初中數(shù)學基本知識點大全
在我們平凡的學生生涯里,大家都沒少背知識點吧?知識點是知識中的最小單位,最具體的內容,有時候也叫“考點”。還在苦惱沒有知識點總結嗎?下面是小編收集整理的初中數(shù)學基本知識點大全,僅供參考,希望能夠幫助到大家。
初中數(shù)學基本知識點1
四則運算
sin(α±β)=sin αcos β±cos αsin β
sin2α=2sin αcos α
sin(α+2kπ)=sin α
sin(-α)=-sin α
sin(π-α)=sin α
sin(π/2-α)=cos α
sin α=cos(π/2-α)
sin(π+α)=-sin α
sin(3π/2-α)=-cos α
sin(3π/2+α)=-cos α
以上的全部公式內容就是關于正弦函數(shù)的計算公式表。
初中數(shù)學基本知識點2
正方形的特征:
、僬叫蔚乃倪呄嗟;
、谡叫蔚乃膫角都是直角;
、壅叫蔚膬蓷l對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
、儆幸粋角是直角的菱形是正方形;
、谟幸唤M鄰邊相等的矩形是正方形。
希望上面對正方形定理公式知識的講解學習,同學們都能很好的掌握,相信同學們會取得很好的成績的哦。
初中數(shù)學平行四邊形定理公式
同學們認真學習,下面是老師對數(shù)學中平行四邊形定理公式的內容講解。
平行四邊形
平行四邊形的性質:
①平行四邊形的對邊相等;
②平行四邊形的對角相等;
、燮叫兴倪呅蔚膶蔷互相平分;
平行四邊形的判定:
、賰山M對角分別相等的四邊形是平行四邊形;
、趦山M對邊分別相等的四邊形是平行四邊形;
、蹖蔷互相平分的四邊形是平行四邊形;
、芤唤M對邊平行且相等的四邊形是平行四邊形。
上面對數(shù)學中平行四邊形定理公式知識的講解學習,同學們都能很好的掌握了吧,相信同學們會從中學習的更好的哦。
初中數(shù)學直角三角形定理公式
下面是對直角三角形定理公式的內容講解,希望給同學們的學習很好的幫助。
直角三角形的性質:
、僦苯侨切蔚膬蓚銳角互為余角;
、谥苯侨切涡边吷系闹芯等于斜邊的一半;
③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);
④直角三角形中30度
角所對的直角邊等于斜邊的一半;
直角三角形的'判定:
、儆袃蓚角互余的三角形是直角三角形;
、谌绻切蔚娜呴La、b 、c有下面關系a^2+b^2=c^2,那么這個三角形是直角三角形(勾股定理的逆定理)。
以上對數(shù)學直角三角形定理公式的內容講解學習,同學們都能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學等腰三角形的性質定理公式
下面是對等腰三角形的性質定理公式的內容學習,希望同學們認真看看。
等腰三角形的性質:
、俚妊切蔚膬蓚底角相等;
、诘妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合(三線合一)
上面對等腰三角形的性質定理公式的內容講解學習,同學們都能很好的掌握了吧,希望同學們在考試中取得很好的成績。
初中數(shù)學三角形定理公式
對于三角形定理公式的學習,我們做下面的內容講解學習哦。
三角形
三角形的三邊關系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內角和定理:三角形的三個內角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內角;
三角形的三條角平分線交于一點(內心);
三角形的三邊的垂直平分線交于一點(外心);
三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;
以上對三角形定理公式的內容講解學習,希望同學們都能很好的掌握,并在考試中取得很好的成績哦。
初中數(shù)學基本知識點3
初中數(shù)學數(shù)軸知識點
、偻ǔS靡粭l直線上的點表示數(shù),這條直線叫數(shù)軸。
、跀(shù)軸三要素:原點、正方向、單位長度。
、蹟(shù)軸上的點和有理數(shù)的關系:所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點,不都是表示有理數(shù)。
、苤挥蟹柌煌膬蓚數(shù)叫做互為相反數(shù)(和為零)。(例:2的相反數(shù)是-2,如:2+(-2)=0;0的相反數(shù)是0)
⑤數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的.絕對值,記作|a|。從幾何意義上講,數(shù)的絕對值是兩點間的距離(無方向性,有兩個點)。
、迶(shù)軸上兩點間的距離=|M?N|
、拚龜(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。
、邇蓚負數(shù),絕對值大的反而小。
