棱錐的概念和性質(zhì)說(shuō)課稿
作為一位兢兢業(yè)業(yè)的人民教師,通常會(huì)被要求編寫(xiě)說(shuō)課稿,說(shuō)課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。我們?cè)撛趺慈?xiě)說(shuō)課稿呢?下面是小編幫大家整理的棱錐的概念和性質(zhì)說(shuō)課稿,歡迎閱讀與收藏。
棱錐的概念和性質(zhì)說(shuō)課稿1
教材分析
教材的地位和作用
棱錐這節(jié)教材是《立體幾何》的第2.2節(jié)它是在學(xué)生學(xué)習(xí)了直線和平面的基礎(chǔ)知識(shí),掌握若干基本圖形以及棱柱的概念和性質(zhì)的基礎(chǔ)上進(jìn)一步研究多面體的又一常見(jiàn)幾何體。它既是線面關(guān)系的具體化,又為以后進(jìn)一步學(xué)習(xí)棱臺(tái)的概念和性質(zhì)奠定了基礎(chǔ)。因此掌握好棱錐的概念和性質(zhì)尤其是正棱錐的概念和性質(zhì)意義非常重要,同時(shí),這節(jié)課也是進(jìn)一步培養(yǎng)高一學(xué)生的空間想象能力和邏輯思維能力的重要內(nèi)容。
教學(xué)內(nèi)容
本節(jié)課的主要教學(xué)內(nèi)容是棱錐、正棱錐的概念和性質(zhì)以及運(yùn)用正棱錐的性質(zhì)解決有關(guān)計(jì)算和證明問(wèn)題。通過(guò)觀察具體幾何體模型引出棱錐的概念;通過(guò)棱柱與棱錐類(lèi)比引入正棱錐的概念;通過(guò)對(duì)具體問(wèn)題的研究,逐步探索和發(fā)現(xiàn)正棱錐的性質(zhì),從而找到解決正棱錐問(wèn)題的一般數(shù)學(xué)思想方法,這樣做,學(xué)生會(huì)感到自然,好接受。對(duì)教材的內(nèi)容則有所增減,處理方式也有適當(dāng)改變。
教學(xué)目的
根據(jù)教學(xué)大綱的要求,本節(jié)教材的特點(diǎn)和高一學(xué)生對(duì)空間圖形的認(rèn)知特點(diǎn),我把本節(jié)課的教學(xué)目的確定為:
通過(guò)棱錐,正棱錐概念的教學(xué),培養(yǎng)學(xué)生知識(shí)遷移的能力及數(shù)學(xué)表達(dá)能力;
領(lǐng)會(huì)應(yīng)用正棱錐的性質(zhì)解題的一般方法,初步學(xué)會(huì)應(yīng)用性質(zhì)解決相關(guān)問(wèn)題;
通過(guò)對(duì)正棱錐中相關(guān)元素的相互轉(zhuǎn)化的研究,提高學(xué)生的空間想象能力以及空間問(wèn)題向平面轉(zhuǎn)化的能力;
進(jìn)行辯證唯物主義思想教育,數(shù)學(xué)審美教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
教學(xué)重點(diǎn),難點(diǎn),關(guān)鍵
對(duì)于高一學(xué)生來(lái)說(shuō),空間觀念正逐步形成。而實(shí)際生活中,遇到的往往是正棱錐,它的性質(zhì)用處較多。因此,本節(jié)課的教學(xué)重點(diǎn)是通過(guò)對(duì)具體問(wèn)題的分析和探索,自然而然地引出正棱錐的最重要性質(zhì)及其實(shí)質(zhì);而如何將空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題來(lái)解決?本節(jié)課則通過(guò)抓住正棱錐中的基本圖形這一難點(diǎn)實(shí)現(xiàn)突破,教學(xué)的關(guān)鍵是正確認(rèn)識(shí)正棱錐的線線,線面垂直關(guān)系。
教法分析
類(lèi)比聯(lián)想、研究探討、直觀想象、啟發(fā)誘導(dǎo)、建立模型、學(xué)會(huì)應(yīng)用、發(fā)展?jié)撃、形成能力、提高素質(zhì)。
由于本節(jié)課安排在立體幾何學(xué)習(xí)的中期,正是進(jìn)一步培養(yǎng)學(xué)生形成空間觀念和提高學(xué)生邏輯思維能力的最佳時(shí)機(jī),因此,在教學(xué)中,一方面通過(guò)電教手段,把某些概念,性質(zhì)或知識(shí)關(guān)鍵點(diǎn)制成了投影片,既節(jié)省時(shí)間,又增加其直觀性和趣味性,起到事半功倍的`作用;另一方面,在教學(xué)中并沒(méi)有采取把正棱錐性質(zhì)同時(shí)全部講授給學(xué)生的做法,而是通過(guò)具體問(wèn)題的分析與處理,將正棱錐最重要的性質(zhì)這一知識(shí)點(diǎn)發(fā)現(xiàn)的全過(guò)程逐步展現(xiàn)給學(xué)生,讓學(xué)生體會(huì)知識(shí)發(fā)生、發(fā)展的過(guò)程及其規(guī)律,從而提高學(xué)生分析和解決實(shí)際問(wèn)題的能力。
