高二數(shù)學說課稿[大全15篇]
作為一位杰出的老師,時常要開展說課稿準備工作,借助說課稿可以更好地組織教學活動。那么什么樣的說課稿才是好的呢?以下是小編幫大家整理的高二數(shù)學說課稿,歡迎大家借鑒與參考,希望對大家有所幫助。
高二數(shù)學說課稿1
各位老師好:
我是戶縣二中的李敏,今天講的課題是《平面向量的坐標的表示》,本節(jié)課是高中數(shù)學北師大版必修4第二章第4節(jié)的內容,下面我將從四個方面對本節(jié)課的教學設計來加以說明。
一、學情分析
本節(jié)課是在學生已學知識的基礎上進行展開學習的,也是對以前所學知識的鞏固和發(fā)展,但對學生的知識準備情況來看,學生對相關基礎知識掌握情況是很好,所以在復習時要及時對學生相關知識進行提問,然后開展對本節(jié)課的鞏固性復習。而本節(jié)課學生會遇到的困難有:數(shù)軸、坐標的表示;平面向量的坐標表示;平面向量的坐標運算。
二、高考的考點分析:
在歷年高考試題中,平面向量占有重要地位,近幾年更是有所加強。這些試題不僅平面向量的相關概念等基本知識,而且?计矫嫦蛄康倪\算;平面向量共線的條件;用坐標表示兩個向量的夾角等知識的解題技能?疾閷W生在數(shù)學學習和研究過程中知識的遷移、融會,進而考查學生的學習潛能和數(shù)學素養(yǎng),為考生展現(xiàn)其創(chuàng)新意識和發(fā)揮創(chuàng)造能力提高廣闊的空間,相關題型經常在高考試卷里出現(xiàn),而且經常以選擇、填空、解答題的形式出現(xiàn)。
三、復習目標
1.會用坐標表示平面向量的加法、減法與數(shù)乘運算.
2.理解用坐標表示的平面向量共線的條件.
3.掌握數(shù)量積的坐標表達式,會進行平面向量數(shù)量積的運算.
4.能用坐標表示兩個向量的夾角,理解用坐標表示的平面向量垂直的條件.
教學重難點的確定與突破:
根據《20xx高考大綱》和對近幾年高考試題的分析,我確定本節(jié)的教學重點為:平面向量的坐標表示及運算。難點為:平面向量坐標運算與表示的`理解。我將引導學生通過復習指導,歸納概念與運算規(guī)律,模仿例題解決習題等過程來達到突破重難點。
四、說教法
根據本節(jié)課是復習課,我采用了“自學、指導、練習”的教學方法,即通過對知識點、考點的復習,圍繞教學目標和重難點提出一系列精心設計的問題,在教師的指導下,用做題來復習和鞏固舊知識點。
五、說學法
根據平時作業(yè)中的問題來看,學生會本節(jié)課遇到的困難有:數(shù)軸、坐標的表示;平面向量的坐標表示;平面向量的坐標運算等方面。根據學情,所以我將指導通過“自學,探究,模仿”等過程完成本節(jié)課的學習。
六、說過程
(一) 知識梳理:
1.向量坐標的求法
(1)若向量的起點是坐標原點,則終點坐標即為向量的坐標.
(2)設A(x1,y1),B(x2,y2),則
。絖________________
||=_______________
。ǘ┢矫嫦蛄孔鴺诉\算
1.向量加法、減法、數(shù)乘向量
設 =(x1,y1), =(x2,y2),則
+ = - = λ = .
2.向量平行的坐標表示
設 =(x1,y1), =(x2,y2),則 ∥ ________________.
(三)核心考點習題演練
考點1.平面向量的坐標運算
例1.已知A(-2,4),B(3,-1),C(-3,-4).設 (1)求3 + -3 ;
(2)求滿足 =m +n 的實數(shù)m,n;
練:(20xx江蘇,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)
(m,n∈R),則m-n的值為 .
考點2平面向量共線的坐標表示
例2:平面內給定三個向量 =(3,2), =(-1,2), =(4,1)
若( +k )∥(2 - ),求實數(shù)k的值;
練:(20xx,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ為實數(shù),( +λ )∥ ,則λ= ( )
思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?
考點3平面向量數(shù)量積的坐標運算
例3“已知正方形ABCD的邊長為1,點E是AB邊上的動點,
則的值為 ; 的最大值為 .
【提示】解決涉及幾何圖形的向量數(shù)量積運算問題時,可建立直角坐標系利用向量的數(shù)量積的坐標表示來運算,這樣可以使數(shù)量積的運算變得簡捷.
練:(20xx,安徽,13)設 =(1,2), =(1,1), = +k .若 ⊥ ,則實數(shù)k的值等于( )
【思考】兩非零向量 ⊥ 的充要條件: =0 .
考點4:平面向量模的坐標表示
例4:(20xx湖南,理8)已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標為(2,0),則的最大值為( )
A.6 B.7 C.8 D.9
練:(20xx,上海,12)
在平面直角坐標系中,已知A(1,0),B(0,-1),P是曲線上一個動點,則 的取值范圍是?
高二數(shù)學說課稿2
《異面直線所成角》是高中數(shù)學《立體幾何》一章中的第二節(jié)《空間兩直線》中的重要內容!读Ⅲw幾何》是高中數(shù)學教學中相對獨立的一章,而本節(jié)內容恰是把平面內的直線擴展為空間任兩條直線的位置關系問題,是培養(yǎng)學生建立空間想象力的關鍵,下面就從以下四個方面說課。
第一方面:教學設計意圖:
高中《數(shù)學教學大綱》要求學生具有良好的空間想象力和一定的作圖識圖能力,本節(jié)教學也要求培養(yǎng)學生對空間兩直線所成角這一立體概念的理解,在此基礎上,再依據對學生進行素質教育的目標制定了以下教學目標:
1、認知目標:理解空間兩異面直線所成角的概念,并會作出,求出兩異面直線所成角。
2、能力目標:培養(yǎng)學生的識圖,作圖能力,在習題講解中,培養(yǎng)學生的空間想象力和發(fā)散思維。
3、德育目標:在對學生進行創(chuàng)造性思維培養(yǎng)的同時,激發(fā)學生對科學文化知識的探求熱情和邏輯清晰的辯證主義觀點。
本節(jié)課的重,難點:
教學重點:對異面直線所成角的概念的理解和應用。
教學難點:如何在實際問題中求出異面直線所成角。
第二方面:教法的選定
本節(jié)內容作為《立體幾何》中兩大重要概念之一––––"角"的初次接觸,就要求學生能牢固的落實兩異面直線所成角的概念及作法,并能對具體問題求出所成角,這樣才能真正提高其空間想象力,根據上述目標要求和學生思維模式缺乏"立體性"這一特點,我采用了"練習教學法",從習題入手,輔以計算機軟件,將平面圖形"立"起來,為學生創(chuàng)設較好的思維空間,增強了教學的直觀性,再利用"問題中心式"教法,提出問題,對學生進行啟發(fā),讓學生自己動腦,動口,動手,這樣既可以發(fā)揮教師的主導作用,又突出了學生的主體地位。
第三方面:學法的指導
要從兩個方面教會學生落實本節(jié)內容。
1、根據計算機軟件所設計的空間幾何圖形,帶領學生去識圖,讀圖,作圖,并能依據圖形的特點去分析,作出或找出所要求的所成角,從而加強學生的圖形空間想象力。
2、找到所求角后,還需指導學生利用邏輯的分析和學過的平面幾何知識最終解決問題。
第四方面:教學過程和板書設計
第一步:采用"溫故式導入",提問學生"兩異面直線所成角"的定義,加深學生對概念的掌握,在同學回答的同時,由計算機打出概念,并在重點字"銳角或直角"處閃動,突出重點。再利用計算機演示空間兩異面直線所成角的作法,重點體現(xiàn)選取不同點平移均可。
第二步:進入例題講解:"如何對具體問題求異面直線所成角呢"
首先,由計算機給出本節(jié)第一道例題,及圖。
教師帶領學生一起審題,該題為求證"兩直線平行"的簡單證明題,其目的在于加強學生對異面直線所成角概念的理解,突出選取"空間任一點平移直線均可"這一原則,為此,特由計算機設計出選取不同點平移的圖及證法,再一次強調概念。
然后,進入第二道例題,同樣由計算機給出題目和圖,該題為"在已知正方體內求兩組異面直線所成角問題",不同于前題教法處在于,在教師進行了啟發(fā)性提問后,由計算機給出3個不同選點,教師讓同學自己分析并到前面操作電腦,選取解法,用計算機進行演示,并由學生自己講解。最后由教師對學生的解法進行歸納總結,從而得出"對特殊幾何體中異面直線所成角問題應以幾何體為依托,尋找特殊位置進行平移,并利用三角函數(shù)及平面幾何知識進行求解"這一結論。
例3的講解思路及方法同例2相同。
這樣,在計算機創(chuàng)設的空間圖形效果下,充分調動學生的積極性,發(fā)揮學生的主體作用,使學生自己總結并掌握求異面直線所成角的方法和規(guī)律,從而達到落實知識的目的
接下來,由同學們獨立完成一道練習,進一步鞏固本節(jié)內容。
第三步:總結
總結采取讓學生自己總結的.方法,對本節(jié)內容所涉及如何求異面直線所成角的方法進行小結,全面突出學生的主動性學習。
第四步:布置作業(yè)
讓學生在回顧本課內容的基礎上,進一步加強練習。
綜觀本節(jié)習題課,作異面直線所成角并求值這一難點的突破,幾乎完全采取由學生自己完成的方法,讓學生在自己動手,動腦分析解決問題的過程中,充分體會本節(jié)內容的重點,再配以教師適當?shù)狞c拔,講解,達到學生真正扎實的落實本課內容,這樣,全面的發(fā)揮學生的主體作用,輔以教師的主導作用,可以最大限度的活躍課堂,提高學生的學習興趣和學習效率,達到較好的教學效果。
本節(jié)課板書設計。
兩條異面直線所成角,習題課:
例1:證明,如果一條直
線和兩條平行線中
的一條垂直,則和
另一條也垂直。
例2:已知:在正方體
ABCD—A1B1C1D1
中,E為DD1中點,棱長為a。
求:1,CE與AA1所成
角的正切值。
2,D1B與AC所成
的角。
例3:在已知正四面體S
—ABC中,各邊長
均相等,均為1,E
為SC中點,F(xiàn)為
AB中點。
求:1,EF與SA所成角。
2,EA與CF所成角
余弦。
練習:已知:在長方體
ABCD—A1B1C1D1
中,AA1B=60,DAD1=45
求:AD1與A1B所成的
角的余弦值。
高二數(shù)學說課稿3
一、教材分析與處理
1、教材的地位與作用
學生初步認識圓錐曲線是從橢圓開始的,雙曲線的學習是對其研究內容的進一步深化和提高。如果雙曲線研究的透徹、清楚,那么拋物線的學習就會順理成章。所以說本節(jié)課的作用就是縱向承接橢圓定義和標準方程的研究,橫向為雙曲線的簡單性質的學習打下基礎。
2、學生狀況分析:
學生在學習這節(jié)課之前,已掌握了橢圓的定義和標準方程,也曾經嘗試過探究式的學習方式,所以說從知識和學習方式上來說學生已具備了自行探索和推導方程的基礎。另外,高二學生思維活躍,敢于表現(xiàn)自己,不喜歡被動地接受別人現(xiàn)成的觀點,但同時也缺乏發(fā)現(xiàn)問題和提出問題的意識。
根據以上對教材和學生的.分析,考慮到學生已有的認知規(guī)律我希望學生能達到以下三個教學目標。
3、 教學目標
。1)知識與技能:理解雙曲線的定義并能獨立推導標準方程;
。2)過程與方法:通過定義及標準方程的挖掘與探究 ,使學生進一步體驗類比及數(shù)形結合等思想方法的運用,提高學生的觀察與探究能力;
。3)情感態(tài)度與價值觀:通過教師指導下的學生交流探索活動,激發(fā)學生的學習興趣,培養(yǎng)學生用聯(lián)系的觀點認識問題。
4.教學重點、難點
依據教學目標,根據學生的認知規(guī)律,確定本節(jié)課的重點是理解和掌握雙曲線的定義及其標準方程。難點是雙曲線標準方程的推導。
5、教材處理:
我對教學內容作了一點調整:教材中是借用細繩畫出的雙曲線圖形,而我改用幾何畫板畫出雙曲線圖形。因為相比之下,幾何畫板更為形象直觀。通過幾何畫板,學生不僅可看到雙曲線形成的過程,而且較易看出橢圓與雙曲線形成的聯(lián)系和區(qū)別。
二、教學方法與教學手段
1、教學方法
著名數(shù)學家波利亞認為:“學習任何東西最好的途徑是自己去發(fā)現(xiàn)!