、鄚a|≥0(即非負性);絕對值等于一個正數(shù)的值有兩個(兩個互為相反數(shù))如:|a|=5,a=5或a=-5
初中數(shù)學基本知識點4
(一)整式
1.整式:整式為單項式和多項式的統(tǒng)稱。
2.整式加減
整式的加減運算時,如果遇到括號先去掉括號,再合并同類項。
(1)去括號:幾個整式相加減,如果有括號就先去括號,然后再合并同類項。
如果括號外的因數(shù)是正數(shù),去括號后原括號內的符號與原來相同。
如果括號外的因數(shù)是負數(shù),去括號后原括號內的符號與原來相反。
(2)合并同類項:
合并同類項后,所得項的系數(shù)是合并前各項系數(shù)的和,且字母部分不變。
3.單項式:由數(shù)或字母的積組成的代數(shù)式叫做單項式,單獨的一個數(shù)或一個字母也叫做單項式。
4.多項式:由若干個單項式相加組成的代數(shù)式叫做多項式。
5.同底數(shù)冪是指底數(shù)相同的冪。
6.同底數(shù)冪的乘法:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加
7.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘。
8.積的乘方:積的乘方,先把積中的每一個因數(shù)分別乘方,再把所得的冪相乘。
9.單項式與單項式相乘
單項式與單項式相乘,把它們的系數(shù)、同底數(shù)冪分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式。
10.單項式與多項式相乘
單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
11.多項式與多項式相乘
多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。
12.同底數(shù)冪的除法:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。
13.單項式除以單項式:單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式中含有的字母,則連同它的指數(shù)一起作為商的一個因式。
14.多項式除以單項式:多項式除以單項式,先把多項式的每一項分別除以這個單項式,再把所得的商相加。
(二)相交線與平行線
(1)相交線
在同一平面內,兩條直線的位置關系有相交和平行兩種。如果兩條直線只有一個公共點時,稱這兩條直線相交。
(2)垂線
當兩條直線相交所成的四個角中,有一個角是直角時,即兩條直線互相垂直,其中一條直線叫做另一直線的垂線,交點叫垂足。
(3)同位角
兩條直線a,b被第三條直線c所截(或說a,b相交c),在截線c的同旁,被截兩直線a,b的同一側的角,我們把這樣的兩個角稱為同位角。
(4)內錯角
兩條直線被第三條直線所截,兩個角分別在截線的兩側,且夾在兩條被截直線之間,具有這樣位置關系的一對角叫做內錯角。
(5)同旁內角
兩條直線被第三條直線所截,在截線同旁,且在被截線之內的`兩角,叫做同旁內角。
(6)平行線
幾何中,在同一平面內,永不相交(也永不重合)的兩條直線叫做平行線。
平行線的性質:
、賰芍本平行,同位角相等;
②兩直線平行,內錯角相等;
、蹆芍本平行,同旁內角互補。
(7)平移
平移,是指在同一平面內,將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運動叫做圖形的平移運動,簡稱平移。
(三)概率
1.一般地,在大量重復試驗中,如果事件A發(fā)生的頻率n/m會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p就叫做事件A的概率。
2.隨機事件:在一定的條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機事件。
3.互斥事件:不可能同時發(fā)生的兩個事件叫做互斥事件。
4.對立事件:即必有一個發(fā)生的互斥事件叫做對立事件。
5.必然事件:那些無需通過實驗就能夠預先確定它們在每一次實驗中都一定會發(fā)生的事件稱為必然事件。
6.不可能事件:那些在每一次實驗中都一定不會發(fā)生的事件稱為不可能事件。
初中數(shù)學基本知識點5
直線、射線、線段
。1)直線、射線、線段的表示方法
、僦本:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB。
、谏渚:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA。注意:用兩個字母表示時,端點的字母放在前邊。
、劬段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。
。2)點與直線的位置關系:
①點經(jīng)過直線,說明點在直線上;