學(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。根據(jù)立體幾何教學(xué)的特點(diǎn),這節(jié)課主要是教給學(xué)生動(dòng)手做,動(dòng)腦想;嚴(yán)格證,多訓(xùn)練,勤鉆研。的研討式學(xué)習(xí)方法。這樣做,增加了學(xué)生主動(dòng)參與的機(jī)會(huì),增強(qiáng)了參與意識(shí),教給學(xué)生獲取知識(shí)的途徑;思考問(wèn)題的方法。使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生學(xué)有新思,思有所得,練有所獲。學(xué)生才會(huì)逐步感到數(shù)學(xué)美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,才能適應(yīng)素質(zhì)教育下培養(yǎng)創(chuàng)新型人才的需要。
棱錐的概念和性質(zhì)說(shuō)課稿2
今天我說(shuō)課的內(nèi)容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)《棱錐》的第一課時(shí):《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個(gè)方面對(duì)本課的教學(xué)設(shè)計(jì)進(jìn)行說(shuō)明。
一、說(shuō)教材
1、本節(jié)在教材中的地位和作用:
本節(jié)是棱柱的后續(xù)內(nèi)容,又是學(xué)習(xí)球的必要基礎(chǔ)。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎(chǔ)知識(shí),同時(shí)培養(yǎng)學(xué)生猜想、類(lèi)比、比較、轉(zhuǎn)化的能力。著名的生物學(xué)家達(dá)爾文說(shuō):“最有價(jià)值的知識(shí)是關(guān)于方法和能力的知識(shí)”,因此,應(yīng)該利用這節(jié)課培養(yǎng)學(xué)生學(xué)習(xí)方法、提高學(xué)習(xí)能力。
2. 教學(xué)目標(biāo)確定:
(1)能力訓(xùn)練要求
、偈箤W(xué)生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高的概念。
、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。
(2)德育滲透目標(biāo)
①培養(yǎng)學(xué)生善于通過(guò)觀察分析實(shí)物形狀到歸納其性質(zhì)的能力。
、谔岣邔W(xué)生對(duì)事物的感性認(rèn)識(shí)到理性認(rèn)識(shí)的能力。
③培養(yǎng)學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀點(diǎn)。
3. 教學(xué)重點(diǎn)、難點(diǎn)確定:
重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。
難 點(diǎn):培養(yǎng)學(xué)生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。
二、說(shuō)教學(xué)方法和手段
1、教法:
“以學(xué)生參與為標(biāo)志,以啟迪學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)新能力為核心”。
在教學(xué)中根據(jù)高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導(dǎo)法,講練結(jié)合,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位。
2、教學(xué)手段:
根據(jù)《教學(xué)大綱》中“堅(jiān)持啟發(fā)式,反對(duì)注入式”的教學(xué)要求,針對(duì)本節(jié)課概念性強(qiáng),思維量大,整節(jié)課以啟發(fā)學(xué)生觀察思考、分析討論為主,采用“多媒體引導(dǎo)點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導(dǎo)思考”為核心,設(shè)計(jì)課件展示,并引導(dǎo)學(xué)生沿著積極的思維方向,逐步達(dá)到即定的教學(xué)目標(biāo),發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營(yíng)造的“可探索”的環(huán)境里,積極參與,生動(dòng)活潑地獲取知識(shí),掌握規(guī)律、主動(dòng)發(fā)現(xiàn)、積極探索。
三、說(shuō)學(xué)法:
這節(jié)課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導(dǎo)思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認(rèn)識(shí)規(guī)律,啟發(fā)學(xué)生反復(fù)思考,不斷內(nèi)化成為自己的認(rèn)知結(jié)構(gòu)。
四、 學(xué)程序:
[復(fù)習(xí)引入新課]
1.棱柱的性質(zhì):
(1)側(cè)棱都相等,側(cè)面是平行四邊形