雙曲線的定義和標準方程與橢圓很類似,學生已經有了一些學習橢圓的經驗, 所以本節(jié)課我
采用了“啟發(fā)探究”式的教學方法,重點突出以下兩點:
。1)以類比思維作為教學的主線
(2)以自主探究作為學生的學習方法
2、 教學手段
采用多媒體輔助教學。體現(xiàn)在用幾何畫板畫雙曲線。但不是單純用動畫演示給學生看,而是用動畫啟發(fā)引導學生思考,調動學生學習的積極性。
三、教學過程與設計
為達到本節(jié)課的教學目標,更好地突出重點,分散難點,我把教學過程分為四個階段。
(一)知識引入---- 知識回顧、觀察動畫、概括定義
在課的開始我設置了這樣幾個問題,以幫助學生進行知識回顧:
。1)橢圓的第一定義是什么?定義中哪些字非常關鍵?
(2)橢圓的標準方程是什么?
高二數(shù)學說課稿4
尊敬的各位評委、老師:
您們好!
今天我說課的內容是人教版高二第二冊(上)第七章第三節(jié)第4課時:“點到直線的距離”.
下面根據我寫的教案,把我對本節(jié)課的教材分析、教學方法和教學用具、教學過程以及教學評價等方面的認識做一個說明.敬請各位專家多提寶貴意見.
一、關于教材分析
1、教材的地位和作用
“點到直線的距離”是在學生學習直線方程的基礎上,進一步研究兩直線位置關系的一節(jié)內容,我們知道兩條直線相交后,進一步的量化關系是角度,而兩條直線平行后,進一步的量化關系是距離,而平行線間的距離是通過點到直線距離來解決的.此外在研究直線與圓的位置關系、曲線上的點到直線的距離以及解析幾何中有關三角形面積的計算等問題時,都要涉及點到直線的距離.所以“點到直線的距離公式”是平面解析幾何的一個重要知識點.由于這一節(jié)是直線內容的結尾部分,學生已經具備直線的有關知識(如交點、垂直、向量、三角形等),因此,一方面公式的推導成為可能,另一方面公式的推導也是檢驗學生是否真正掌握所學知識點的一個很好的課題.通過公式推導的獲得,可以培養(yǎng)學生分析問題、解決問題的能力,以及自主探究和合作學習的能力.
2教學目標分析
我確定教學目標的依據有以下三條:
。1)教學大綱、考試大綱的要求
(2)新教材的特點
。3)所教學生的實際情況
教學目標包括:知識、能力、德育等方面的內容.
“點到直線的距離公式”是平面解析幾何重要的基礎知識,也是教學大綱和考試大綱要求掌握的一個知識點.按照大綱“在傳授知識的同時,滲透數(shù)學思想方法,培養(yǎng)學生數(shù)學能力”的教學要求,結合新教材向量的引入,又根據所帶班級學生基礎和素質教好的情況,我把本節(jié)課的教學目標確定為:
(1)讓學生理解點到直線距離公式的推導思想,掌握點到直線距離公式及其應用,會用點到直線距離求兩平行線間的距離;
。2)通過推導公式方法的發(fā)現(xiàn),培養(yǎng)學生觀察、思考、分析、歸納等數(shù)學能力;在推導過程中,滲透數(shù)形結合、轉化(或化歸)等數(shù)學思想以及特殊與一般的方法;
。3)通過本節(jié)學習,引導學生用聯(lián)系與轉化的觀點看問題,體驗在探索問題的過程中獲得的成功感.
3、教學重點:點到直線距離公式的推導和應用.
教學難點:發(fā)現(xiàn)點到直線距離公式的推導方法.
二、關于教學方法和教學用具的說明
1、教學方法的選擇
。1)指導思想:在“以生為本”理念的指導下,充分體現(xiàn)“教師為主導,學生為主體”.
。2)教學方法:問題解決法、討論法等.
本節(jié)課的任務主要是公式推導思路的獲得和公式的推導及應用.我選擇的是問題解決法、討論法等.通過一系列問題,創(chuàng)造思維情境,通過師生互動,讓學生體驗、探究、發(fā)現(xiàn)知識的形成和應用過程,以及思考問題的方法,促進思維發(fā)展;學生自主學習,分工合作,使學生真正成為教學的主體.
2、教學用具的選用
在選用教學用具時,我考慮到,在本節(jié)課的公式推導和例題求解中思路較多,所以采用了計算機多媒體和實物投影儀作為輔助教具.它可以將數(shù)學問題形象、直觀顯示,便于學生思考,實物投影儀展示學生不同解題方案,提高課堂效率.
三、關于教學過程的設計
“數(shù)學是思維的體操”,一題多解可以培養(yǎng)和提高學生思維的靈活性,及分析問題和解決問題的能力.課程標準指出,教學中應注意溝通各部分內容之間的聯(lián)系,通過類比、聯(lián)想、知識的遷移和應用等方式,使學生體會知識間的有機聯(lián)系,感受數(shù)學的整體性.課標又指出,鼓勵學生積極參與教學活動.為此,在具體教學過程中,把本節(jié)課分為以下:“創(chuàng)設情境提出問題——自主探索推導公式——變式訓練學會應用——學生小結教師點評——課外練習鞏固提高”五個環(huán)節(jié)來完成.下面對每個環(huán)節(jié)進行具體說明.
。ㄒ唬創(chuàng)設情境提出問題]
1、這一環(huán)節(jié)要解決的主要問題是:
創(chuàng)設情境,引導學生分析實際問題,由實際問題轉化為數(shù)學問題,揭示本課任務.同時激發(fā)學生學習興趣,培養(yǎng)學生數(shù)學建模能力.
2、具體教學安排:
多媒體顯示實例,電信局線路問題,實際怎樣解決?能否轉化為解析幾何問題?
學生很快想到建立坐標系.如何建立坐標系?建系不同,點和直線方程不同,用點的坐標和直線方程如何解決距離問題,由此引出本課課題“點到直線的距離”.
(二)[自主探索推導公式]
1、這一環(huán)節(jié)要解決的主要問題是:
充分發(fā)揮學生的主體作用,引導學生發(fā)現(xiàn)點到直線距離公式的推導方法,并推導出公式.在公式的推導過程中,圍繞兩條線索:明線為知識的學習,暗線為特殊與一般的邏輯方法以及轉化、數(shù)形結合等數(shù)學思想的滲透.
2、具體教學安排:
2.1學生初探解決特例
首先提出問題:怎樣用解析幾何方法求解點到直線距離?由于字母的運算有難度,引導學生從直線的特殊情況入手,這樣問題比較容易解決.學生應該能想到,如果直線是坐標軸或平行坐標軸的時候問題比較容易解決,給予學生肯定的評價.學生自己完成推導過程,選兩名學生進行板演.
2.2師生互動獲取思路
特殊情況已經解決,引導學生考慮一般直線的情況.通過學生思考,教師收集得到思路一:過P作PQ ⊥ l于Q點,根據點斜式寫出直線PQ方程,由PQ與l聯(lián)立方程組解得Q點坐標,然后利用兩點距離公式求得.
我及時評價這種方法思路自然,是一種解決辦法.為了拓展學生思維,我們根據已有的知識和經驗,還有什么辦法能解決?為此我啟發(fā)學生,提出問題:
(1)求線段長度可以構造圖形嗎?
(2)什么圖形?如何構造?(學生經過討論,得到構造三角形,把線段放在直角三角形中.)但是如何構造又是一個難點.
(3)第三個頂點在什么位置?
(4)特殊情況與一般情況有聯(lián)系嗎?
學生通過觀察、討論會提出第三個頂點的不同位置:可能在直線l與x軸的交點M或與y軸交點N;或根據特殊情況的證法提示,過P點作x、y軸的平行線與直線l的交點R、S.或同時做x、y軸平行線.這樣就收集到思路二、三、四.
三種思路已經有了,它們的共性是什么?學生能觀察出都在三角形中.我繼續(xù)引導:能不能不構造三角形?而是其它數(shù)學相關量?我們剛學習了向量知識,能否用向量知識解決問題呢?(由于在前面學習的向量知識中,向量的?梢员硎緝牲c之間的距離,而證明兩直線垂直時也已經用到向量知識,法向量又是本節(jié)課后閱讀材料,本班學生基礎和素質較好,在學習直線方向向量時已經布置閱讀).
提出問題:線段的長度就是對應向量的模,那么如何求得向量PQ的`模呢?根據實際情況提示一方面PQ的方向完全由直線的方向而定(與法向量共線),另一方面PQ的長度又與點P有關,它的長度又如何控制下來?所以有思路五,由師生一起分析,取λλ(A, B )法向量n=,而PQ = n,以下只要求得,就可以得到距離.
2.3分工合作自主完成
學生提出了不同的解決方案,究竟哪種好呢?如果讓每位學生都去用不同解法探求,在課堂上時間顯然是不允許的,但教學中又要培養(yǎng)學生的運算能力,如何解決這種矛盾呢?現(xiàn)代教育要求學生要有自主學習、合作學習能力,因此我叫學生對五種思路進行分組練習.
