高中數學學業(yè)水平知識點總結(精選8篇)
在人類歷史發(fā)展和社會生活中,數學發(fā)揮著不可替代的作用,同時也是學習和研究現代科學技術必不可少的基本工具。以下是小編精心整理的高中數學學業(yè)水平知識點總結(精選8篇),供大家參考借鑒,希望可以幫助到有需要的朋友!
高中數學學業(yè)水平知識點總結 篇1
有界性
設函數f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無界。
單調性
設函數f(x)的定義域為D,區(qū)間I包含于D。如果對于區(qū)間上任意兩點x1及x2,當x1f(x2),則稱函數f(x)在區(qū)間I上是單調遞減的。單調遞增和單調遞減的函數統(tǒng)稱為單調函數。
奇偶性
設為一個實變量實值函數,若有f(—x)=—f(x),則f(x)為奇函數。
幾何上,一個奇函數關于原點對稱,亦即其圖像在繞原點做180度旋轉后不會改變。
奇函數的例子有x、sin(x)、sinh(x)和erf(x)。
設f(x)為一實變量實值函數,若有f(x)=f(—x),則f(x)為偶函數。
幾何上,一個偶函數關于y軸對稱,亦即其圖在對y軸映射后不會改變。
偶函數的例子有|x|、x2、cos(x)和cosh(x)。
偶函數不可能是個雙射映射。
連續(xù)性
在數學中,連續(xù)是函數的一種屬性。直觀上來說,連續(xù)的函數就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數。如果輸入值的`某種微小的變化會產生輸出值的一個突然的跳躍甚至無法定義,則這個函數被稱為是不連續(xù)的函數(或者說具有不連續(xù)性)。
高中數學學業(yè)水平知識點總結 篇2
1、“包含”關系—子集
注意:有兩種可能
。1)A是B的一部分;
。2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2、“相等”關系(5≥5,且5≤5,則5=5)
實例:設A={2—1=0}B={—1,1}“元素相同”
結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的'元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
、偃魏我粋集合是它本身的子集。AíA
、谡孀蛹喝绻鸄íB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那么AíC
、苋绻鸄íB同時BíA那么A=B
3、不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集
高中數學學業(yè)水平知識點總結 篇3
1、一些基本概念:
。1)向量:既有大小,又有方向的量。
。2)數量:只有大小,沒有方向的'量。
。3)有向線段的三要素:起點、方向、長度。
。4)零向量:長度為0的向量。
。5)單位向量:長度等于1個單位的向量。
。6)平行向量(共線向量):方向相同或相反的非零向量。
※零向量與任一向量平行。
(7)相等向量:長度相等且方向相同的向量。
2、向量加法運算:
、湃切畏▌t的特點:首尾相連。
、破叫兴倪呅畏▌t的特點:共起點。
高中數學學業(yè)水平知識點總結 篇4
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x,y+y)。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那么a=—b,b=—a,a+b=0。0的反向量為0
AB—AC=CB。即“共同起點,指向被減”
a=(x,y)b=(x,y)則a—b=(x—x,y—y)。
3、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對于任意實數λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數與向量的乘法滿足下面的運算律
結合律:(λa)·b=λ(a·b)=(a·λb)。
向量對于數的分配律(第一分配律):(λ+μ)a=λa+μa。
數對于向量的分配律(第二分配律):λ(a+b)=λa+λb。
數乘向量的消去律:①如果實數λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。
4、向量的的數量積
定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+—∣a∣∣b∣。
向量的數量積的坐標表示:a·b=x·x+y·y。
向量的數量積的運算率
a·b=b·a(交換率);
。╝+b)·c=a·c+b·c(分配率);
向量的數量積的性質
a·a=|a|的平方。
a⊥b〈=〉a·b=0。
|a·b|≤|a|·|b|。
高中數學學業(yè)水平知識點總結 篇5
1、萬能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1—t^2)/(1+t^2)tana=2t/(1—t^2)
2、輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a
3、三倍角公式sin(3a)=3sina—4(sina)^3cos(3a)=4(cosa)^3—3cosatan(3a)=[3tana—(tana)^3]/[1—3(tana^2)]sina_cosb=[sin(a+b)+sin(a—b)]/2cosa_sinb=[sin(a+b)—sin(a—b)]/2cosa_cosb=[cos(a+b)+cos(a—b)]/2sina_sinb=—[cos(a+b)—cos(a—b)]/2sina+sinb=2sin[(a+b)/2]cos[(a—b)/2]sina—sinb=2sin[(a—b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a—b)/2]cosa—cosb=—2sin[(a+b)/2]sin[(a—b)/2]
向量公式:
1、單位向量:單位向量a0=向量a/|向量a|
2、P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(x平方+y平方)
3、P1(x1,y1)P2(x2,y2)那么向量P1P2={x2—x1,y2—y1}|向量P1P2|=根號[(x2—x1)平方+(y2—y1)平方]
4、向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(x1平方+y1平方)_根號(x2平方+y2平方)
5、空間向量:同上推論(提示:向量a={x,y,z})