、邳c不經(jīng)過直線,說明點在直線外。
兩點間的距離
(1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。
。2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調最后的兩個字“長度”,也就是說,它是一個量,有大小,區(qū)別于線段,線段是圖形。線段的長度才是兩點的'距離?梢哉f畫線段,但不能說畫距離。
正方體
(1)對于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開圖理解的基礎上直接想象。
。2)從實物出發(fā),結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉化,建立空間觀念,是解決此類問題的關鍵。
。3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認真確定哪兩個面的對面。
初中數(shù)學基本知識點6
1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質:
、啪匦尉哂衅叫兴倪呅蔚囊磺行再|;
⑵菱形的四條邊都相等;
、橇庑蔚膬蓷l對角線互相垂直,并且每一條對角線平分一組對角。
、攘庑问禽S對稱圖形。
提示:利用菱形的性質可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對角線與邊之間的關系,即邊長的平方等于對角線一半的平方和。
3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
4、因式分解要素:
、俳Y果必須是整式
②結果必須是積的形式
、劢Y果是等式
、芤蚴椒纸馀c整式乘法的關系:m(a+b+c)
5、公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
6、公因式確定方法:
、傧禂(shù)是整數(shù)時取各項最大公約數(shù)。
、谙嗤帜溉∽畹痛蝺
、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
7、提取公因式步驟:
、俅_定公因式。
、诖_定商式
、酃蚴脚c商式寫成積的形式。
8、平方根表示法:一個非負數(shù)a的平方根記作,讀作正負根號a。a叫被開方數(shù)。
9、中被開方數(shù)的取值范圍:被開方數(shù)a≥0
10、平方根性質:
①一個正數(shù)的平方根有兩個,它們互為相反數(shù)。
、0的平方根是它本身0。
、圬摂(shù)沒有平方根開平方;求一個數(shù)的平方根的運算,叫做開平方。
11、平方根與算術平方根區(qū)別:定義不同、表示方法不同、個數(shù)不同、取值范圍不同。
12、聯(lián)系:二者之間存在著從屬關系;存在條件相同;0的算術平方根與平方根都是0
13、含根號式子的`意義:表示a的平方根,表示a的算術平方根,表示a的負的平方根。
14、求正數(shù)a的算術平方根的方法;
完全平方數(shù)類型:
①想誰的平方是數(shù)a。
、谒詀的平方根是多少。
、塾檬阶颖硎。
求正數(shù)a的算術平方根,只需找出平方后等于a的正數(shù)。
初中數(shù)學基本知識點7
一、一次函數(shù)圖象 y=kx+b
一次函數(shù)的圖象可以由k、b的正負來決定:
k大于零是一撇(由左下至右上,增函數(shù))
k小于零是一捺(由右上至左下,減函數(shù))
b等于零必過原點;
b大于零交點(指圖象與y軸的交點)在上方(指x軸上方)
b小于零交點(指圖象與y軸的交點)在下方(指x軸下方)
其圖象經(jīng)過(0,b) 和 (-b/k , 0) 這兩點(兩點就可以決定一條直線),且(0,b) 在 y軸上, (-b/k , 0) 在x軸上。
b的數(shù)值就是一次函數(shù)在y軸上的截距(不是距離,有正、負、零之分)。
二、不等式組的解集
1、步驟:去分母(后分子應加上括號)、去括號、移項、合并同類項、系數(shù)化為1 。
2、解一元一次不等式組時,先求出各個不等式的.解集,然后按不等式組解集的四種類型所反映的規(guī)律,寫出不等式組的解集:不等式組解集的確定方法,若a
A 的解集是 解集 小小的取小
B 的解集是 解集 大大的取大
C 的解集是 解集 大小的 小大的取中間
D 的解集是空集 解集 大大的 小小的無解
另需注意等于的問題。
【初中數(shù)學基本知識點】相關文章:
初中數(shù)學基本定理知識點匯總08-03
初中數(shù)學圓的基本性質定理知識點03-25
初中數(shù)學垂直知識點12-07
初中數(shù)學方差知識點10-28
初中數(shù)學余切的知識點04-07
初中數(shù)學內錯角的知識點04-07
初中數(shù)學的知識點大全06-06
初中數(shù)學旋轉的知識點11-16
初中數(shù)學概率知識點05-09