當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說課稿> 高中數(shù)學(xué)說課稿

高中數(shù)學(xué)說課稿

時(shí)間:2022-01-28 17:08:25 說課稿 我要投稿

高中數(shù)學(xué)說課稿9篇

  作為一名辛苦耕耘的教育工作者,往往需要進(jìn)行說課稿編寫工作,是說課取得成功的前提。優(yōu)秀的說課稿都具備一些什么特點(diǎn)呢?以下是小編為大家收集的高中數(shù)學(xué)說課稿9篇,僅供參考,大家一起來看看吧。

高中數(shù)學(xué)說課稿9篇

高中數(shù)學(xué)說課稿 篇1

  一、教材分析

  (一)教材的地位和作用

  “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

  (二)教學(xué)內(nèi)容

  本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。

  二、教學(xué)目標(biāo)分析

  根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

  知識目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

  能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

  情感目標(biāo)——?jiǎng)?chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。

  三、重難點(diǎn)分析

  一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的`解法。

  要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。

  四、教法與學(xué)法分析

  (一)學(xué)法指導(dǎo)

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

  (二)教法分析

  本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

  建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

  本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。

  五、課堂設(shè)計(jì)

  本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。

  (一)創(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系

  本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。

  為此,我設(shè)計(jì)了以下幾個(gè)問題:

  1、請同學(xué)們解以下方程和不等式:

  ①2x-7=0;②2x-7>0;③2x-7<0

  學(xué)生回答,我板書

高中數(shù)學(xué)說課稿 篇2

  拋物線焦點(diǎn)性質(zhì)的探索(說課)

  一、教材分析

  1 教材的地位與作用 “拋物線焦點(diǎn)的性質(zhì)”是拋物線的重要性質(zhì)之一,它是在學(xué)生學(xué)習(xí)拋物線的一般性質(zhì)的基礎(chǔ)上,學(xué)習(xí)和研究的拋物線有關(guān)問題的基本工具之一;本節(jié)教材對于培養(yǎng)學(xué)生觀察、猜想、概括能力和邏輯推理能力具有重要的意義。

  2 教學(xué)目的` 全日制普通高級中學(xué)《數(shù)學(xué)教學(xué)大綱》第22頁“重視現(xiàn)代教育技術(shù)的運(yùn)用”中明確提出:在數(shù)學(xué)教學(xué)過程中,應(yīng)有意識地利用計(jì)算機(jī)網(wǎng)絡(luò)等現(xiàn)代信息技術(shù),認(rèn)識計(jì)算機(jī)的智能圖形、快速計(jì)算、機(jī)器證明、自動求解及人機(jī)交互等功能在數(shù)學(xué)教學(xué)中的巨大潛力,努力探索在現(xiàn)代信息技術(shù)支持下的教學(xué)方法、教學(xué)模式。設(shè)計(jì)和組織能吸引學(xué)生積極參與的數(shù)學(xué)活動,支持和鼓勵(lì)學(xué)生運(yùn)用信息技術(shù)學(xué)習(xí)數(shù)學(xué)、開展課題研究,改進(jìn)學(xué)習(xí)方式,提高學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識。因此本人在現(xiàn)行高中新教材(試驗(yàn)修訂本·必修)數(shù)學(xué)第二冊(上)拋物線這一節(jié)內(nèi)容為背景材料,以多媒體網(wǎng)絡(luò)教室為場地,以《幾何畫板》為教學(xué)工具與學(xué)習(xí)工具,設(shè)計(jì)了一堂《拋物線焦點(diǎn)性質(zhì)的探索》,具體目標(biāo)如下:

 。1) 知識目標(biāo):了解焦點(diǎn)的有關(guān)性質(zhì);并掌握這些性質(zhì)的證明方法;體會數(shù)形結(jié)合思想與分類討論思想在解決解析幾何題中的指導(dǎo)作用

 。2) 能力目標(biāo):使學(xué)生學(xué)會研究數(shù)學(xué)問題的基本過程,能夠根據(jù)條件建立恰當(dāng)?shù)臄?shù)學(xué)模型;培養(yǎng)辯證唯物主義思想和辯證思維能力(主要包括量變與質(zhì)變,常量與變量,運(yùn)動與靜止)培養(yǎng)學(xué)生通過計(jì)算機(jī)來自主學(xué)習(xí)的能力與創(chuàng)新的能力。

 。3) 情感目標(biāo):培養(yǎng)學(xué)生不畏困難,勇于鉆研、探索、大膽創(chuàng)新的精神,在挫折中成長鍛煉,培養(yǎng)學(xué)生良好的心理素質(zhì)和抗挫折能力,通過拋物線焦點(diǎn)性質(zhì)的探索及證明,使學(xué)生得到數(shù)學(xué)美和創(chuàng)造美的享受。

  3 教學(xué)內(nèi)容、重點(diǎn)、難點(diǎn)及關(guān)鍵 本節(jié)安排兩節(jié)課,

  第一節(jié)課:主要內(nèi)容是利用《幾何畫板》探索拋物線的有關(guān)性質(zhì);

  第二節(jié)課:證明第一節(jié)所得到的有關(guān)性質(zhì)。

  重點(diǎn):

 。1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點(diǎn)的性質(zhì);

  (2)如何證明這些性質(zhì)。

  難點(diǎn);

 。1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點(diǎn)的性質(zhì);

 。2)如何證明這些性質(zhì)。

  二、教學(xué)策略及教法設(shè)計(jì)

  學(xué)生在網(wǎng)絡(luò)教室(每人一機(jī)),其中裝有《幾何畫板》軟件及上課系統(tǒng),每個(gè)學(xué)生的窗口,其他學(xué)生及教師都可以通過教師機(jī)切換,從而和其他學(xué)生交流,也可以通過網(wǎng)上論壇交流研究結(jié)果。

  三、網(wǎng)絡(luò)教學(xué)環(huán)境設(shè)計(jì)

  學(xué)生在網(wǎng)絡(luò)教室(每人一機(jī))中有幾何畫板軟件,學(xué)生通過教師提供的網(wǎng)絡(luò),自已閱讀,下載有關(guān),利用《幾何畫板》的操作、試驗(yàn)、猜想,通過自已的研究獲得結(jié)論,并互相討論觀察到的現(xiàn)象、交流研究結(jié)果。

  四、教學(xué)過程設(shè)計(jì)

  4.1 使學(xué)生學(xué)會研究數(shù)學(xué)問題的基本過程,能夠根據(jù)條件建立恰當(dāng)?shù)臄?shù)學(xué)模型 問題1 回顧一下拋物線的定義,并根據(jù)拋物線的定義思考用《幾何畫板》如何作出焦點(diǎn)在x軸上的拋物線圖象。 由于創(chuàng)設(shè)了一個(gè)創(chuàng)作的《幾何畫板》的窗口及網(wǎng)絡(luò)窗口,學(xué)生通過網(wǎng)絡(luò)學(xué)習(xí),得到以上問題的多種作法,以下就其中的一種作法作為探索、研究拋物線焦點(diǎn)性質(zhì)的基本圖形。