在學生求解過程中,我巡視,觀看學生解題,了解情況,根據課堂時間的實際情況,選取做好的學生的解題過程用實物投影儀顯示.這樣不僅能讓全體學生看到不同思路的具體解法,還能得出最佳解題方案,接著我展示最佳解題方案的規(guī)范步驟.目的讓學生有良好的規(guī)范的書面表達習慣,起到教師典范的作用.
2.4公式小結概括提升
公式推導出,學生有了成功的喜悅.我也給予了肯定.但是由于公式的結果是一般情況得出的,而對于當A = 0,或B = 0時,點在直線上是否成立,它們與當AB ≠ 0時,點在直線外有什么關系?這并沒有驗證.而我們要求學生考慮問題要全面,為此我提出提問:①上式是由條件下當AB ≠ 0時得出,對當A = 0,或B = 0時成立嗎?②點P在直線l上成立嗎?③公式結構特點是什么?用公式時直線方程是什么形式?通過學生的討論,使學生了解公式適用的范圍:任意點、任意直線.同時體現(xiàn)整體認識和分類討論思想.
依據新課程的理念,教師要創(chuàng)造性地使用教材.在公式的推導過程中,我做了和教材不同的處理方法:(1)先特殊后一般的證法,(2)多角度構造三角形,(3)知識聯(lián)系,向量解決.目的是讓學生在考慮問題時有特殊到一般的意識,符合學生認知規(guī)律,使問題的解決循序漸進.向量是新教材內容,是一種很好的數(shù)學工具,和解析幾何結合應用是現(xiàn)在新教材知識的交匯點.而多角度考慮問題,發(fā)散學生思維.
。ㄈ變式訓練學會應用]
1、這一環(huán)節(jié)解決的主要問題是:
通過練習,熟悉公式結構,記憶并簡單應用公式.通過例題的不同解法,進一步讓學生體會轉化(或化歸)的數(shù)學思想.
2、具體教學安排:
由學生完成下列練習:
。1)解決課堂提出的實際問題.(學生口答)
(2)求點P0(-1,2)到下列直線的距離:
、3x=2 ②5y=3 ③2x+y=10 ④y=-4x+1
設計說明:練習1的設計解決了上課開始提出的實際問題.練習2的設計故意選特殊直線和非直線方程一般式,主要強調在公式應用時,直線方程是一般式,應用公式的準確性.
例題(3)求平行線2x-7y+8=0和2x-7y-6=0的距離.
我選取的是課本例題,課本只有一種具體點的解法.我通過本節(jié)課的學習,讓學生對知識從深度和廣度上進行挖掘.通過幾何畫板的演示,讓學生直觀看到思考問題的方法.除了選擇直線上的點,還可以選取原點,求它到兩條直線的距離,然后作和.或者選取直線外的點P,求它到兩條直線的距離,然后作差.由特殊點到任意點,由特殊直線到任意直線,從而延伸出兩平行線間的距離.目的是在整個過程中,讓學生注意體會解題方法中的靈活性以及轉化等數(shù)學思想方法.
(四)[學生小結教師點評]
1、這一環(huán)節(jié)解決的主要問題和達到的目的是:
通過師生共同小結,鞏固所學知識,提煉用到的解決問題的方法,其中蘊涵的數(shù)學思想方法,培養(yǎng)學生歸納概括能力.
2、具體教學安排:
本節(jié)課小結主要由學生完成知識總結,通過學習知識所體驗到的數(shù)學思想方法,由學生總結和相互補充,教師適當點評,加以經驗總結.
。ㄎ澹課外練習鞏固提高]
1課本習題7.3的第13題—16題;
2 總結寫出點到直線距離公式的多種方法.
設計說明:作業(yè)1是課本習題,檢查學生所學知識掌握的程度.作業(yè)2是根據課堂分析,讓學生總結公式推導的方法.除了課堂上想到的方法還可以繼續(xù)思考,比如在用兩點距離公式整體代換等方法,發(fā)揮學生學習的自主性和思維的廣闊性.
四、關于教學評價的設計
新課程標準提出要加強過程性評價,因而在具體教學過程中,我對于學生的語言與行為的表現(xiàn),及時給予肯定性的表揚和鼓勵;學生思維暴露出問題時及時評價,矯正思維方向,調整教學思路;為了獲得后反饋信息,布置作業(yè),通過觀察學生完成作業(yè)情況,了解學生在知識技能和數(shù)學方法方面的收獲和不足,指導我今后教學.整個教學評價是在師生互動中完成的.
以上是我對這節(jié)課的設計,懇請各位專家和老師批評、指正.
謝謝!
高二數(shù)學說課稿5
一、概說
1.教材分析:
橢圓及其標準方程是圓錐曲線的基礎,它的學習方法對整個這一章具有導向和引領作用,直接影響其他圓錐曲線的學習。是后繼學習的基礎和范示。同時,也是求曲線方程的深化和鞏固。
2.教學分析:
橢圓及其標準方程是培養(yǎng)學生觀察、分析、發(fā)現(xiàn)、概括、推理和探索能力的極好素材。本節(jié)課通過創(chuàng)設情景、動手操作、總結歸納,應用提升等探究性活動,培養(yǎng)學生的數(shù)學創(chuàng)新精神和實踐能力,使學生掌握坐標法的規(guī)律,掌握數(shù)學學科研究的基本過程與方法。
3.學生分析:
高中二年級學生正值身心發(fā)展的鼎盛時期,思維活躍,又有了相應知識基礎,所以他們樂于探索、敢于探究。但高中生的邏輯思維能力尚屬經驗型,運算能力不是很強,有待于訓練。
基于上述分析,我采取的是教學方法是“問題誘導--啟發(fā)討論--探索結果”以及“直觀觀察--歸納抽象--總結規(guī)律”的一種研究性教學方法,注重“引、思、探、練”的結合。
引導學生學習方式發(fā)生轉變,采用激發(fā)興趣、主動參與、積極體驗、自主探究的學習,形成師生互動的教學氛圍。
我設定的'教學重點是:橢圓定義的理解及標準方程的推導。
教學難點是:標準方程的推導。
二、目標說明:
根據數(shù)學教學大綱要求確立“三位一體”的教學目標。
1.知識與技能目標:
理解橢圓定義、掌握標準方程及其推導。
2.過程與方法目標:注重數(shù)形結合,掌握解析法研究幾何問題的一般方法,注重探索能力的培養(yǎng)。
3.情感、態(tài)度和價值觀目標:
(1)探究方法激發(fā)學生的求知欲,培養(yǎng)濃厚的學習興趣。
(2)進行數(shù)學美育的滲透,用哲學的觀點指導學習。
三、過程說明:
依據“一個為本,四個調整”的新的教學理念和上述教學目標設計教學過程!耙詫W生發(fā)展為本,新型的師生關系、新型的教學目標、新型的教學方式、新型的呈現(xiàn)方式”體現(xiàn)如下:
(一)對教材的重組與拓展:根據教學目標,選擇教學內容,遵循拓展、開放、綜合的原則。教材中對橢圓定義盡管很嚴密,但不夠直觀,所以增加了影音文件:海爾波譜彗星的運行軌道圖,最后,讓學生交流用幾何畫板畫橢圓以及5個探究性問題,作為對教材的拓展。
(二)在教學過程中的體現(xiàn):
1.新課導入:以影音文件“海爾波譜彗星的運行軌道示意圖”導入,呈現(xiàn)方式具有新異性,激發(fā)學習興趣;畫板畫圖,增強動手操作意識,直觀形象從而引入橢圓定義,進而研究橢圓標準方程。
2.新課呈現(xiàn):
學生通過觀看文件、動手操作,然后自己總結橢圓定義,符合從感性上升為理性的認知規(guī)律,而且提升了抽象概括的能力。然后,進行推導橢圓的標準方程,培養(yǎng)運算能力,進而探討標準方程的特點。教師作為熱烈討論的平等氛圍中的引導者,鼓勵學生大膽探究、勇于創(chuàng)新,積極談論和參與體驗,培養(yǎng)嚴謹?shù)倪壿嬎季S,抽象概括的能力,滲透數(shù)學美學教育,掌握數(shù)形結合的重要數(shù)學思想,最后的幾個探究性問題鼓勵學生積極探索,敢于探究,轉變學習方式。
3.鞏固應用
根據定義及其標準方程,設計三組九道練習題,引導學生聯(lián)系、思考、討論、反饋、矯正,增強運用能力。
4.繼續(xù)探究:
(1)觀察橢圓形狀,不同原因在哪里;
(2)改變繩長或變換焦點位置再畫橢圓,發(fā)現(xiàn)關系;
(3)用幾何畫板交流畫圖,觀察形狀變化;
(4)如何描述形狀變化?
引導學生探究欲望,開展研究性學習。
四、評價說明
本節(jié)課的學生評價堅持形成性評價和階段性評價相結合的原則。
(一)形成性評價:從操作能力、概括能力、學習興趣、交流合作、情緒情感方面對學習效果進行過程評價。對出現(xiàn)問題的學生,教師指出其可取之處并耐心引導,這樣有助于培養(yǎng)他們勇于面對挫折,持之以恒地科學探索精神;當學生做的精彩有創(chuàng)新,教師給予學生充分的鼓勵,從而進一步激發(fā)學生創(chuàng)造的潛能,提高他們的創(chuàng)新能力。
(二)階段性評價:從單元測試、期中測試等方面對學生的階段性學習成果進行測試。評價結果以每次測試成績和學生平時的綜合表現(xiàn)為依據。同時要進行學生的自我評價以及教師對行動的綜合性評價。
(三)教師自我反思評價:本課充分體現(xiàn)了“一個為本,四個調整”的新課程理念。
五、說課總結
這節(jié)課使用計算機網絡技術,展現(xiàn)知識的發(fā)生過程,是學生始終處于問題探索研究狀態(tài)之中,激情引趣。注重數(shù)學科學研究方法的掌握,是研究性教學的一次有益嘗試。有利于改變學生的學習方式,有利于學生自主探究,有利于學生的實踐能力和創(chuàng)新意識的培養(yǎng)。
高二數(shù)學說課稿6
一、教學設計
——人教A版數(shù)學選修2-3第1章第3節(jié)第2課時
一、教材背景分析
1.教材的地位和作用
《“楊輝三角”與二項式系數(shù)的性質》是全日制普通高級中學教科書人教A版選修2-3第1章第3節(jié)第2課時. 教科書將二項式系數(shù)性質的討論與“楊輝三角”結合起來,是因為“楊輝三角”蘊含了豐富的內容,由它可以直觀看出二項式系數(shù)的性質,“楊輝三角”是我國古代數(shù)學重要成就之一,顯示了我國古代人民的卓越智慧和才能,應抓住這一題材,對學生進行愛國主義教育,激勵學生的民族自豪感.