6、充要條件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2
7、|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方
高中數學學業(yè)水平知識點總結 篇6
考點一、映射的概念
1、了解對應大千世界的對應共分四類,分別是:一對一多對一一對多多對多。
2、映射:設A和B是兩個非空集合,如果按照某種對應關系f,對于集合A中的任意一個元素x,在集合B中都存在的一個元素y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個映射(mapping)。映射是特殊的對應,簡稱“對一”的對應。包括:一對一多對一。
考點二、函數的概念
1、函數:設A和B是兩個非空的數集,如果按照某種確定的對應關系f,對于集合A中的任意一個數x,在集合B中都存在確定的數y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個函數。記作y=f(x),xA。其中x叫自變量,x的取值范圍A叫函數的定義域;與x的`值相對應的y的值函數值,函數值的集合叫做函數的值域。函數是特殊的映射,是非空數集A到非空數集B的映射。
2、函數的三要素:定義域、值域、對應關系。這是判斷兩個函數是否為同一函數的依據。
3、區(qū)間的概念:設a,bR,且a
、伲╝,b)={xa
、荩╝,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={
考點三、函數的表示方法
1、函數的三種表示方法列表法圖象法解析法
2、分段函數:定義域的不同部分,有不同的對應法則的函數。注意兩點:①分段函數是一個函數,不要誤認為是幾個函數。②分段函數的定義域是各段定義域的并集,值域是各段值域的并集。
考點四、求定義域的幾種情況
、偃鬴(x)是整式,則函數的定義域是實數集R;
、谌鬴(x)是分式,則函數的定義域是使分母不等于0的實數集;
、廴鬴(x)是二次根式,則函數的定義域是使根號內的式子大于或等于0的實數集合;
④若f(x)是對數函數,真數應大于零。
、。因為零的零次冪沒有意義,所以底數和指數不能同時為零。
、奕鬴(x)是由幾個部分的數學式子構成的,則函數的定義域是使各部分式子都有意義的實數集合;
、呷鬴(x)是由實際問題抽象出來的函數,則函數的定義域應符合實際問題
高中數學學業(yè)水平知識點總結 篇7
1、定義法:
判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關系畫出箭頭示意圖,再利用定義判斷即可。
2、轉換法:
當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。
3、集合法
在命題的條件和結論間的.關系判斷有困難時,可從集合的角度考慮,記條件p、q對應的集合分別為A、B,則:
若A∩B,則p是q的充分條件。
若A∪B,則p是q的必要條件。
若A=B,則p是q的充要條件。
若A∈B,且B∈A,則p是q的既不充分也不必要條件。
高中數學學業(yè)水平知識點總結 篇8
1、求函數的單調性:
利用導數求函數單調性的基本方法:設函數yf(x)在區(qū)間(a,b)內可導,
。1)如果恒f(x)0,則函數yf(x)在區(qū)間(a,b)上為增函數;
。2)如果恒f(x)0,則函數yf(x)在區(qū)間(a,b)上為減函數;
。3)如果恒f(x)0,則函數yf(x)在區(qū)間(a,b)上為常數函數。
利用導數求函數單調性的基本步驟:
、偾蠛瘮祔f(x)的定義域;
、谇髮礷(x);
、劢獠坏仁絝(x)0,解集在定義域內的不間斷區(qū)間為增區(qū)間;
、芙獠坏仁絝(x)0,解集在定義域內的不間斷區(qū)間為減區(qū)間。
反過來,也可以利用導數由函數的單調性解決相關問題(如確定參數的取值范圍):設函數yf(x)在區(qū)間(a,b)內可導,
。1)如果函數yf(x)在區(qū)間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區(qū)間);
。2)如果函數yf(x)在區(qū)間(a,b)上為減函數,則f(x)0(其中使f(x)0的x值不構成區(qū)間);
。3)如果函數yf(x)在區(qū)間(a,b)上為常數函數,則f(x)0恒成立。
2、求函數的極值:
設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。
可導函數的極值,可通過研究函數的單調性求得,基本步驟是:
。1)確定函數f(x)的定義域;
。2)求導數f(x);
。3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的變化情況:
。4)檢查f(x)的符號并由表格判斷極值。
3、求函數的值與最小值:
如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數在定義域上的值。函數在定義域內的極值不一定,但在定義域內的最值是的。
求函數f(x)在區(qū)間[a,b]上的值和最小值的步驟:
(1)求f(x)在區(qū)間(a,b)上的極值;
。2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值。
4、解決不等式的有關問題:
(1)不等式恒成立問題(絕對不等式問題)可考慮值域。
f(x)(xA)的值域是[a,b]時,
不等式f(x)0恒成立的`充要條件是f(x)max0,即b0;
不等式f(x)0恒成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時,
不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。
。2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0。
5、導數在實際生活中的應用:
實際生活求解(。┲祮栴},通常都可轉化為函數的最值。在利用導數來求函數最值時,一定要注意,極值點的單峰函數,極值點就是最值點,在解題時要加以說明。
【高中數學學業(yè)水平知識點總結】相關文章:
高中數學學業(yè)水平考知識點總結04-13
高中數學學業(yè)水平知識點整理11-10
高中數學學業(yè)水平考知識點總結大全03-04
數學學業(yè)水平考高中知識點總結04-06
數學學業(yè)水平考高中知識點分享02-25
高中數學水平考知識點歸納12-07
生物水平考知識點高中精選03-01
高中數學導數知識點總結05-09
高中數學知識點總結11-12