高中數(shù)學(xué)說課稿 篇3

  一、教材分析

  1、教材內(nèi)容

  本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》§2。1。3函數(shù)簡單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題。

  2、教材所處地位、作用

  函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個(gè)性質(zhì)。通過對本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運(yùn)用單調(diào)性知識解決一些簡單的實(shí)際問題。通過上述活動,加深對函數(shù)本質(zhì)的認(rèn)識。函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ)。此外在比較數(shù)的大小、函數(shù)的`定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個(gè)高中數(shù)學(xué)中起著承上啟下作用的核心知識之一。從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法。

  3、教學(xué)目標(biāo)

 。1)知識與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性

  的方法;

  (2)過程與方法:從實(shí)際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

 。3)情感態(tài)度價(jià)值觀:讓學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)功能、符號功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì)。

  4、重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn)(1)函數(shù)單調(diào)性的概念;

 。2)運(yùn)用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性。

  教學(xué)難點(diǎn)(1)函數(shù)單調(diào)性的知識形成;

 。2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性。

  二、教法分析與學(xué)法指導(dǎo)

  本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:

  1、通過學(xué)生熟悉的實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)了學(xué)生求知欲,調(diào)動了學(xué)生主體參與的積極性。

  2、在運(yùn)用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個(gè)完成對各個(gè)難點(diǎn)的突破,以獲得各類問題的解決。

  3、在鼓勵(lì)學(xué)生主體參與的同時(shí),不可忽視教師的主導(dǎo)作用。具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并成功地完成書面表達(dá)。

  4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性。

  在學(xué)法上:

  1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力。

  2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的一個(gè)飛躍。

  三、 教學(xué)過程

  教學(xué)

  環(huán)節(jié)

  教 學(xué) 過 程

  設(shè) 計(jì) 意 圖

  問題

  情境

  (播放中央電視臺天氣預(yù)報(bào)的音樂)

  滿足在定義域上的單調(diào)性的討論。

  2、重視學(xué)生發(fā)現(xiàn)的過程。如:充分暴露學(xué)生將函數(shù)圖象(形)的特征轉(zhuǎn)化為函數(shù)值(數(shù))的特征的思維過程;充分暴露在正、反兩個(gè)方面探討活動中,學(xué)生認(rèn)知結(jié)構(gòu)升華、發(fā)現(xiàn)的過程。

  3、重視學(xué)生的動手實(shí)踐過程。通過對定義的解讀、鞏固,讓學(xué)生動手去實(shí)踐運(yùn)用定義。

  4、重視課堂問題的設(shè)計(jì)。通過對問題的設(shè)計(jì),引導(dǎo)學(xué)生解決問題。

高中數(shù)學(xué)說課稿 篇4

  1、教學(xué)目標(biāo):

  一、借助單位圓理解任意角的三角函數(shù)的定義。

  二、根據(jù)三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號。

  三、通過學(xué)生積極參與知識的"發(fā)現(xiàn)"與"形成"的過程,培養(yǎng)合情猜測的能力,從中感悟數(shù)學(xué)概念的嚴(yán)謹(jǐn)性與科學(xué)性。

  四、讓學(xué)生在任意角三角函數(shù)概念的形成過程中,體會函數(shù)思想,體會數(shù)形結(jié)合思想。

  2、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn):任意角的正弦、余弦、正切的定義;三角函數(shù)值的符號。

  難點(diǎn):任意角的三角函數(shù)概念的建構(gòu)過程。

  授課過程:

  一、引入

  在我們的現(xiàn)實(shí)世界中的許多運(yùn)動變化都有循環(huán)往復(fù)、周而復(fù)始的現(xiàn)象,這種變化規(guī)律稱為周期性。如何用數(shù)學(xué)的方法來刻畫這種變化?從這節(jié)課開始,我們要來學(xué)習(xí)刻畫這種規(guī)律的數(shù)學(xué)模型之一――三角函數(shù)。

  二、創(chuàng)設(shè)情境

  三角函數(shù)是與角有關(guān)的函數(shù),在學(xué)習(xí)任意角概念時(shí),我們知道在直角坐標(biāo)系中研究角,可以給學(xué)習(xí)帶來許多方便,比如我們可以根據(jù)角終邊的位置把它們進(jìn)行歸類,現(xiàn)在大家考慮:若在直角坐標(biāo)系中來研究銳角,則銳角三角函數(shù)又可怎樣定義呢?

  學(xué)生情況估計(jì):學(xué)生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點(diǎn)P的坐標(biāo)。

  問題:

  1、銳角三角函數(shù)能否表示成第二種比值方式?

  2、點(diǎn)P能否取在終邊上的其它位置?為什么?

  3、點(diǎn)P在哪個(gè)位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數(shù)依舊表示一個(gè)比值,不過其分母為1而已。

  練習(xí):計(jì)算的各三角函數(shù)值。

  三、任意角的三角函數(shù)的定義

  角的概念已經(jīng)推廣道了任意角,那么三角函數(shù)的定義在任意角的范圍里改怎么定義呢?

  嘗試:根據(jù)銳角三角函數(shù)的定義,你能嘗試著給出任意角三角函數(shù)的定義嗎?

  評價(jià)學(xué)生給出的定義。給出任意角三角函數(shù)的定義。

  四、解析任意角三角函數(shù)的`定義

  三角函數(shù)首先是函數(shù)。你能從函數(shù)觀點(diǎn)解析三角函數(shù)嗎?(定義域)

  對于確定的角a,上面三個(gè)函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。由于角的集合和實(shí)數(shù)集之間可以建立一一對應(yīng)的關(guān)系,三角函數(shù)可以看成是自變量為實(shí)數(shù)的函數(shù)。

  五、三角函數(shù)的應(yīng)用。

  1、已知角,求a的三角函數(shù)值。

  2、已知角a終邊上的一點(diǎn)P(-3,-4),求各三角函數(shù)值。

  以上兩道書上的例題,讓學(xué)生自習(xí)看書,學(xué)生看書的同時(shí),老師提出問題:

  1、已知角如何求三角函數(shù)值?

  2、利用角a的終邊上任意一點(diǎn)的坐標(biāo)也可以定義三角函數(shù),你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點(diǎn)?)