本節(jié)內容以前面學習的二項式定理為基礎,由于二項式系數(shù)組成的數(shù)列就是一個離散函數(shù),引導學生從函數(shù)的角度研究二項式系數(shù)的性質,便于建立知識的前后聯(lián)系,使學生體會用函數(shù)知識研究問題的方法,可以畫出它的圖象,利用幾何直觀、數(shù)形結合、特殊到一般的數(shù)學思想方法進行思考,這對發(fā)現(xiàn)規(guī)律,形成證明思路等都有好處. 這一過程不僅有利于培養(yǎng)學生的思維能力、理性精神和實踐能力,也有利于學生理解本節(jié)課的核心數(shù)學知識,發(fā)展其數(shù)學應用意識.
研究二項式系數(shù)這組特定的組合數(shù)的性質,對鞏固二項式定理,建立相關知識之間的聯(lián)系,進一步認識組合數(shù)、進行組合數(shù)的計算和變形都有重要的作用,對后續(xù)學習微分方程等也具有重要地位.
2.學情分析
知識結構:學生已學習兩個計數(shù)原理和二項式定理,再讓學生課前探究“楊輝三角”包含的規(guī)律,結合“楊輝三角”,并從函數(shù)的角度研究二項式系數(shù)的性質.
心理特征:高二的學生已經具備了一定的分析、探究問題的能力,恰時恰點的問題引導就能建立知識之間的相互聯(lián)系,解決相關問題.
3.教學重點與難點
重點:體會用函數(shù)知識研究問題的方法,理解二項式系數(shù)的性質.
難點:結合函數(shù)圖象,理解增減性與最大值時,根據n的奇偶性確定相應的分界點;利用賦值法證明二項式系數(shù)的性質.
關鍵:函數(shù)思想的滲透.
二、教學目標
1.通過課前組織學生開展“了解楊輝三角、探究與發(fā)現(xiàn)楊輝三角包含的規(guī)律”的學習活動,讓學生感受我國古代數(shù)學成就及其數(shù)學美,激發(fā)學生的民族自豪感.
2.通過學生從函數(shù)的角度研究二項式系數(shù)的性質,建立知識的前后聯(lián)系,體會用函數(shù)知識研究問題的方法,培養(yǎng)學生的觀察能力和歸納推理能力.
3.通過體驗“發(fā)現(xiàn)規(guī)律、尋找聯(lián)系、探究證明、性質運用”的學習過程,使學生掌握二項式系數(shù)的一些性質,體會應用數(shù)形結合、特殊到一般進行歸納、賦值法等重要數(shù)學思想方法解決問題的“再創(chuàng)造”過程.
4.通過恰時恰點的問題引入、引申,采用學生課前自主探究、課上合作探究、課下延伸探究的學習方式,培養(yǎng)學生問題意識,提高學生思維能力,孕育學生創(chuàng)新精神,激發(fā)學生探索、研究我國古代數(shù)學的熱情.
三、教法選擇和學法指導
教法:問題引導、合作探究.
學法:從課前探究和課上展示中感知規(guī)律,結合“楊輝三角”和函數(shù)圖象性質領悟性質,在探究證明性質中理解知識,螺旋上升地學習核心數(shù)學知識和滲透重要數(shù)學思想.
四、教學基本流程設計
五、教學過程
1. 展示成果話楊輝
課前開展學習活動:了解“楊輝三角”的歷史背景、地位和作用,探究與發(fā)現(xiàn)“楊輝三角”包含的規(guī)律.
。1)學生從不同的角度暢談“楊輝三角”,對它有何了解及認識.
。2)各小組展示探究與發(fā)現(xiàn)的成果——“楊輝三角”包含的一些規(guī)律.
【設計意圖】引導學生開展課外學習,了解“楊輝三角”,探究與發(fā)現(xiàn)“楊輝三角”包含的規(guī)律,弘揚我國古代數(shù)學文化;展示探究與發(fā)現(xiàn)的楊輝三角的規(guī)律,為學習二項式系數(shù)的性質埋下伏筆.
2. 感知規(guī)律悟性質
通過課外學習,同學們觀察發(fā)現(xiàn)了楊輝三角的一些規(guī)律,并且知道楊輝三角的第 行就是 展開式的二項式系數(shù), 展開式的二項式系數(shù)具有楊輝三角同行中的規(guī)律——對稱性和增減性與最大值.
【設計意圖】尋找二項式系數(shù)與楊輝三角的關系,從而讓學生理解二項式系數(shù)具有楊輝三角同行中的規(guī)律.
3. 聯(lián)系舊知探新知
【問題提出】怎樣證明 展開式的二項式系數(shù)具有對稱性和增減性與最大值呢?
【問題探究】探究:(1) 展開式的'二項式系數(shù) , 可以看成是以 為自變量的函數(shù) 嗎?它的定義域是什么?
。2)畫出 和7時函數(shù) 的圖象,并觀察分析他們是否具有對稱性和增減性與最大值.
。3)結合楊輝三角和所畫函數(shù)圖象說明或證明二項式系數(shù)的性質.
對稱性:與首末兩端“等距離”的兩個二項式系數(shù)相等. .
增減性與最大值: ,所以 相對于 的增減情況由 決定.由 可知,當 時,二項式系數(shù)是逐漸增大的.由對稱性知它的后半部分是逐漸減小的,且在中間取得最大值.當 的偶數(shù)時,中間的一項取得最大值;當 是奇數(shù)時,中間的兩項 , 相等,且同時取得最大值.
【設計意圖】教師引導學生用函數(shù)思想探究二項式系數(shù)的性質,學生畫圖并觀察分析圖象性質;運用特殊到一般、數(shù)形結合的數(shù)學思想歸納二項式系數(shù)的性質,升華認識;通過分組討論、自主探究、合作交流,說明或證明二項式系數(shù)的對稱性和增減性與最大值,提高學生合作意識.
4. 合作交流議方法
【繼續(xù)探究】問題: 展開式的各二項式系數(shù)的和是多少?
探究:(1)計算 展開式的二項式系數(shù)的和( =1,2,3,4,5,6).
(2)猜想 展開式的二項式系數(shù)的和.
。3)怎樣證明你猜想的結論成立?
賦值法:已知 ,
令 ,則 .
這就是說, 的展開式的各個二項式系數(shù)的和等于 .
元集合子集的個數(shù)(兩個計數(shù)原理).
分類計數(shù)原理:
分步計數(shù)原理: 個2相乘,即 .
所以 .
【問題拓展】你能求 嗎?
在展開式 中,令 ,
則得 ,
即 ,所以 ,
在 的展開式中,奇數(shù)項的二項式系數(shù)的和等于偶數(shù)項的二項式系數(shù)的和.
【設計意圖】通過學生歸納猜想各二項式系數(shù)的和,引導學生驗證猜想結論是否正確;同時為了突破利用賦值法證明二項式系數(shù)性質的難點,引導學生從模型化的角度出發(fā),多角度的分析問題、探究問題、解決問題,將學生思維推向高潮,既加深學生對前后知識的內在聯(lián)系的理解,又從深度和廣度上讓學生感受數(shù)學知識的串聯(lián)和呼應.
5. 反饋升華撥思路
練1. 的展開式中的第四項和第八項的二項式系數(shù)相等,則 等于 .
練2. 的展開式中前 項的二項式系數(shù)逐漸增大,后半部分逐漸減小,二項式系數(shù)取得最大值的是第 項.
練3.已知 ,求:
。1) ;(2) .
【設計意圖】促進學生進一步掌握二項式系數(shù)的性質,學會用賦值法解決問題,促進其有意識的運用.
6. 懸念小結再求索
【課堂小結】 通過本節(jié)課的學習,你有什么收獲和體會(從數(shù)學和生活的角度)?還有什么疑問嗎?
【課堂延伸】今天同學們展示了一些楊輝三角的規(guī)律,但是作為我國古代數(shù)學重要成就之一的楊輝三角還有更多有趣的規(guī)律,相信大家一定有極高的熱情和嚴謹?shù)膽B(tài)度去探究與發(fā)現(xiàn)楊輝三角的奧妙之處.
【課外活動】(研究性學習)
活動主題:楊輝三角中的奧妙.
活動目標:探究與發(fā)現(xiàn)楊輝三角中的更多奧妙.
活動方案步驟:查閱資料,收集信息;獨立思考,發(fā)現(xiàn)規(guī)律,猜想證明;合作探究,小組討論,形成初步結論;與指導老師及其他小組成員交流展示;撰寫研究性學習報告.
【設計意圖】通過課堂的整理、總結與反思,使學生更好的掌握主干知識,體會探究過程中滲透的數(shù)學思想方法,再次感受我國古代數(shù)學成就,激勵自己努力學習.“楊輝三角”還有很多有趣的規(guī)律,讓學生帶著問題走進課堂,帶著疑問離開教室,培養(yǎng)學生自主研修的習慣,提高學生探究問題、解決問題的能力.設計研究性學習活動,誘發(fā)學生創(chuàng)造性的想象和推理.同時教會學生如何開展研究性學習.
高二數(shù)學說課稿7
一、教材背景分析。
1.教材的地位和作用。
《“楊輝三角”與二項式系數(shù)的性質》是全日制普通高級中學教科書人教a版選修2-3第1章第3節(jié)第2課時.教科書將二項式系數(shù)性質的討論與“楊輝三角”結合起來,是因為“楊輝三角”蘊含了豐富的內容,由它可以直觀看出二項式系數(shù)的性質,“楊輝三角”是我國古代數(shù)學重要成就之一,顯示了我國古代人民的卓越智慧和才能,應抓住這一題材,對學生進行愛國主義教育,激勵學生的民族自豪感.
本節(jié)內容以前面學習的二項式定理為基礎,由于二項式系數(shù)組成的數(shù)列就是一個離散函數(shù),引導學生從函數(shù)的角度研究二項式系數(shù)的性質,便于建立知識的前后聯(lián)系,使學生體會用函數(shù)知識研究問題的方法,可以畫出它的圖象,利用幾何直觀、數(shù)形結合、特殊到一般的數(shù)學思想方法進行思考,這對發(fā)現(xiàn)規(guī)律,形成證明思路等都有好處.這一過程不僅有利于培養(yǎng)學生的思維能力、理性精神和實踐能力,也有利于學生理解本節(jié)課的核心數(shù)學知識,發(fā)展其數(shù)學應用意識.
研究二項式系數(shù)這組特定的組合數(shù)的性質,對鞏固二項式定理,建立相關知識之間的聯(lián)系,進一步認識組合數(shù)、進行組合數(shù)的計算和變形都有重要的作用,對后續(xù)學習微分方程等也具有重要地位.
2.學情分析。
知識結構:學生已學習兩個計數(shù)原理和二項式定理,再讓學生課前探究“楊輝三角”包含的規(guī)律,結合“楊輝三角”,并從函數(shù)的角度研究二項式系數(shù)的性質.
心理特征:高二的學生已經具備了一定的分析、探究問題的能力,恰時恰點的問題引導就能建立知識之間的相互聯(lián)系,解決相關問題.
3.教學重點與難點。
重點:體會用函數(shù)知識研究問題的方法,理解二項式系數(shù)的性質.