(2)兩個(gè)底面與平行于底面的截面是全等的多邊形
。3)過(guò)不相鄰的兩條側(cè)棱的截面是平行四邊形
2.幾個(gè)重要的四棱柱:
平行六面體、直平行六面體、長(zhǎng)方體、正方體
思考:如果將棱柱的上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會(huì)是什么樣的體呢?
[講授新課]
1、棱錐的基本概念
(1).棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高、對(duì)角面的概念
。2).棱錐的表示方法、分類(lèi)
2、棱錐的性質(zhì)
(1). 截面性質(zhì)定理:
如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。
證明:(略)
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐
的側(cè)面積比也等于它們對(duì)應(yīng)高的平方比、等于它們的底面積之比。
(2).正棱錐的定義及基本性質(zhì):
正棱錐的定義:
、俚酌媸钦噙呅
、陧旤c(diǎn)在底面的射影是底面的中心
、俑鱾(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
、诶忮F的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形;
棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形
引申:
①正棱錐的側(cè)棱與底面所成的角都相等;
、谡忮F的側(cè)面與底面所成的二面角相等;
(3)正棱錐的各元素間的關(guān)系
下面我們結(jié)合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來(lái)研究。
引申:
、儆^察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點(diǎn)?
。ǹ勺C得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側(cè)面全是直角三角形。)
②若分別假設(shè)正棱錐的高SO= h,斜高SM= h’,底面邊長(zhǎng)的'一半BM= a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM= r,側(cè)棱SB=L,側(cè)面與底面的二面角∠SMO= α ,側(cè)棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數(shù))請(qǐng)?jiān)囃ㄟ^(guò)三角形得出以上各元素間的關(guān)系式。
。ㄕn后思考題)
[例題分析]
例1.若一個(gè)正棱錐每一個(gè)側(cè)面的頂角都是600,則這個(gè)棱錐一定不是( )
A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐
。ù鸢福篋)
例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過(guò)SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。
﹙解析及圖略﹚
例3.已知正四棱錐的棱長(zhǎng)和底面邊長(zhǎng)均為a,求:
。1)側(cè)面與底面所成角α的余弦(2)相鄰兩個(gè)側(cè)面所成角β的余弦
﹙解析及圖略﹚
[課堂練習(xí)]
1、 知一個(gè)正六棱錐的高為h,側(cè)棱為L(zhǎng),求它的底面邊長(zhǎng)和斜高。
﹙解析及圖略﹚
2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。
﹙解析及圖略﹚
[課堂小結(jié)]
一:棱錐的基本概念及表示、分類(lèi)
二:棱錐的性質(zhì)
截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對(duì)應(yīng)高的平方比、等于它們的底面積之比。
2.正棱錐的定義及基本性質(zhì)
正棱錐的定義:
①底面是正多邊形
、陧旤c(diǎn)在底面的射影是底面的中心
(1)各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高
相等,它們叫做正棱錐的斜高;
(2)棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形;棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形
引申: ①正棱錐的側(cè)棱與底面所成的角都相等;
、谡忮F的側(cè)面與底面所成的二面角相等;
、壅忮F中各元素間的關(guān)系
[課后作業(yè)]
1:課本P52 習(xí)題9.8 : 2、 4
2:課時(shí)訓(xùn)練:訓(xùn)練一
棱錐的概念和性質(zhì)說(shuō)課稿3
教學(xué)流程
課題引入
上一節(jié)課我們學(xué)習(xí)了棱柱的有關(guān)知識(shí),當(dāng)棱柱的上底面縮為一點(diǎn)時(shí),想一想,其底面,側(cè)棱有何變化?