  3、變式:已知角a終邊上點(diǎn)P(-3b,-4b),(b0),求角a的各三角函數(shù)值。

  4、探究:三角函數(shù)的值在各象限的符號。

  六、小結(jié)及作業(yè)

  教案設(shè)計(jì)說明:

  新教材的教學(xué)理念之一是讓學(xué)生去體驗(yàn)新知識的發(fā)生過程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點(diǎn)來設(shè)計(jì)。

  首先,角的概念推廣了,那么銳角三角函數(shù)的定義是否也該推廣到任意角的三角函數(shù)的定義呢?通過這個(gè)問題,讓學(xué)生體會到新知識的發(fā)生是可能的,自然的。

  其次,到底應(yīng)該怎樣去合理定義任意角的三角函數(shù)呢?讓學(xué)生提出自己的想法,同時(shí)讓學(xué)生去辨證這個(gè)想法是否是科學(xué)的?因?yàn)橐粋(gè)概念是嚴(yán)謹(jǐn)?shù),科學(xué)的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數(shù)的定義有所沖突。在這個(gè)立-破的過程中,讓學(xué)生去體驗(yàn)一個(gè)新的數(shù)學(xué)概念可能是如何形成,在形成的過程中可以從哪些角度加以科學(xué)的辯思。這樣也有助于學(xué)生對任意角三角函數(shù)概念的理解。

  再次,讓學(xué)生充分體會在任意角三角函數(shù)定義的推廣中,是如何將直角三角形這個(gè)"形"的問題,轉(zhuǎn)換到直角坐標(biāo)系下點(diǎn)的坐標(biāo)這個(gè)"數(shù)"的過程的。培養(yǎng)數(shù)形結(jié)合的思想。

高中數(shù)學(xué)說課稿 篇5

  一、教材分析

  1· 教材的地位和作用

  在學(xué)習(xí)這節(jié)課以前,我們已經(jīng)學(xué)習(xí)了振幅變換。本節(jié)知識是學(xué)習(xí)函數(shù)圖象變換綜合應(yīng)用的基礎(chǔ),在教材地位上顯得十分重要。

  y=asin(ωx+φ)圖象變換的學(xué)習(xí)有助于學(xué)生進(jìn)一步理解正弦函數(shù)的圖象和性質(zhì),加深學(xué)生對函數(shù)圖象變換的理解和認(rèn)識,加深數(shù)形結(jié)合在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用的認(rèn)識。同時(shí)為相關(guān)學(xué)科的學(xué)習(xí)打下扎實(shí)的基礎(chǔ)。

 、步滩牡闹攸c(diǎn)和難點(diǎn)

  重點(diǎn)是對周期變換、相位變換規(guī)律的理解和應(yīng)用。

  難點(diǎn)是對周期變換、相位變換先后順序的調(diào)整,對圖象變換的影響。

 、辰滩膬(nèi)容的安排和處理

  函數(shù)y=asin(ωx+φ)圖象這部分內(nèi)容計(jì)劃用3課時(shí),本節(jié)是第2課時(shí),主要學(xué)習(xí)周期變換和相位變換,以及兩種變換的綜合應(yīng)用。

  二、目的分析

 、敝R目標(biāo)

  掌握相位變換、周期變換的變換規(guī)律。

 、材芰δ繕(biāo)

  培養(yǎng)學(xué)生的觀察能力、動手能力、歸納能力、分析問題解決問題能力。

 、车掠繕(biāo)

  在教學(xué)中努力培養(yǎng)學(xué)生的“由簡單到復(fù)雜、由特殊到一般”的辯證思想,培養(yǎng)學(xué)生的探究能力和協(xié)作學(xué)習(xí)的能力。

  ⒋情感目標(biāo)

  通過學(xué)數(shù)學(xué),用數(shù)學(xué),進(jìn)而培養(yǎng)學(xué)生對數(shù)學(xué)的興趣。

  三、教具使用

  ①本課安排在電腦室教學(xué),每個(gè)學(xué)生都擁有一臺計(jì)算機(jī),所有的計(jì)算機(jī)由一套多媒體演示控制系統(tǒng)連接,以實(shí)現(xiàn)師生、生生的相互溝通。

  ②課前應(yīng)先把本課所需要的幾何畫板課件通過多媒體演示系統(tǒng)發(fā)送到每一臺學(xué)生電腦。

  四、教法、學(xué)法分析

  本節(jié)課以“探究——?dú)w納——應(yīng)用”為主線,通過設(shè)置問題情境,引導(dǎo)學(xué)生自主探究,總結(jié)規(guī)律,并能應(yīng)用規(guī)律分析問題、解決問題。

  以學(xué)生的自主探究為主要方式,把計(jì)算機(jī)使用的主動權(quán)交給學(xué)生,讓學(xué)生主動去學(xué)習(xí)新知、探究未知,在活動中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能數(shù)學(xué)地提出問題、解決問題。

  五、教學(xué)過程

  教學(xué)過程設(shè)計(jì):

  預(yù)備知識

  一、問題探究

 、艓熒献魈骄恐芷谧儞Q

  ⑵學(xué)生自主探究相位變換

  二、歸納概括

  三、實(shí)踐應(yīng)用

  教學(xué)程序

  設(shè)計(jì)說明

  〖預(yù)備知識

  1我們已經(jīng)學(xué)習(xí)了幾種圖象變換?

  2這些變換的規(guī)律是什么?

  幫助學(xué)生鞏固、理解和歸納基礎(chǔ)知識,為后面的學(xué)習(xí)作鋪墊。促使學(xué)生學(xué)會對知識的歸納梳理。

  〖問題探究

  (一)師生合作探究周期變換

  (1)自己動手,在幾何畫板中分別觀察①y=sinx→y=sin2x;②y=sinx→y=sin

  x圖象的變換過程,指出變換過程中圖象上每一個(gè)點(diǎn)的坐標(biāo)發(fā)生了什么變化。

  (2) 在上述變換過程中,橫坐標(biāo)的伸長和縮短與ω之間存在怎樣的關(guān)系?

 。ǘ⿲W(xué)生自主探究相位變換

  (1)我們初中學(xué)過的由y=f(x)→y=f(x+a)的圖象變換規(guī)律是怎樣的?

  (2) 令f(x)=sinx,則f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的變換是不是也符合上述規(guī)律呢?請動手用幾何畫板加以驗(yàn)證。

  設(shè)計(jì)這個(gè)問題的主要用意是讓學(xué)生通過觀察圖象變換的過程,了解周期變換的基本規(guī)律。

  設(shè)計(jì)這個(gè)問題意圖是引導(dǎo)學(xué)生再次認(rèn)真觀察圖象變換的過程,以便總結(jié)周期變換的規(guī)律。

  師生合作探究已經(jīng)讓學(xué)生掌握了探究圖象變換的基本方法,在此基礎(chǔ)上,由學(xué)生自主探究相位變換規(guī)律,提高學(xué)生的綜合能力。

  〖?xì)w納概括

  通過以上探究,你能否總結(jié)出周期變換和相位變換的一般規(guī)律?

  設(shè)計(jì)這個(gè)環(huán)節(jié)的意圖是通過對上述變換過程的探究,進(jìn)而引導(dǎo)學(xué)生歸納概括,從現(xiàn)象到本質(zhì),總結(jié)出周期變換和相位變換的一般規(guī)律。

  〖實(shí)踐應(yīng)用

 。ㄒ唬⿷(yīng)用舉例

  (1)用五點(diǎn)法作出y=sin(2x+)一個(gè)周期內(nèi)的簡圖。

  (2)我們可以通過哪些方法完成y=sinx到y(tǒng)=sin(2x+)的圖象變換

  (3)請動手驗(yàn)證上述方法,把幾何畫板所得圖象與用五點(diǎn)法作出的簡圖作比較,觀察哪些方法是正確的,哪些方法是錯(cuò)誤的。

  (4)歸納總結(jié)

  從上述的變換過程中,我們知道若f(x) =sin2x,則f(___)= sin(2x+),由f(x)→f(x+a)的變換規(guī)律得從y=sin2x →y= sin(2x+)的變換應(yīng)該是_____.