難點:結合函數(shù)圖象,理解增減性與最大值時,根據n的奇偶性確定相應的分界點;利用賦值法證明二項式系數(shù)的性質.
關鍵:函數(shù)思想的滲透.
1.通過課前組織學生開展“了解楊輝三角、探究與發(fā)現(xiàn)楊輝三角包含的規(guī)律”的學習活動,讓學生感受我國古代數(shù)學成就及其數(shù)學美,激發(fā)學生的民族自豪感.
2.通過學生從函數(shù)的角度研究二項式系數(shù)的性質,建立知識的前后聯(lián)系,體會用函數(shù)知識研究問題的方法,培養(yǎng)學生的觀察能力和歸納推理能力.
3.通過體驗“發(fā)現(xiàn)規(guī)律、尋找聯(lián)系、探究證明、性質運用”的學習過程,使學生掌握二項式系數(shù)的一些性質,體會應用數(shù)形結合、特殊到一般進行歸納、賦值法等重要數(shù)學思想方法解決問題的“再創(chuàng)造”過程.
4.通過恰時恰點的問題引入、引申,采用學生課前自主探究、課上合作探究、課下延伸探究的學習方式,培養(yǎng)學生問題意識,提高學生思維能力,孕育學生創(chuàng)新精神,激發(fā)學生探索、研究我國古代數(shù)學的熱情.
教法:問題引導、合作探究.。
學法:從課前探究和課上展示中感知規(guī)律,結合“楊輝三角”和函數(shù)圖象性質領悟性質,在探究證明性質中理解知識,螺旋上升地學習核心數(shù)學知識和滲透重要數(shù)學思想.
1.展示成果話楊輝。
課前開展學習活動:了解“楊輝三角”的歷史背景、地位和作用,探究與發(fā)現(xiàn)“楊輝三角”包含的規(guī)律.
。1)學生從不同的角度暢談“楊輝三角”,對它有何了解及認識.
。2)各小組展示探究與發(fā)現(xiàn)的成果——“楊輝三角”包含的一些規(guī)律.
【設計意圖】引導學生開展課外學習,了解“楊輝三角”,探究與發(fā)現(xiàn)“楊輝三角”包含的規(guī)律,弘揚我國古代數(shù)學文化;展示探究與發(fā)現(xiàn)的楊輝三角的規(guī)律,為學習二項式系數(shù)的性質埋下伏筆.
2.感知規(guī)律悟性質。
通過課外學習,同學們觀察發(fā)現(xiàn)了楊輝三角的一些規(guī)律,并且知道楊輝三角的第行就是展開式的二項式系數(shù),展開式的二項式系數(shù)具有楊輝三角同行中的規(guī)律——對稱性和增減性與最大值.
【設計意圖】尋找二項式系數(shù)與楊輝三角的關系,從而讓學生理解二項式系數(shù)具有楊輝三角同行中的規(guī)律.
3.聯(lián)系舊知探新知。
【問題提出】怎樣證明展開式的二項式系數(shù)具有對稱性和增減性與最大值呢?
。2)畫出和7時函數(shù)的圖象,并觀察分析他們是否具有對稱性和增減性與最大值.
。3)結合楊輝三角和所畫函數(shù)圖象說明或證明二項式系數(shù)的性質.
對稱性:與首末兩端“等距離”的兩個二項式系數(shù)相等..。
【設計意圖】教師引導學生用函數(shù)思想探究二項式系數(shù)的性質,學生畫圖并觀察分析圖象性質;運用特殊到一般、數(shù)形結合的數(shù)學思想歸納二項式系數(shù)的性質,升華認識;通過分組討論、自主探究、合作交流,說明或證明二項式系數(shù)的對稱性和增減性與最大值,提高學生合作意識.
4.合作交流議方法。
【繼續(xù)探究】問題:展開式的各二項式系數(shù)的和是多少?
探究:(1)計算展開式的二項式系數(shù)的和(=1,2,3,4,5,6).
。2)猜想展開式的二項式系數(shù)的和.
。3)怎樣證明你猜想的結論成立?
賦值法:已知,令,則.。
這就是說,的展開式的各個二項式系數(shù)的和等于.。
元集合子集的個數(shù)(兩個計數(shù)原理).
分類計數(shù)原理:
分步計數(shù)原理:個2相乘,即.。
所以.。
【問題拓展】你能求嗎?
在展開式中,令,則得,即,所以,在的展開式中,奇數(shù)項的二項式系數(shù)的和等于偶數(shù)項的二項式系數(shù)的和.
【設計意圖】通過學生歸納猜想各二項式系數(shù)的和,引導學生驗證猜想結論是否正確;同時為了突破利用賦值法證明二項式系數(shù)性質的難點,引導學生從模型化的角度出發(fā),多角度的分析問題、探究問題、解決問題,將學生思維推向高潮,既加深學生對前后知識的內在聯(lián)系的理解,又從深度和廣度上讓學生感受數(shù)學知識的串聯(lián)和呼應.
5.反饋升華撥思路。
練1.的展開式中的第四項和第八項的'二項式系數(shù)相等,則等于.
練2.的展開式中前項的二項式系數(shù)逐漸增大,后半部分逐漸減小,二項式系數(shù)取得最大值的是第項.
練3.已知,求:
。1);(2).
6.懸念小結再求索。
【課堂延伸】今天同學們展示了一些楊輝三角的規(guī)律,但是作為我國古代數(shù)學重要成就之一的楊輝三角還有更多有趣的規(guī)律,相信大家一定有極高的熱情和嚴謹?shù)膽B(tài)度去探究與發(fā)現(xiàn)楊輝三角的奧妙之處.
【課外活動】(研究性學習)。
活動主題:楊輝三角中的奧妙.
活動目標:探究與發(fā)現(xiàn)楊輝三角中的更多奧妙.
活動方案步驟:查閱資料,收集信息;獨立思考,發(fā)現(xiàn)規(guī)律,猜想證明;合作探究,小組討論,形成初步結論;與指導老師及其他小組成員交流展示;撰寫研究性學習報告.
【設計意圖】通過課堂的整理、總結與反思,使學生更好的掌握主干知識,體會探究過程中滲透的數(shù)學思想方法,再次感受我國古代數(shù)學成就,激勵自己努力學習.“楊輝三角”還有很多有趣的規(guī)律,讓學生帶著問題走進課堂,帶著疑問離開教室,培養(yǎng)學生自主研修的習慣,提高學生探究問題、解決問題的能力.設計研究性學習活動,誘發(fā)學生創(chuàng)造性的想象和推理.同時教會學生如何開展研究性學習.
導數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法。在前面幾節(jié)課里學生對導數(shù)的概念已經有了充分的認識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導數(shù)的幾何意義,更有利于學生理解導數(shù)概念的本質內涵。這節(jié)課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發(fā)現(xiàn)、思維、運用形成完整概念。通過本節(jié)的學習,可以幫助學生更好的體會導數(shù)是研究函數(shù)的單調性、變化快慢等性質最有效的工具,是本章的關鍵內容。
2、教學的重點、難點、關鍵。
教學重點:導數(shù)的幾何意義、切線方程的求法以及“數(shù)形結合,逼近”的思想方法。
教學難點:理解導數(shù)的幾何意義的本質內涵。
1)從割線到切線的過程中采用的逼近方法;
2)理解導數(shù)的概念,將多方面的意義聯(lián)系起來,例如,導數(shù)反映了函數(shù)f(x)在點x附近的變化快慢,導數(shù)是曲線上某點切線的斜率,等等。
根據新課程標準的要求、學生的認知水平,確定教學目標如下:
1、知識與技能:
通過實驗探求理解導數(shù)的幾何意義,理解曲線在一點的切線的概念,會求簡單函數(shù)在某點的切線方程。
2、過程與方法:
經歷切線定義的形成過程,培養(yǎng)學生分析、抽象、概括等思維能力;體會導數(shù)的思想及內涵,完善對切線的認識和理解。
通過逼近、數(shù)形結合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。
3、情感態(tài)度與價值觀:
對于直線來說它的導數(shù)就是它的斜率,學生會很自然的思考導數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學過了圓錐曲線,學生對曲線的切線的概念也有了一些認識,基于以上學情分析,我確定下列教法:
學法:為了發(fā)揮學生的主觀能動性,提高學生的綜合能力,本節(jié)課采取了自主、合作、探究的學習方法。
教具:幾何畫板、幻燈片。
高二數(shù)學說課稿8
一、說教材:
1、教材的地位與作用
導數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法。在前面幾節(jié)課里學生對導數(shù)的概念已經有了充分的認識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導數(shù)的幾何意義,更有利于學生理解導數(shù)概念的本質內涵。這節(jié)課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發(fā)現(xiàn)、思維、運用形成完整概念。通過本節(jié)的學習,可以幫助學生更好的體會導數(shù)是研究函數(shù)的單調性、變化快慢等性質最有效的工具,是本章的關鍵內容。
2、教學的重點、難點、關鍵
教學重點:導數(shù)的幾何意義、切線方程的求法以及“數(shù)形結合,逼近”的思想方法。
教學難點:理解導數(shù)的幾何意義的本質內涵
1)從割線到切線的過程中采用的逼近方法;
2)理解導數(shù)的概念,將多方面的意義聯(lián)系起來,例如,導數(shù)反映了函數(shù)f(x)在點x附近的變化快慢,導數(shù)是曲線上某點切線的斜率,等等。
二、說教學目標:
根據新課程標準的要求、學生的認知水平,確定教學目標如下:
1、知識與技能:
通過實驗探求理解導數(shù)的幾何意義,理解曲線在一點的切線的概念,會求簡單函數(shù)在某點的切線方程。
2、過程與方法:
經歷切線定義的形成過程,培養(yǎng)學生分析、抽象、概括等思維能力;體會導數(shù)的思想及內涵,完善對切線的認識和理解。
通過逼近、數(shù)形結合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。
3、情感態(tài)度與價值觀:
滲透逼近、數(shù)形結合、以直代曲等數(shù)學思想,激發(fā)學生學習興趣,引導學生領悟特殊與一般、有限與無限,量變與質變的辯證關系,感受數(shù)學的統(tǒng)一美,意識到數(shù)學的應用價值
三、說教法與學法