(可將金字塔,帳篷的圖片以及不同棱錐的模型依次出示給學(xué)生)
將現(xiàn)實(shí)生活的實(shí)例抽象成數(shù)學(xué)模型,獲得新的幾何體――棱錐。(板書(shū)課題)
引導(dǎo)啟發(fā)
請(qǐng)同學(xué)們描述一下棱錐的本質(zhì)特征?(學(xué)生觀察模型,提示學(xué)生可以從底面,側(cè)面的形狀特點(diǎn)加以描述)
結(jié)論:(1)有一個(gè)面是多邊形;(2)其余各面是三角形且有一個(gè)公共頂點(diǎn)。
由滿(mǎn)足(1)、(2)的面所圍成的.幾何體叫做棱錐。
(設(shè)計(jì)意圖:由觀察具體事物,經(jīng)過(guò)積極思維,歸納、抽象出事的本質(zhì)屬性,形成概念,培養(yǎng)學(xué)生抽象思維能力,提高學(xué)習(xí)效果。)
觀察圖1:依次逐個(gè)介紹棱錐各個(gè)部分
名稱(chēng)及表示法。表示法:棱錐S-ABCDE
或棱錐S-AC。與棱柱相似,棱錐可以按
底面多邊形的邊數(shù)分為三棱錐,四棱錐、五棱錐,n棱錐。
(設(shè)計(jì)意圖:從簡(jiǎn)處理棱錐的表示法,分類(lèi)等,為后面重點(diǎn)解決正棱錐的性質(zhì)問(wèn)題節(jié)省時(shí)間。)
由于實(shí)際生活中,遇到的往往是一種所以下面重點(diǎn)研究正棱錐的概念及性質(zhì)。
通過(guò)對(duì)比正棱柱的定義,讓學(xué)生描述正棱錐。
(拿出各式各樣的棱錐模型讓學(xué)生辨認(rèn))
討論:底面是正多邊形的棱錐對(duì)嗎?聯(lián)想正棱柱的定義,棱柱補(bǔ)充幾點(diǎn)后才是正棱柱?
結(jié)論:底面是正多邊形,并且頂點(diǎn)在底面射影是底面中心。為什么?
(設(shè)計(jì)意圖:采用觀察、聯(lián)想、類(lèi)比、猜想、發(fā)現(xiàn)的方法引出正棱錐的定義比課本直接給出顯得自然,學(xué)生好接受)
引導(dǎo)證明
正棱錐的頂點(diǎn)在底面的射影是底面下多邊形中心,這是正棱錐的本質(zhì)特征。它決定了正棱錐的其他性質(zhì)。下面以正五棱錐為例,請(qǐng)同學(xué)們說(shuō)出其側(cè)棱,各側(cè)面有何性質(zhì)?(將圖2出示給學(xué)生)
結(jié)論:各棱相等,各側(cè)面是全等的等腰三角形。
【棱錐的概念和性質(zhì)說(shuō)課稿】相關(guān)文章:
初中數(shù)學(xué)棱錐的概念知識(shí)介紹08-30
初中物質(zhì)的性質(zhì)和變化說(shuō)課稿05-23
《比例意義和基本性質(zhì)》說(shuō)課稿12-11
《比例的意義和基本性質(zhì)》說(shuō)課稿07-28
函數(shù)概念說(shuō)課稿11-28
《導(dǎo)數(shù)的概念》說(shuō)課稿12-14
《算法概念》說(shuō)課稿01-06
集合的概念說(shuō)課稿12-16