 。ǘ┓謱佑(xùn)練

  a組題(基礎(chǔ)題)

  如何完成下列圖象的變換:

 、賧=sin3x→y=sin(3x+1)

 、趛=sin(x+1) →y=sin(3x+1)

  b組題(中等題)

  如何完成下列圖象的變換:

 、賧=sin3x→y=sin(3x+1)

 、趛=sin(x+1) →y=sin(3x+1)

 、踶=sinx →y=sin(3x+1)

  c組題(拓展題)

  ①如何完成下列圖象的變換:

  y=sinx →y=sin(3x+1)

 、谖覀冎,從f(x)到f(x)+k的變換可通過圖象的上下平移(k>0上移)(k<0下移)|k|個(gè)單位得到。那么由y=f(x)→y=af(x)+k的變換中,振幅變換和上下平移變換是不是也有先后順序呢?請通過實(shí)例加以驗(yàn)證。

  讓學(xué)生用五點(diǎn)法作出這個(gè)圖象是為了驗(yàn)證變換方法是否正確。

  給出這個(gè)問題的用意是開拓學(xué)生的思維,讓學(xué)生從多角度思考問題。

  這個(gè)步驟主要目的.是培養(yǎng)學(xué)生的探究能力和動手能力。

  這個(gè)問題的解決,是突破本課難點(diǎn)的關(guān)鍵。通過問題的解決,讓學(xué)生理解如果先進(jìn)行周期變換,而后進(jìn)行相位變換,應(yīng)特別關(guān)注x的變化量。

  a組題重在基礎(chǔ)知識的掌握,

  由基礎(chǔ)較薄弱的同學(xué)完成。

  b組比a組增加了第③小題,

  重在對兩種變換的綜合應(yīng)用。

  c組除了考查知識的綜合應(yīng)用,

  還要求學(xué)生對新問題進(jìn)行探究,

  有較大難度,適合基礎(chǔ)較好的

  同學(xué)完成。

  作業(yè):

 。1)必做題

  (2)選做題

  作業(yè)分為兩種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則。選做題不作統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。

  六、評價(jià)分析

  在本節(jié)的教與學(xué)活動中,始終體現(xiàn)以學(xué)生的發(fā)展為本的教育理念。在學(xué)生已有的認(rèn)知基礎(chǔ)上進(jìn)行設(shè)問和引導(dǎo),關(guān)注學(xué)生的認(rèn)知過程,注意學(xué)生的品德、思維和心理等方面的發(fā)展。重視動手能力的培養(yǎng),重視問題探究意識和能力的培養(yǎng)。同時(shí),考慮不同學(xué)生的個(gè)性差異和發(fā)展層次,使不同的學(xué)生得到不同的發(fā)展,體現(xiàn)因材施教原則。

  調(diào)節(jié)與反饋:

 、膨(yàn)證兩種變換的綜合時(shí),可能會出現(xiàn)有些學(xué)生無法觀察到兩種變換的區(qū)別這種情況,此時(shí),教師除了加以引導(dǎo)外,還需通過教師演示和詳細(xì)講解加以解決。

 、平虒W(xué)中可能出現(xiàn)個(gè)別學(xué)生無法正確操作課件的情況,這種情況下一定要強(qiáng)調(diào)學(xué)生的協(xié)作意識。

  附:板書設(shè)計(jì)

高中數(shù)學(xué)說課稿 篇6

各位老師:

  大家好!我叫張西元。我說課的題目是《系統(tǒng)抽樣》,內(nèi)容選自于蘇教版必修3第二章第一節(jié),課時(shí)安排為一個(gè)課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過程分析等五大方面來闡述我對這節(jié)課的分析和設(shè)計(jì):

  一、教材分析

  1.教材所處的地位和作用

  學(xué)生已初步了解掌握了簡單隨機(jī)抽樣的兩種方法,即抽簽法與隨機(jī)數(shù)表法,在此基礎(chǔ)上進(jìn)一步學(xué)習(xí)系統(tǒng)抽樣,它也是“統(tǒng)計(jì)學(xué)”的重要組成部分,通過對系統(tǒng)抽樣的學(xué)習(xí),更加突出統(tǒng)計(jì)在日常生活中的應(yīng)用,體現(xiàn)它在中學(xué)數(shù)學(xué)中的地位。

  2 教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):正確理解系統(tǒng)抽樣的概念,能夠靈活應(yīng)用系統(tǒng)抽樣的方法解決統(tǒng)計(jì)問題。難點(diǎn):當(dāng) 不是整數(shù)時(shí)的處理辦法,個(gè)體編號具有某種周期性時(shí),“壞樣本”的理解。

  二、教學(xué)目標(biāo)分析

  1.知識與技能目標(biāo):

 。1)正確理解系統(tǒng)抽樣的概念;

 。2)掌握系統(tǒng)抽樣的一般步驟;

 。3)正確理解系統(tǒng)抽樣與簡單隨機(jī)抽樣的關(guān)系;

  2、過程與方法目標(biāo):

  通過對實(shí)際問題的探究,歸納應(yīng)用數(shù)學(xué)知識解決實(shí)際問題的方法,理解分類討論的數(shù)學(xué)方法高考資源

  3、情感態(tài)度與價(jià)值觀目標(biāo):

  通過數(shù)學(xué)活動,感受數(shù)學(xué)對實(shí)際生活的需要,體會現(xiàn)實(shí)世界和數(shù)學(xué)知識的聯(lián)系

  三、教學(xué)方法與手段分析

  1.教學(xué)方法:為了充分讓學(xué)生自己分析、判斷、自主學(xué)習(xí)、合作交流。因此,我采用討論發(fā)現(xiàn)法教學(xué)。

  2.教學(xué)手段:通過各種教學(xué)媒體(計(jì)算機(jī))調(diào)動學(xué)生參與課堂教學(xué)的主動性與積極性。

  四、教學(xué)過程分析

 。ㄒ唬┬抡n引入

  1、復(fù)習(xí)提問:

 。1)什么是簡單隨機(jī)抽樣?有哪兩種方法?

  (2)抽簽法與隨機(jī)數(shù)表法的一般步驟是什么?

 。3)簡單隨機(jī)抽樣應(yīng)注意哪兩個(gè)原則?

 。4)什么樣的總體適合簡單隨機(jī)抽樣?為什么?

  [設(shè)計(jì)意圖]通過復(fù)習(xí)提問進(jìn)一步理解掌握簡單隨機(jī)抽樣的概念方法和步驟?為新課學(xué)習(xí)打基礎(chǔ)

  2、實(shí)例探究

  實(shí)例:某學(xué)校為了了解高一年級學(xué)生對教師教學(xué)的意見,打算從高一年級500名學(xué)生中抽取50名進(jìn)行調(diào)查,除了用簡單隨機(jī)抽樣獲取樣本外,你能否設(shè)計(jì)其他抽取樣本的方法?