對于直線來說它的導數(shù)就是它的斜率,學生會很自然的'思考導數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學過了圓錐曲線,學生對曲線的切線的概念也有了一些認識,基于以上學情分析,我確定下列教法:
教法:從圓的切線的定義引入本課,再引導學生討論一般曲線的切線的定義,通過幾何畫板的動畫演示,得出曲線的切線的“逼近”法的定義。同樣通過幾何畫板的實驗觀察得到導數(shù)的幾何意義和直觀感知“逼近”的數(shù)學思想。因此,我采用實驗觀察法、探究性研究教學和信息技術輔助教學法相結合,以突出重點和突破難點;
學法:為了發(fā)揮學生的主觀能動性,提高學生的綜合能力,本節(jié)課采取了自主、合作、探究的學習方法。
教具:幾何畫板、幻燈片
高二數(shù)學說課稿9
一、教材分析
本節(jié)課人教版普通高中課程標準實驗教科書數(shù)學必修3第三章概率第二節(jié)古典概型的第一課時。古典概型是在隨機事件的概率之后,幾何概型之前進行教學的。古典概型是一種理想的數(shù)學模型,也是一種最基本的概率模型,它的引入避免了大量的重復試驗,而且得到的是概率準確值,有利于理解概率的概念,有利于計算一些簡單事件的概率,有利于解釋生活中的一些現(xiàn)象與問題。而接下來要學習的幾何概型與古典概型有很多相通之處,學好古典概型可以為學習幾何概型奠定基礎,起到了承前啟后的作用。古典概型在高等數(shù)學中概率論中也占有相當重要的地位,為學生學習高等數(shù)學做好銜接和鋪墊。
二、學情分析
認知分析:
學生已經了解概率的意義,掌握了概率的基本性質,知道了互斥事件和對立事件的概率公式,這三者形成了學生思維的“最近發(fā)展區(qū)”。 此時學生們并沒有學習排列組合的知識。隨機事件的概率在教材中主要通過觀察和試驗的方法,得到一些事件的概率估計,學生的認知水平更多的停留在感性認識的層面,還未上升到理性認識的高度。
能力分析:
學生已經具備了一定的歸納、猜想能力,但數(shù)學的理性的思維能力和應用意識仍需提高。 但對知識的理解和方法的掌握在一些細節(jié)上不完備,反映在解題中就是思維不慎密,過程不完整,解決問題的能力還略顯單薄。
情感分析:
由于本章開始的內容起點低,坡度小,與實際聯(lián)系緊密,多數(shù)學生對本章的學習有一定的興趣,心里有想好好學習的意愿和信心。
三、教學目標
在新課標讓學生經歷“學數(shù)學、做數(shù)學、用數(shù)學”的理念指導下,以教材為背景,我將本節(jié)課的教學目標分為以下三個方面:
知識與技能:
1。理解古典概型的概念
2。利用古典概型求解隨機事件的概率
過程與方法:
在教學過程中,進一步發(fā)展學發(fā)現(xiàn)問題,分析問題,解決問題的能力;培養(yǎng)學生歸納、類比等合情推理能力;培養(yǎng)學生的應用能力與意識。
情感態(tài)度與價值觀:
激發(fā)學生學習數(shù)學的熱情,培養(yǎng)學生勇于探索,善于發(fā)現(xiàn)的創(chuàng)新思想;結合問題的現(xiàn)實意義,培養(yǎng)學生的合作精神。
四、教學重點與難點
重點:理解古典概型的概念及概率公式,并能簡單應用。
難點:基本事件的理解。
對于本節(jié)課難點的確定我認真研讀了教材和教參,開始確定了三個教學難點。結合自己的教學經驗并同組教師進行探討后,最后確定為一個:基本事件的理解。因為本節(jié)課只要能對基本事件理解到位,判斷是否為古典概型,以及發(fā)現(xiàn)古典概型的概率公式就基本上都能迎刃而解了。對于難點的突破,我并沒有要求學生一步到位,而把理解的過程貫穿在本節(jié)課的始終。采用的方法是先是體驗,后了解,然后再體驗,最后爭取讓學生達到理解的層次。
五、教法學法
教法:根據本節(jié)課的特點,采取引導發(fā)現(xiàn)與歸納概括相結合的教學方法,融入問題式教學。通過提出問題、分析問題、解決問題等教學過程一步步歸納概括出古典概型的概念及其概率公式,再通過具體問題的提出和解決,讓學生體會到成功的喜悅,從而激發(fā)學生的學習興趣,調動他們的主觀能動性。采用多媒體教學手段,增強直觀性增大教學容量,力爭提高課堂教學效率。
學法:首先應該給自己積極的心理暗示,數(shù)學是可以學好的,也是有樂趣的,更是有用的。在教師的引導下,認真觀察思考,大膽嘗試,以提高提出問題、分析問題、解決問題的能力。注重數(shù)學思想的提升,通過數(shù)學語言的組織表達,鍛煉自己思維的嚴密性。合作探究,共同進步,體驗成功的喜悅,培養(yǎng)合作意識和能力,為以后的發(fā)展打下良好的基礎。
六、教學過程
1、聚焦課堂
通過實驗和觀察的方法,我們可以得到一些事件的概率估計。但這種方法耗時多,而且得到的僅是概率的近似值。在一些特殊情況下,我們需要尋找計算事件概率的通用方法。今天我們要學習的就是概率的一種特殊模型———古典概型。
2、明確目標
。1)理解基本事件的含義
。2)理解古典概型及其概率計算公式,解決一些簡單的古典概型問題。3。問題驅動
那到底什么樣的概率模型是古典概型呢?古典概型的概率又如何求解呢?為了弄清這兩個問題,先讓學生先考察兩個試驗,分析一下事件的構成。
(1)拋擲一枚質地均勻的硬幣一次(2)拋擲一枚質地均勻的骰子一次
教師提出問題:以上兩個試驗的結果分別有哪些?這些結果具有哪些特點?把每個試驗結果看成一個事件,它們都是隨機事件嗎?第二個試驗中“出現(xiàn)偶數(shù)數(shù)點”可以用這些結果表示嗎?這些隨機試驗結果出現(xiàn)的可能性相等嗎?學生思考并討論,結合教師提出的問題談談自己的看法。
設計意圖:對于這兩個試驗,我并沒有讓學生分組動手實際操作,情形足夠簡單,背景足夠熟悉,無需動手操作。大量的重復試驗可能會導致學生變得茫然,覺得無聊,并不能真正的激發(fā)他們的學習興趣趣,反而浪費了時間。數(shù)學中有的知識點或概念理解起來比較困難,不可能一蹴而就,先讓學生體驗,幫助學生感知基本事件的含義,并為基本事件的`理解這一難點的突破做好鋪墊,讓學生體驗基本事件的的定義和特點的同時,鼓勵學生用自己的語言描述,提高學生的數(shù)學語言的組織能力和表達能力。
4、合作探究、成果展示、師生評價
師生互動中,得出基本事件的定義和特點(教師板書)
。ㄟ^渡性語言)基本事件是我們解決古典概型的前提和基礎,為了加深同學們對基本事件的理解,我們再來看兩道例題。
例1、從字母a,b,c,d中任意取出兩個不同字母的試驗中,有哪些基本事件?
學生獨立思考后回答,教師板書解題過程,強調書寫的規(guī)范性。
基本事件為A??a,b?,B??a,c?,c??a,d?,D??b,c?,E??b,d?,F(xiàn)??c,d?(教師板書) 例2 。某人射擊5槍,命中了3槍,試寫出所有的基本事件(⊙表示命中,X表示未命中 )
方法一:請同學們列舉出所有基本事件(教師板書)(列舉法)
方法二:教師簡單介紹樹狀圖(教師板書),并告知學生樹狀圖也是列舉法的一種表現(xiàn)形式。(樹狀圖)
設計意圖:在列舉法學習中,增加一個例子,分別用樹形狀圖與直接列舉法展示思維過程,讓學生感受求基本事件個數(shù)的一般方法,從而化解由于沒有學習排列組合而學習概率這一教學困惑。
通過思考拋硬幣、擲骰子的試驗和例1、2,讓學生認真體會這些試驗的共同特點,得出古典概型的定義。古典概型的定義(教師板書)
你能舉例說明現(xiàn)實生活中一些古典概型的例子嗎?
設計意圖:通過舉例,加強學生對古典概型的認識,讓學生初步體會把一些實際問題轉化成數(shù)學問題加以解決,培養(yǎng)學生的應用意識。
古典概型是最基本的概率模型,是高考的重點,在高等數(shù)學概率論中也占有相當重要的地位,在現(xiàn)實生活中也有著比較廣泛的應用。學好古典概型是學習其它概型的基礎。下面我們看幾個問題,幫助大家深化一下對古典概型概念的理解。問題(1)問題(2)問題(3)問題(4)問題(5)
學生獨立思考后交換意見,學生代表發(fā)言,其他同學評價補充。
設計意圖:通過正、反兩方面的例子,特別是舉一些破壞了古典概型兩個重要特征的例子,以突破古典概型識別的這一重要知識點,前兩個問題還可以為以后學習幾何概型埋下伏筆。
在解決前面的問題和理解古典概型的概念之后,再引導學生探究問題:例2中,所命中的三槍中,恰好有2槍連中的概率為多少?
學生先獨立思考,然后小組內相互交流,代表發(fā)言,其他同學評價補充。
基本事件總數(shù)為n的古典概型中,包含的基本事件數(shù)為m的隨機事件A的概率是多少? 學生概括總結出古典概型的概率計算公式:p(A)?事件A所含基本事件個數(shù)(教師板書)
基本事件總數(shù)
設計意圖:考慮在學生原有的認知基礎上,使學生逐步感受由特殊到一般的合情推理過程,讓學生體驗到認知的自然升華。在概率的計算上,鼓勵學生嘗試列表和畫出樹狀圖,讓學生感受求基本事件個數(shù)的一般方法,從而化解由于沒有學習排列組合而學習概率這一教學困惑。
過渡性語言引出下面的例題與變式。
例3。單選題是標準化考試中常用的題型,一般是從A,B,C,D四個選項中選擇一個正確答案。如果考生掌握了考察的內容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
變式:在標準化考試中既有單選題又有多選題,多選題是從A,B,C,D四個選項中選出所有正確的答案,同學們可能有一種感覺,如果不知道正確答案,多選題更難猜對,這是為什么?
學生先獨立思考,然后小組內相互交流,合作探究,代表發(fā)言,其他同學評價補充。對于此變式的解題過程,教師板書并強調解題過程的規(guī)范性。
設計意圖:在課本例題后增加一個變式訓練,變式的基本事件為15個,暗示學生在基本事件較多的試驗中,需用分類討論的思想,才能補充不漏快速地寫出所有基本事件。鍛煉學生思維的嚴密性,與嚴謹?shù)闹螌W態(tài)度,并再次感受列舉出所有基本事件在解決古典概型問題的必要性和重要性。
5、拓展提升
練習1:有同學認為,同時拋擲兩枚質地均勻的硬幣一次看成一次試驗,出現(xiàn)的結果有三種情況:全是正面,一正一反,全是反面。所以一次試驗中的基本事件有三個,并且概率都是1。你認為他說的對嗎? 3
設計意圖:這個練習可以檢驗學生基本事件的理解程度,根據學生的實際情況,決定是否進行動手試驗。如果學生真的沒有理解到位,那就必須進行動手進行試驗了,下面的練習2就必須舍棄。原因有兩點:
1。課上時間有限2。基本事件的理解這個難點不能突破,練習2存在的價值也就。
練習2:同時擲兩個骰子,計算:
(1)一共有多少種不同的結果?(多少個基本事件)(2)其中向上的點數(shù)之和是5的結果有多少種?
