一元二次方程的方法。

  26.公式法:用求根公式解一元二次方程的方法。

  27.因式分解法:將一元二次方程分解成兩個(gè)一次因式的積等于0的一元二次方程,然后將各個(gè)因式分解,得到一元一次方程,再用直接開方法求解一元一次方程的方法。

  二、初中數(shù)學(xué)基本運(yùn)算

  1.整式:單項(xiàng)式和多項(xiàng)式的統(tǒng)稱。

  2.單項(xiàng)式:由數(shù)字和字母的積組成的代數(shù)式叫做單項(xiàng)式。單獨(dú)的一個(gè)數(shù)字或字母也叫做單項(xiàng)式。

  3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。其中不含字母的項(xiàng)叫做常數(shù)

【初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)08-26

初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)11-05

初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)11-24

初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)12-05

初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)06-14

數(shù)學(xué)初中知識(shí)點(diǎn)總結(jié)06-10

【經(jīng)典】數(shù)學(xué)初中知識(shí)點(diǎn)總結(jié)07-16

初中數(shù)學(xué)概率知識(shí)點(diǎn)總結(jié)10-21

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-15

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(精選)06-16