  當(dāng)總體數(shù)量較多時(shí),應(yīng)當(dāng)如何抽?結(jié)合具體事例探究問題,設(shè)計(jì)你的抽取樣本的方法。抽取的樣本公平性與代表性如何?學(xué)生自主探究后小組討論回答。

  [設(shè)計(jì)意圖]通過設(shè)置問題情境,讓學(xué)生參與問題解決的全過程,引導(dǎo)學(xué)生探究發(fā)現(xiàn)新知識新方法,完成從總體中抽取樣本,并發(fā)現(xiàn)“等距抽樣”的特性,從而形成感性的系統(tǒng)抽樣的概念與方法。這樣做既充分體現(xiàn)學(xué)生的主體地位和教師的主導(dǎo)作用,同時(shí)也較好地貫徹新課程所倡導(dǎo)“自主探究、合作交流”的學(xué)習(xí)方式。

 。ǘ┬抡n講授

  1、系統(tǒng)抽樣的概念方法步驟

  (學(xué)生閱讀課本上的內(nèi)容,教師引導(dǎo)學(xué)生總結(jié)歸納得出“系統(tǒng)抽樣”的概念,并點(diǎn)明課題)

  [設(shè)計(jì)意圖]經(jīng)歷實(shí)例探究過程,學(xué)生對系統(tǒng)抽樣的概念方法步驟應(yīng)有大致了解,輔以教師引導(dǎo),從具體到一般,本節(jié)新課題的學(xué)習(xí)便水到渠成。

  2、典型例題精析

  例1、某校高中三年級的300名學(xué)生已經(jīng)編號為1,2,……,300,為了了解學(xué)生的學(xué)習(xí)情況,要按10%的比例抽取一個(gè)樣本,請用系統(tǒng)抽樣的方法進(jìn)行抽取,并寫出過程。

  (教師題意分析,引導(dǎo)學(xué)生應(yīng)用新知識新方法,學(xué)生分析思考,探究解題,小組討論后口述解題過程)

  [設(shè)計(jì)意圖]實(shí)例鞏固,在得出新課的'有關(guān)知識之后,再次讓學(xué)生在解決實(shí)際問題的過程中,進(jìn)一步理解掌握系統(tǒng)抽樣的方法步驟,達(dá)到學(xué)以致用的技能,培養(yǎng)“學(xué)數(shù)學(xué),用數(shù)學(xué)”的意識。

  例2、某單位在職職工共624人,為了調(diào)查工人用于上班途中的時(shí)間,決定抽取10%的工人進(jìn)行調(diào)查,試采用系統(tǒng)抽樣方法抽取所需的樣本。

  [設(shè)計(jì)意圖]當(dāng) 不是整數(shù)時(shí),設(shè)置本題讓學(xué)生嘗試回答,并形成一般思路與方法。

  (三) 練習(xí)鞏固

  1、將全班學(xué)生按男女生交替排成一路縱隊(duì),用擲骰的方法在前6名學(xué)生中任選一名,用 表示該名學(xué)生在隊(duì)列中的序號,將隊(duì)列中序號為 ,(k=1,2,3,…)的學(xué)生抽出作為樣本,這種抽樣方法叫做系統(tǒng)抽樣嗎?為什么?其樣本的代表性與公平性如何?

  2、若按體重大小次序排成一路縱隊(duì)呢?

  [設(shè)計(jì)意圖]配合課本第60頁“邊空”問題:“請將這種抽樣方法與簡單隨機(jī)抽樣做一個(gè)比較,你認(rèn)為系統(tǒng)抽樣能提高樣本的代表性嗎?為什么?”,幫助理解個(gè)體編號具有某種周期性時(shí),樣本代表性較差的特點(diǎn)。同時(shí)分析系統(tǒng)抽樣的優(yōu)點(diǎn)與缺點(diǎn)。

 。ㄋ模┗仡櫺〗Y(jié)

  1、師生共同回顧系統(tǒng)抽樣的概念方法與步驟

  2、與簡單隨機(jī)抽樣比較,系統(tǒng)抽樣適合怎樣的總體情況?

  3、當(dāng) 不是整數(shù)時(shí),一般步驟是什么?此時(shí)樣本的公平性與代表性如何?

  (五)布置作業(yè)

  課本第61頁的練習(xí)第1,2,3題

  設(shè)計(jì)意圖:課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。

高中數(shù)學(xué)說課稿 篇7

  一、說教材

  1.內(nèi)容分析:本節(jié)課是“反比例函數(shù)”的第一節(jié)課,是繼正比例函數(shù)、一次函數(shù)之后,二次函數(shù)之前的又一類型函數(shù),本節(jié)課主要通過豐富的生活事例,讓學(xué)生歸納出反比例函數(shù)的概念,并進(jìn)一步體會函數(shù)是刻畫變量之間關(guān)系的數(shù)學(xué)模型,從中體會函數(shù)的模型思想。因此本節(jié)課重點(diǎn)是理解和領(lǐng)悟反比例函數(shù)的概念,所滲透的數(shù)學(xué)思想方法有:類比,轉(zhuǎn)化,建模。

  2.學(xué)情分析:對八年級學(xué)生來說,雖然他們已經(jīng)對函數(shù),正比例函數(shù),一次函數(shù)的概念、圖象、性質(zhì)以及應(yīng)用有所掌握,但他們面對新的一次函數(shù)時(shí),還可能存在一些思維障礙,如學(xué)生不能準(zhǔn)確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結(jié)出反比例函數(shù)的概念,因此,本節(jié)課的難點(diǎn)是理解和領(lǐng)悟反比例函數(shù)的概念。

  二、說教學(xué)目標(biāo)

  根據(jù)本人對《數(shù)學(xué)課程標(biāo)準(zhǔn)》的理解與分析,考慮學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我把本課的目標(biāo)定為:

  1.從現(xiàn)實(shí)的情境和已有的知識經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的'相依關(guān)系,加深對函數(shù)概念的理解。

  2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念。

  三、說教法

  本節(jié)課從知識結(jié)構(gòu)呈現(xiàn)的角度看,為了實(shí)現(xiàn)教學(xué)目標(biāo),我建立了“創(chuàng)設(shè)情境→建立模型→解釋知識→應(yīng)用知識”的學(xué)習(xí)模式,這種模式清晰地再現(xiàn)了知識的生成與發(fā)展的過程,也符合學(xué)生的認(rèn)知規(guī)律。于是,從教學(xué)內(nèi)容的性質(zhì)出發(fā),我設(shè)計(jì)了如下的課堂結(jié)構(gòu):創(chuàng)設(shè)出電流、行程等情境問題讓學(xué)生發(fā)現(xiàn)新知,把上述問題進(jìn)行類比,導(dǎo)出概念,獲得新知,最后總結(jié)評價(jià)、內(nèi)化新知。