(3)向上的點數(shù)之和是5的概率是多少?(4)向上的點數(shù)之和是幾的概率最大?此時的概率是多少?
請學生思考,小組交流后代表發(fā)言。
設計意圖:不同思維的角度將古典概型中學生最容易錯的忽視基本事件的“等可能性”暴露出來,以引起學生的注意,在教材的基礎上增加最后一問,使學生對表格能有進一步的認識。本節(jié)課最后一次加深學生對基本事件的理解,再次嘗試突破本節(jié)課的教學難點。
6、當堂反思:
師生共同總結本節(jié)課的內容,學生反思教學目標的完成情況,對于學習中的新問題課下可以多多思考,多多交流,積極找到解決問題的辦法。
七、評價設計說明
根據本節(jié)課的特點,采用引導發(fā)現(xiàn)和歸納概括相結合的教學方法。通過“八步流程”的教學模式,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,讓學生體會成功的喜悅,來激發(fā)學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。本節(jié)課以問題為紐帶,在探究過程中,通過與學生的交流,注意其思想變化,進行恰當引導;通過觀察課上練習和課后作業(yè),課下個別談話的方式,了解學生知識技能和學習方法的不足,用以指導今后的教學。
高二數(shù)學說課稿10
一、教材分析;
本知識來自于人教版高中數(shù)學必修3第一章第二節(jié),著好似一章新知識,該部分知識被安排在五本必修課本中的第三本,處于高中知識的過度階段。而在上課前,無論是老師還是學生,都會有一些相應的問題,下面兩個問題就是兩個比較有代表性的問題。
1、為什么要在數(shù)學中教語句?
2、學語句不上機,是不是紙上談兵?
現(xiàn)在我們來好好研究一下這兩個問題。首先,學語句是為了算法思想,而基本算法語句 是算法思想的直觀表現(xiàn),是程序框圖的語言形式,所以學語句是進一步體會算法思想,進一步提高邏輯思維能力,提高思辨能力和實辨能力。(有條件上機的進行實踐,沒條件上機的進行思辨,在實踐中思辨,在思辨中實踐,提高學生的學習興趣,增加學生的實踐機會)。所以,學語句不上機,不是紙上談兵。
二、學情分析;
在學習基本算法語句之前(本節(jié)課主要講輸入語句、輸出語句與賦值語句),學生已在本章知識的第一節(jié)學習了算法與程序框圖的基本思想與定義,而且該部分與一些初等函數(shù)知識相掛鉤,并且相互結合學習。在此之前,學生在必修1已經對初等函數(shù)知識有了相應的學習與了解。
三、教學法;
該部分知識主要采取說教法進行講授,通過學生所熟悉的生活問題引入課堂,為公式學習創(chuàng)設情境,拉近數(shù)學與現(xiàn)實之間的距離,激發(fā)學生的求知欲,調動學生主體參與的積極性。
四、教學目標;
1、知識目標:
(1)初步了解基本算法語句中的輸入、輸出、賦值語句;
(2)理解算法語句是將算法的各種控制結構變成計算機能夠理解的程序語言;
2、情感目標;
(1)通過對三種語句的實現(xiàn),發(fā)展有條理思考,表達能力,邏輯思維能力;
(2)學習算法語句,幫助學生利用計算機軟件實現(xiàn)算法,活躍思維,提高數(shù)學素質。
五、教學重、難點;
重點:輸入語句、輸出語句、賦值語句的基本結構特點及用法;
難點:輸入語句、輸出語句、賦值語句的意義及作用。
六、教學過程;
例1、引入生活中的例子:“讓一個學生去辦公室?guī)臀胰ノ业霓k公室泡一杯茶”,通過這個例子來聽到學生,讓他們了解其實計算機與人的辦事思維是一樣的。在這個過程中,首先我會告訴學生:辦公室的位置、辦公桌的地點、茶葉、茶杯等信息,即將這些信息輸入到學生的.大腦(該過程等價于計算機的輸入過程);然后學生開始行動,將茶葉、水放入茶杯(該過程等價于計算機的賦值過程);最后學生將完成的茶水給我(該過程等價于計算機的輸出過程)。
通過該例子的引入,使學生對本次課堂所要學習的知識有初步的了解,使他們在接受正式的計算機基本語句之前對該部分知識有一個簡單的邏輯思維,從而使他們更容易接受該部分知識,最后達到減輕學習知識難度的目的,也為后面的學習做鋪墊。
例2、用描點法做函數(shù)y?x3?3x2?24x?30的圖像時,需要求出函數(shù)的自變量和函數(shù)的一組對應值,編寫程序,分別計算出當x??5,?4,?3,?2,?1,0, 1, 2, 3, 4, 5時的函數(shù)值。
(現(xiàn)在教學生來泡茶)算法分析:
根據題意,對于每一個輸入的自變量的值,都要輸出相應的函數(shù)值,寫出算法步驟如下: 第一步,輸入一個自變量x的值。(計算機簡單算法語句的輸入過程,泡茶第一步) 第二部,計算y?x3?3x2?24x?30。
第三部,輸出y。(計算機簡單算法語句的輸出過程,泡茶第三部)
下面,結合上節(jié)課所學的知識,復習并鞏固上節(jié)課所學的程序框圖,將上面的算法分析用程序框圖表示出來。
顯然,這是一個由順序結構構成的算法,按照程序框圖中流程線的方向,引導學生,得出相應的算法語句,最后得出輸入語句、輸出語句、賦值語句的定義。
高二數(shù)學說課稿11
一、說教材分析
1、本節(jié)教材的地位和作用
“三垂線定理”是立體幾何的中重要定理,它是在研究了空間直線和平面垂直關系的基礎上研究空間兩條直線垂直關系的一個重要定理。它既是線面垂直關系的一個應用,又為以后學習面面垂直,研究空間距離、空間角、多面體與旋轉體的性質奠定了基礎,同時這節(jié)課也是培養(yǎng)高一學生空間想象能力和邏輯思維能力的重要內容,對培養(yǎng)學生的探索精神和創(chuàng)新能力都有重要意義。
2、教學內容
本節(jié)課的主要內容是三垂線定理的引出、證明和初步應用。對定理的引出改變了教材中直接給出定理的做法。通過討論空間直線與平面內直線垂直的問題讓學生逐步發(fā)現(xiàn)定理。這樣,學生感到自然,好接受。對教材中的例題有所增加,處理方式也有適當改變。
3、教學目標
根據教學大綱的要求,本節(jié)教材的特點和高一學生對空間圖形的認知特點,我把本節(jié)課的教學目的確定為:
。1)理解三垂線定理的證明,準確把握“空間三線”垂直關系的實質。
(2)領會應用三垂線定理解題的一般步驟,初步學會應用定理解決相關問題。
。3)通過教學進一步培養(yǎng)學生的空間想象能力和邏輯思維能力。
(4)進行辨證唯物主義思想教育、數(shù)學應用意識教育和數(shù)學審美教育,提高學生學習數(shù)學的積極性。
4、教學重點、難點、關鍵
對高二學生來說,空間概念正在形成,因此本節(jié)課的重點是學生通過模型演示、推理論證,領會三垂線定理的實質,正確認識“空間三線”的垂直關系;同時掌握“線面垂直法”研究空間直線關系的思想方法。本節(jié)教學難點是準確把握“空間三線”垂直關系的實質,掌握應用三垂線定理的一般步驟。領會定理實質的關鍵是要認識到平面內一條直線與斜線及其在平面內的射影確定的平面垂直;應用定理的關鍵是要找到平面的垂線,射影就可由垂足與斜足確定,問題便會迎刃而解。
二、說教法分析
建立模型,啟發(fā)引導,猜想論證,學習應用,發(fā)展能力。
讓學生動手做模型,教師演示指導,讓學生直觀地感受到空間線面、線線關系的變化;再在教師的引導下思考線面、線線垂直關系存在的因果關系,逐步推理,猜想命題,論證命題,從而發(fā)現(xiàn)定理,揭示定理的實質。對定理的應用,只要求學生在理解定理的基礎上理清應用定理證題的一般步驟,學會證明一些簡單問題。
三、說學法指導
教學矛盾的主要方面是學生的學,學是中心,會學是目的,因此在教學中不斷指導學生學會學習。根據立體幾何的教學特點,本節(jié)課主要是教給學生“動手做、動腦想、大膽猜、嚴格證、多訓練、勤鉆研”的研討式學習方法,這樣做增加了學生的參與機會,增強了參與意識,教給了學生獲取知識的途徑,思考問題的方法,使學生真正能成了教學的主體。也只有這樣做,才能使學生“學”有新“思”,“思”有所“得”,“練”有新“獲”,學生才會逐步感受到數(shù)學的美,會產生一種成功感,從而提高學生學習數(shù)學學習的興趣;也只有這樣做,才能適應素質教育下培養(yǎng)“創(chuàng)新型”人才的需要。
四、說教學程序
1、(教學環(huán)節(jié))復習提問:
(1)線與平面垂直的定義?(2)線與平面垂直的判定?
(3)什么叫平面的斜線、斜線在平面上的.射影?(學生回答,教師作圖1)
(設計意圖:為本節(jié)課的學習做好知識鋪墊和圖形準備)
2、(教學環(huán)節(jié))演示啟發(fā)
由以上復習可知,平面的一條垂線垂直于平面內的每一條直線,平面的斜線顯然不能垂直于平面內的每一條直線,那么平面的斜線在平面內有垂線嗎?有幾條?請同學們來做做看。(教師引導學生用三角板和鉛筆在桌面上搭建模型)
通過以上實物操作的方法來表示平面的斜線在平面內有垂線,而且有無數(shù)條。引導學生進一步思考,斜線在平面內的垂線與它在平面內的射影有什么關系?
結論:直線a與射影AO垂直
那么,我們在平面內找斜線的垂線時能否只找到與其射影垂直的直線,換句話說,平面內的直線a與斜線PO的射影AO垂直時,a與斜線PO垂直嗎?
結論:根據觀察a⊥PO,為什么?