  四、說學(xué)法

  我認(rèn)為學(xué)生將實(shí)際問題轉(zhuǎn)化成函數(shù)的能力是有限的,所以我借助多媒體輔助教學(xué),指導(dǎo)學(xué)生通過類比、轉(zhuǎn)化、直觀形象的觀察與演示,親身經(jīng)歷函數(shù)模型的轉(zhuǎn)化過程,為學(xué)生攻克難點(diǎn)創(chuàng)造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數(shù)概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過事例幫助完成定義。

  好學(xué)教育:

  因此,我采用了“問題式探究法”的教法,利用多媒體設(shè)置豐富的問題情境,讓學(xué)生的思維由問題開始,到問題深化,讓學(xué)生的思維始終處于積極主動的狀態(tài),并隨著問題的深入而跳躍。

高中數(shù)學(xué)說課稿 篇8

  一、說教材:

  1. 地位及作用:

  “橢圓及其標(biāo)準(zhǔn)方程”是高中《解析幾何》第二章第七節(jié)內(nèi)容,是本書的重點(diǎn)內(nèi)容之一,也是歷年高考、會考的必考內(nèi)容,是在學(xué)完求曲線方程的基礎(chǔ)上,進(jìn)一步研究橢圓的特性,以完成對圓錐曲線的全面研究,為今后的學(xué)習(xí)打好基礎(chǔ),因此本節(jié)內(nèi)容具有承前啟后的作用。

  2. 教學(xué)目標(biāo):

  根據(jù)《教學(xué)大綱》,《考試說明》的要求,并根據(jù)教材的具體內(nèi)容和學(xué)生的實(shí)際情況,確定本節(jié)課的教學(xué)目標(biāo):

 。1)知識目標(biāo):掌握橢圓的定義和標(biāo)準(zhǔn)方程,以及它們的應(yīng)用。

 。2)能力目標(biāo):

  (a)培養(yǎng)學(xué)生靈活應(yīng)用知識的能力。

 。╞) 培養(yǎng)學(xué)生全面分析問題和解決問題的能力。

  (c)培養(yǎng)學(xué)生快速準(zhǔn)確的運(yùn)算能力。

  (3)德育目標(biāo):培養(yǎng)學(xué)生數(shù)形結(jié)合思想,類比、分類討論的思想以及確立從感性到理性認(rèn)識的辯證唯物主義觀點(diǎn)。

  3. 重點(diǎn)、難點(diǎn)和關(guān)鍵點(diǎn):

  因?yàn)闄E圓的定義和標(biāo)準(zhǔn)方程是解決與橢圓有關(guān)問題的重要依據(jù),也是研究雙曲線和拋物線的基礎(chǔ),因此,它是本節(jié)教材的重點(diǎn);由于學(xué)生推理歸納能力較低,在推導(dǎo)橢圓的標(biāo)準(zhǔn)方程時(shí)涉及到根式的兩次平方,并且運(yùn)算也較繁,因此它是本節(jié)課的難點(diǎn);坐標(biāo)系建立的好壞直接影響標(biāo)準(zhǔn)方程的推導(dǎo)和化簡,因此建立一個(gè)適當(dāng)?shù)闹苯亲鴺?biāo)系是本節(jié)的關(guān)鍵。

  二、 說教材處理

  為了完成本節(jié)課的教學(xué)目標(biāo),突出重點(diǎn)、分散難點(diǎn)、根據(jù)教材的內(nèi)容和學(xué)生的實(shí)際情況,對教材做以下的處理:

  1.學(xué)生狀況分析及對策:

  2.教材內(nèi)容的組織和安排:

  本節(jié)教材的處理上按照人們認(rèn)識事物的規(guī)律,遵循由淺入深,循序漸進(jìn),層層深入的`原則組織和安排如下:

  (1)復(fù)習(xí)提問(2)引入新課(3)新課講解(4)反饋練習(xí)(5)歸納總結(jié)(6)布置作業(yè)

  三、 說教法和學(xué)法

  1.為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,是學(xué)生變被動學(xué)習(xí)為主動而愉快的學(xué)習(xí),引導(dǎo)學(xué)生自己動手,讓學(xué)生的思維活動在教師的引導(dǎo)下層層展開。請學(xué)生參與課堂。加強(qiáng)方程推導(dǎo)的指導(dǎo),是傳授知識與培養(yǎng)能力有機(jī)的溶為一體,為此,本節(jié)課采用“引導(dǎo)教學(xué)法”。

  2.利用電腦所畫圖形的動態(tài)演示總結(jié)規(guī)律。同時(shí)利用電腦的動態(tài)演示激發(fā)學(xué)生的學(xué)習(xí)興趣。

  四、 教學(xué)過程

  教學(xué)環(huán)節(jié)

  3.設(shè)a(-2,0),b(2,0),三角形abp周長為10,動點(diǎn)p軌跡方程。

  例1屬基礎(chǔ),主要反饋學(xué)生掌握基本知識的程度。

  例2可強(qiáng)化基本技能訓(xùn)練和基本知識的靈活運(yùn)用。

  小結(jié)

  為使學(xué)生對本節(jié)內(nèi)容有一個(gè)完整深刻的認(rèn)識,教師引導(dǎo)學(xué)生從以下幾個(gè)方面進(jìn)行小結(jié)。

  1.橢圓的定義和標(biāo)準(zhǔn)方程及其應(yīng)用。

  2.橢圓標(biāo)準(zhǔn)方程中a,b,c諸關(guān)系。

  3.求橢圓方程常用方法和基本思路。

  通過小結(jié)形成知識體系,加深對本節(jié)知識的理解培養(yǎng)學(xué)生的歸納總結(jié)能力,增強(qiáng)學(xué)生學(xué)好圓錐曲線的信心。

  布置作業(yè)

 。1) 77頁——78頁 1,2,3,79頁 11

  (2) 預(yù)習(xí)下節(jié)內(nèi)容

  鞏固本節(jié)所學(xué)概念,強(qiáng)化基本技能訓(xùn)練,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和品質(zhì),發(fā)現(xiàn)和彌補(bǔ)教學(xué)中的遺漏和不足。

高中數(shù)學(xué)說課稿 篇9

  各位老師,大家好!

  我是08數(shù)學(xué)本科(2)班的xx,我今天說課的題目是集合的含義與表示.下面我先對教材進(jìn)行分析.

  一、教材分析

  集合的含義與表示是選自高中新課標(biāo)A版教材必修1第一章第一節(jié)內(nèi)容。在此之前,學(xué)生已經(jīng)接觸過集合的一些相關(guān)概念,如自然數(shù)的集合、有理數(shù)的集合.集合是一個(gè)基礎(chǔ)性概念,是數(shù)學(xué)以至所有科學(xué)的基礎(chǔ),應(yīng)用廣泛. 集合是高考的對象,在高考中以選擇題或填空題的形式出現(xiàn),在高考中具有不可忽視的地位.本節(jié)內(nèi)容能夠培養(yǎng)學(xué)生的探索精神和數(shù)學(xué)素養(yǎng).

  二、教學(xué)目標(biāo)

  根據(jù)上述對教材的分析,我確定本節(jié)課的教學(xué)目標(biāo)為 1. 知識與技能目標(biāo) 理解集合的含義,集合的元素的特征,元素與集合的關(guān)系. 掌握集合的表示方法. 了解常用的數(shù)集.培養(yǎng)學(xué)生的抽象思維能力、分析能力、判斷能力.

  2. 過程與方法目標(biāo)

  應(yīng)用自然語言與集合語言描述不同的具體問題,與學(xué)生一道歸納出集合的含義. 掌握從具體到抽象,從特殊到一般的研究方法.

  3. 情感態(tài)度價(jià)值觀目標(biāo)

  使得學(xué)生感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美. 培養(yǎng)學(xué)生正確的、高尚的、唯物的價(jià)值觀.培養(yǎng)學(xué)生獨(dú)立思考、敢于創(chuàng)新、勇于探索的科學(xué)精神,激發(fā)同學(xué)們學(xué)習(xí)數(shù)學(xué)的興趣. 三、重點(diǎn)和難點(diǎn)

  重點(diǎn):根據(jù)上述對教材的分析,確定的教學(xué)目標(biāo),我確定本節(jié)課的教學(xué)重點(diǎn)為:集合的含義,集合的表示方法.

  難點(diǎn):考慮到學(xué)生已有的知識基礎(chǔ)與認(rèn)知能力,我認(rèn)為教學(xué)難點(diǎn)是集合的表示方法. 關(guān)鍵:學(xué)好本節(jié)課的關(guān)鍵是理解集合的含義,掌握集合的表示方法. 四、教學(xué)方法 1.學(xué)情分析

 。1)生理特點(diǎn):高中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗(yàn)型逐步走向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨之迅速發(fā)展.

 。2)心理特點(diǎn):高中學(xué)生雖有好奇,好表現(xiàn)的因素,更有知道原理、明白方法的理性愿望,希望平等交流研討,厭煩空洞的說教.

 。3)認(rèn)知障礙:有的學(xué)生遺忘了學(xué)過的知識,有的學(xué)生想象能力與歸納能力較差. 2.教法學(xué)法

  根據(jù)上面的分析,從高中生的心理特點(diǎn)和認(rèn)知水平出發(fā),結(jié)合學(xué)生的實(shí)際情況與認(rèn)知障礙,按照突出重點(diǎn),突破難點(diǎn),本節(jié)課采用學(xué)生廣泛參與,師生共同探討的啟發(fā)式教學(xué)法. 五、教學(xué)過程(用描述性語言,不要具體化。

  根據(jù)以上分析,我對本節(jié)課的教學(xué)過程作如下安排:

  1.引入課題

  先引導(dǎo)學(xué)生回顧自然數(shù)的集合,有理數(shù)的集合,再提出問題:集合的含義是什么呢? 2.新課講解

  (1)分析自然數(shù)的集合,有理數(shù)的集合,不等式的解集,歸納出它們的共同特征:都是由一些確定的、互不相同的對象組成的整體.

 。2)根據(jù)上面的分析與討論,以及歸納出的共同特征,講解集合的含義,元素與集合的關(guān)系,一些常見的數(shù)集.

 。3)為了化解教學(xué)難點(diǎn),我將結(jié)合具體的例子,講解列舉法與描述法.

 。4)為了加強(qiáng)學(xué)生對集合的含義的理解,我將與學(xué)生一起歸納出集合的元素的特征. (5)為了提高學(xué)生解決實(shí)際問題的能力,我將講解三個(gè)不同題型、不同難度的例題. 3.課堂練習(xí)

  為了使得學(xué)生掌握等差數(shù)列的定義與通項(xiàng)公式,提高解題技能,我將在課堂上布置3道不同類型、不同難度的練習(xí)題.

  4.歸納小結(jié)

  完成以上的教學(xué)內(nèi)容后,我將組織學(xué)生對本節(jié)課的內(nèi)容做一個(gè)總結(jié),強(qiáng)調(diào)重點(diǎn). 5.布置作業(yè)

  為了鞏固所學(xué)知識,激發(fā)學(xué)生的求知欲,我將布置3道不同類型、不同難度的作業(yè)題. 六、板書設(shè)計(jì)

  結(jié)合中學(xué)黑板的特點(diǎn),我將如下板書本節(jié)教學(xué)內(nèi)容: 集合的含義與表示 實(shí)例 1. 2. 3. 集合的含義 常見數(shù)集 元素與集合的關(guān)系 集合的表示方法 集合的元素的特征 例1 例2 例3 練習(xí) 作業(yè) 各位老師,以上只是我的一種預(yù)設(shè)方案,但課堂千變?nèi)f化,我將根據(jù)實(shí)際情況靈活掌握,隨機(jī)發(fā)揮.本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝! 1.1.2集合間的基本關(guān)系

  數(shù)學(xué)必修1第一章第二節(jié)第1小節(jié)《集合間的基本關(guān)系》說課稿.

  一 、教學(xué)內(nèi)容分析

  集合概念及其理論是近代數(shù)學(xué)的基石,集合語言是現(xiàn)代數(shù)學(xué)的基本語言,通過學(xué)習(xí)、使用集合語言,有利于學(xué)生簡潔、準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,高中課程只將集合作為一種語言來學(xué)

  習(xí),學(xué)生將學(xué)會使用最基本的集合語言表示有關(guān)的數(shù)學(xué)對象,發(fā)展運(yùn)用數(shù)學(xué)語言進(jìn)行交流的能力.

  本章集合的初步知識是學(xué)生學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是高中數(shù)學(xué)學(xué)習(xí)的出發(fā)點(diǎn)。本小節(jié)內(nèi)容是在學(xué)習(xí)了集合的概念以及集合的表示方法、元素與集合的從屬關(guān)系的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)集合與集合之間的關(guān)系,同時(shí)也是下一節(jié)學(xué)習(xí)集合之間的運(yùn)算的基礎(chǔ),因此本小節(jié)起著承上啟下的重要作用.

  本節(jié)課的教學(xué)重視過程的教學(xué),因此我選擇了啟發(fā)式教學(xué)的教學(xué)方式。通過問題情境的設(shè)置,層層深入,由具體到抽象,由特殊到一般,幫助學(xué)生的逐步提升數(shù)學(xué)思維。

  二、學(xué)情分析

  本節(jié)課是學(xué)生進(jìn)入高中學(xué)習(xí)的第3節(jié)數(shù)學(xué)課,也是學(xué)生正式學(xué)習(xí)集合語言的第3節(jié)課。由于一切對于學(xué)生來說都是新的,所以學(xué)生的學(xué)習(xí)興趣相對來說比較濃厚,有利于學(xué)習(xí)活動的展開。而集合對于學(xué)生來說既熟悉又陌生,熟悉的是在初中就已經(jīng)使用數(shù)軸求簡單不等式(組)的解,用圖示法表示四邊形之間的關(guān)系,陌生的是使用集合的語言來描述集合之間的關(guān)系。而從具體的實(shí)例中抽象出集合之間的包含關(guān)系的本質(zhì),對于學(xué)生是一個(gè)挑戰(zhàn)。

  根據(jù)上面對教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點(diǎn),確定本節(jié)課的教學(xué)目標(biāo)和教學(xué)重、難點(diǎn)如下:

  三、教學(xué)目標(biāo): 知識與技能目標(biāo):

 。1)理解集合之間包含和相等的含義; (2)能識別給定集合的子集;

  (3)能使用Venn圖表達(dá)集合之間的包含關(guān)系 過程與方法目標(biāo):

  (1)通過復(fù)習(xí)元素與集合之間的關(guān)系,對照實(shí)數(shù)的相等與不相等的關(guān)系聯(lián)系元素與集合之間的從屬關(guān)系,探究集合之間的包含和相等關(guān)系;

  (2)初步經(jīng)歷使用最基本的集合語言表示有關(guān)的數(shù)學(xué)對象的過程,體會集合語言,發(fā)展運(yùn)用數(shù)學(xué)語言進(jìn)行交流的能力;

  情感、態(tài)度、價(jià)值觀目標(biāo):

 。1)了解集合的包含、相等關(guān)系的含義,感受集合語言在描述客觀現(xiàn)實(shí)和數(shù)學(xué)問題中的.意義;

  (2)探索利用直觀圖示(Venn圖)理解抽象概念,體會數(shù)形結(jié)合的思想。

  四、本節(jié)課教學(xué)的重、難點(diǎn):

  重點(diǎn):(1)幫助學(xué)生由具體到抽象地認(rèn)識集合與集合之間的關(guān)系——子集; (2)如何確定集合之間的關(guān)系; 難點(diǎn):集合關(guān)系與其特征性質(zhì)之間的關(guān)系 五、教學(xué)過程設(shè)計(jì)

  1.新課的引入——設(shè)置問題情境,激發(fā)學(xué)習(xí)興趣

  我們的教學(xué)方式,要服務(wù)于學(xué)生的學(xué)習(xí)方式。那我們來思考一下,在何種情況下,學(xué)生學(xué)得最好?我想,當(dāng)學(xué)生感興趣時(shí);當(dāng)學(xué)生智力遭遇到挑戰(zhàn)時(shí);當(dāng)學(xué)生能自主地參與探索和創(chuàng)新時(shí);當(dāng)學(xué)生能夠?qū)W以致用時(shí);當(dāng)學(xué)生得到鼓勵(lì)與信任時(shí),他們學(xué)得最好。數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗(yàn)基礎(chǔ)之上,這樣才能讓學(xué)生體驗(yàn)到成就感,保持積極的興奮狀態(tài)。而集合的語言對于學(xué)生來說是陌生的,雖然比較容易理解,但是由于概念多,符號多,學(xué)生容易產(chǎn)生厭煩心理,如何讓學(xué)生長時(shí)間興趣盎然地投入到集合關(guān)系的學(xué)習(xí)中呢?我在整個(gè)教學(xué)過程中層層設(shè)問,不斷地向?qū)W生提出挑戰(zhàn),以激發(fā)學(xué)生的學(xué)習(xí)興趣。在引入的環(huán)節(jié),我設(shè)計(jì)了下面的問題情境1:元素與集合有“屬于”、“不屬于”的關(guān)系;數(shù)與數(shù)之間有“相等”、“不相等”的關(guān)系;那么集合與集合之間有什么樣的關(guān)系呢?問題的拋出猶如一石激起千層浪,在這兒,答案并不重要,重要的是學(xué)生迫切尋求答案的愿望,激發(fā)學(xué)生的求知欲。在學(xué)生討論的基礎(chǔ)上提出這一節(jié)課我們來共同探討集合之間的基本關(guān)系。(板書課題)

  2.概念的形成——從特殊到一般、從具體到抽象,從已知到未知 問題情境1的探究:

  具體實(shí)例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四邊形} (3)A={x| x>2}, B={x| x>1};

  此環(huán)節(jié)設(shè)置了三個(gè)具體實(shí)例,包含了有限集、無限集、數(shù)集(包括不等式)、圖形的集合。第一個(gè)例子為有限集數(shù)集,最為簡單直觀,對學(xué)生初步認(rèn)識子集,理解子集的概念很有幫助;第二個(gè)例子是圖形集合且是無限集,需要通過探究圖形的性質(zhì)之間的關(guān)系找出集合間的關(guān)系;第三個(gè)例子是無限數(shù)集,基于學(xué)生初中階段已經(jīng)學(xué)習(xí)了用數(shù)軸表示不等式的解集,啟發(fā)學(xué)生可以通過數(shù)形結(jié)合的方式來研究集合之間的關(guān)系,從而引出Venn圖。對第一個(gè)例子,借助多媒體演示動畫,幫助學(xué)生體會“任意”性。使學(xué)生在經(jīng)歷直觀感知、觀察發(fā)現(xiàn)的基礎(chǔ)上建構(gòu)子集的概念,并且我在教學(xué)的過程中特別注重讓學(xué)生說,借此來學(xué)習(xí)運(yùn)用集合語言進(jìn)行交流,對于學(xué)生的創(chuàng)新意識和創(chuàng)新結(jié)果我都給予積極的評價(jià)。

  3、概念的剖析

  (1)A中的元素x與集合B的關(guān)系決定了集合A與集合B之間的關(guān)系,

  (2)符號的表示,Venn圖的引入及其用Venn圖表示集合的方法。

  這里引入了許多新的符號,對初學(xué)者來說容易混淆,是一個(gè)易錯(cuò)點(diǎn),因此我在這里設(shè)置了一個(gè)填空小練習(xí):

  0 {0}, {正方形} {矩形},三角形 {等邊三角形} {梯形} {平行四邊形},{x|-1

  并引導(dǎo)學(xué)生類比數(shù)與數(shù)之間的“≤”“≥”符號來記憶“?”“?”符號。

  4、概念的深化——集合的相等與真子集

  問題情境2:如果集合A是集合B的子集,那么對于任意的x?A,有x?B;那么對于集合B中的任何一個(gè)元素,它與集合A之間又可能是什么關(guān)系呢?

【高中數(shù)學(xué)說課稿】相關(guān)文章:

高中數(shù)學(xué)《集合》說課稿07-22

高中數(shù)學(xué)說課稿07-09

高中數(shù)學(xué)說課稿范文11-02

關(guān)于高中數(shù)學(xué)說課稿11-26

高中數(shù)學(xué)《向量》說課稿范文02-15

高中數(shù)學(xué)說課稿(15篇)02-17

高中數(shù)學(xué)說課稿4篇01-09

精選高中數(shù)學(xué)說課稿四篇01-15

【精選】高中數(shù)學(xué)說課稿四篇01-14

高中數(shù)學(xué)說課稿三篇01-09