(設計意圖:這樣采用觀察、猜想、發(fā)現(xiàn)的方法引出定理比課本上直接給出定理顯得自然,學生好接受,)
3、(教學環(huán)節(jié))引導證明
觀察得來的結論,必須經過嚴格證明才能確認,我們把剛才的問題寫出來,大家一起來證明一下。
把定理改為一道普通例題,讓學生寫出證明過程
。ㄔO計意圖:讓學生養(yǎng)成嚴格論證問題的習慣和正確的書寫格式,培養(yǎng)學生思維的嚴密性)
4、揭示定理
這樣我們就找到了判定平面的一條斜線與平面的斜線垂直的方法:只要它與斜線的射影垂直即可。以后我們在平面內做斜線的垂線,只需做它射影的垂線即可,F(xiàn)在我們上面這道題用文字表述出來:
三垂線定理平面內的一條直線和這個平面的一條斜線垂直當且僅當它和這條斜線的射影垂直。
高二數(shù)學三垂線定理說課稿這就是著名的三垂線定理,它實質是平面內的直線與平面的斜線垂直的判定定理。它集中反映了平面內的一條直線、平面的斜線、斜線在平面內的射影這三者的關系。這個定理之所以著名,不僅在于它給了我們一個證明線線垂直的重要方法,為研究計算空間角,空間距離,研究多面體和旋轉體的性質奠定了基礎,而且這個定理的證明方法“線面垂直法”,也是一種非常重要的方法。
5、(教學環(huán)節(jié))定理的應用
例1課本P155例1
例2課本P155例2
例3補充題:如圖正方體ABCD—A1B1C1D1中求證:(1)BD1⊥AC
。2)BD1⊥B1C(3)BD1⊥平面AB1C
小結:使用三垂線定理證題的一般步驟:一定定平面及平面內的一條直線;
二找找平面的垂線、斜線及其射影
三證證平面內一直線與斜線垂直
(設計意圖:通過一道簡單例題的推證,總結出使用定理的方法,為使學生形成解題技能打好基礎)
6、(教學環(huán)節(jié))小結
本節(jié)課重點學習了三垂線定理,應學會按“一定、二找、三證”
的步驟解決問題。(設計意圖:使學生對本節(jié)課所學知識的結構有一個清晰的認識,能抓住重點進行課后復習。)
7、(教學環(huán)節(jié))作業(yè)布置練習:P157,題3、5作業(yè):P156,題1、2、4
思考題:在正方體ABCD—A1B1C1D1的各頂點連線中,與BD1垂直的直線有那些?(設計意圖:使學生鞏固本節(jié)課所學知識,培養(yǎng)學生自覺學習的習慣,同時給學有余力的學生留出自由發(fā)展的空間)
五、說板書設計:塊為定理的板書及定理的證明,中間第二塊為舉例講解,右邊第三塊為學生練習和課堂小結。這樣的板書簡明清楚,重點突出,加深學生對重點知識的理解和掌握,同時便于記憶,有利于提高教學效果。
高二數(shù)學說課稿12
今天我說課的課題是“兩條直線所成的角”的第一課時,我準備從以下五個方面來匯報我是如何處理教材和設計教學過程的。
一.關于教學目標的確定
通過這節(jié)課的教學,要使學生掌握兩條直線所成角的概念和夾角公式的推導方法,掌握一直線到另一直線的角和兩條直線的夾角公式及其應用,正確理解夾角公式成立的條件及特殊夾角的求法。能力的培養(yǎng)也是數(shù)學教學不可缺少的一環(huán),通過這節(jié)課的教學,應培養(yǎng)學生數(shù)形結合的能力和提高他們閱讀理解的自學能力。另外滲透“由特殊到一般”的辯證思想和“分類討論”的思想也是這堂課的重要目標。
二.關于教材內容的選擇和處理
這節(jié)課所選用的教學內容是:教材中的定義、公式,但例題的選擇較課本難度有所加深,這是因為教材上的例題只是公式的直接應用,通過學生自學和思考老師提出的問題后,對一般學生來說是沒有什么問題的。因此,本著因材施教的原則,并著眼于會考與高考的要求,例題的難度有所加深,這樣選擇教學內容也是與教學目標相符的。
我認為這節(jié)課的教學重點是兩條直線的夾角公式及其應用,這是因為:
1.《全日制中學數(shù)學教學大綱》上明確規(guī)定要求學生“掌握兩條直線所成的角”。
2. 數(shù)學知識的應用也是會考與高考的要求,因此兩條直線夾角公式的應用毫無疑問地成為重點。
教學難點是直線L1到L2的角的公式的推導,理由有二:
1. 由于一條直線到另一條直線的角是帶方向的角,這是學生不易理解的.地方。
2. 在推導直線L1到L2的角的公式的過程中,要進行分類討論,這是學生的薄弱環(huán)節(jié)。
三.關于教學方法的確定
根據這節(jié)課的內容和學生的實際水平,我采用自學輔導的方法進行教學。
自學輔導法符合教學論中的自覺性和積極性、鞏固性、可接受性,教學與發(fā)展相結合,教師的主導作用與學生的主體地位相統(tǒng)一等原則;自學輔導法的關鍵是通過老師的引導和啟發(fā)要求學生針對老師提出的問題閱讀理解最終解決問題。這樣就能充分調動學生學習的主動性和積極性,使學生變被動學習為主動學習。
四.關于學法的指導
課堂教學的目的就是在給學生傳授知識的同時,教給他們好的方法,使他們“會學習”。
這一節(jié)課一開始讓學生在觀察中產生疑問,在疑惑不解中,通過老師的引導。并通過自已閱讀教材使疑問逐步解決,這樣做既激發(fā)了他們的學習欲望,也培養(yǎng)了他們發(fā)現(xiàn)問題、解決問題的能力。
在給出例題后,大多數(shù)學生能想到利用入射角等于反射角來解決,這時要鼓勵學生再“嘗試”用其它方法來解,通過嘗試,學生的思維能力得到了培養(yǎng),思維空間得到了拓廣,既活躍了課堂氣氛,也提高了學生的學習積極性。
五.關于教學過程的設計
首先引導學生回憶兩條直線平行與垂直的判定方法,并從兩條直線垂直是兩條直線相交的特殊情況出發(fā),引出“兩條直線所成的角”這一課題。
接著打出投影片①,讓學生通過觀察說出圖中直線L1與L2所成角的銳角(或直角)θ的大小,并要求給出θ與直線L1、L2的傾斜角α1、α2之間的關系。圖(1)、(2)學生容易觀察解決,而圖(3)、(4)卻無法直接觀察出θ的大小 ,但能確定θ與α1、α2之間的關系,這時老師應趁熱打鐵,引導學生走上“已知三角函數(shù)值求角”的正確軌道上。這樣設計,使學生目標明確,避免盲目性。
然后老師掛出小黑板,出示問題(1)—(5),讓學生帶著問題閱讀教材,使他們明確直線L1到L2的角的公式與兩直線夾角公式的聯(lián)系與區(qū)別。這樣既培養(yǎng)了學生獨立思考和自學能力,又使他們主動積極地參與教學活動。
閱讀完后先回答問題(1)—(5),這時為了學生對所學公式有較深的理解,先讓學生將開始給出的圖(3)、(4)作為課堂練習進行鞏固訓練,并要兩位學生演板,演板后師生共同訂正。接著為了使學生對兩條直線所成的角有較全面的認識,老師與學生共同討論各種位置的兩條直線所成角的情形,這樣的安排也是為高考《考試說明》中要求掌握“邏輯劃分(分類討論)的思想”而設計的,目的是讓學生形成對知識系統(tǒng)化和網絡化的認識,也突破了本節(jié)課的難點。
“精通的目的在于學習”。公式的應用是這節(jié)課的重點,在學生把概念和公式的來龍去脈搞清楚后,再打出投影片②(例題),例題是根據《會考綱要》中“能用坐標法解決涉及直線的簡單應用(如光線的反射問題、有關軸對稱和點對稱問題)”的要求而選取的。大多數(shù)學生可以想到利用反射角等于入射角來求解,此時,進一步引導學生從對稱的角度來思考,又有兩種求解方法(見投影片)。
例題講完后再將問題加以引申,這樣的設計主要是讓學有余力的學生沒有“饑餓感”。
課堂小結是教學的重要環(huán)節(jié)之一,為了便于學生記憶和理解,我把這堂課的內容歸納為兩個概念、兩個公式和四種情形。然后給出兩個思考題(見投影片③)。思考題的目的是促使學生正確、周密地思考問題,同時為講解下一節(jié)課作準備,起承上啟下的作用。
最后是布置作業(yè),它是緊緊圍繞本節(jié)課的教學內容而選擇的,通過作業(yè)的訓練可以及時反饋學生所學知識的掌握程度。
以上我從五個方面闡述了“兩條直線所成的角”中第一課時教學內容的有關設想,不足之處,請各位老師批評賜教。
高二數(shù)學說課稿13
一、教材分析
概率是高中數(shù)學的新增內容,它自成體系,是數(shù)學中一個較獨立的學科分支,與以往所學的數(shù)學知識有很大的區(qū)別,但與人們的日常生活密切相關,而且對思維能力有較高要求,在高考中占有重要地位。
本節(jié)內容在本章節(jié)的地位:《條件概率》(第一課時)是高中課程標準實驗教材數(shù)學選修2—3第二章第二節(jié)的內容,它在教材中起著承前啟后的作用,一方面,可以鞏固古典概型概率的計算方法,另一方面,為研究相互獨立事件打下良好的基礎。
教學重點、難點和關鍵:教學重點是條件概率的定義、計算公式的推導及條件概率的計算;難點是條件概率的`判斷與計算;教學關鍵是數(shù)學建模。
二、教學目標
根據上述教材分析,考慮到學生已有的認知結構心理特征,我制定如下教學目標:
基礎知識目標——掌握條件概率的定義及計算方法
思想方法目標——歸納、類比的方法和建模思想
能力培養(yǎng)目標——培養(yǎng)學生思維的靈活性及知識的遷移能力
根據這兩年高考改卷的反饋信息,考生在概率題的書面表達上丟分的情況是很普遍的,因此本節(jié)課還想達到:
表達能力目標——培養(yǎng)學生書面表達的嚴謹和簡潔
個性品質目標——培養(yǎng)學生克服“心欲通而不能,口欲講而不會”的困難,提高探索問題的積極性和學習數(shù)學的興趣
三、教法
在教學中,不僅要使學生“知其然”,而且要使學生“知其所以然”。為了體現(xiàn)以生為本,遵循學生的認知規(guī)律,堅持以教師為主導,學生為主體的教學思想,體現(xiàn)循序漸進的教學原則,我采用引導發(fā)現(xiàn)法、分析討論法的教學方法,通過提問、啟發(fā)、設問、歸納、講練結合、適時點撥的方法,讓學生的思維活動在老師的引導下層層展開,讓學生大膽參與課堂教學,使他們“聽”有所“思”,“練”有所“獲”,使傳授知識與培養(yǎng)能力融為一體。
四、學法
以建構主義為指導,采用以啟發(fā)式教學為主,同時結合師生共同討論、歸納的教學方法,根據學生的認知水平,為課堂設計了:
、賱(chuàng)設情景——引入概念
、陬惐韧茖А贸龉
、塾懻撗芯俊獨w納方法
、芗磿r訓練——鞏固方法
、菘偨Y反思——提高認識
、拮鳂I(yè)布置——評價反饋
六個層次的學法,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學目標。
五、教學過程
創(chuàng)設情景——引入概念
首先引入兩個實際問題,激發(fā)學生的興趣。
【實例1】3張獎券中只有1張能中獎,現(xiàn)分別由3名同學無放回地抽取,最后一名同學抽到中獎獎券的概率是多少?若第一個同學沒有抽到中獎獎券,則最后一名同學抽到中獎獎券的概率是多少?
【實例2】有5道快速搶答題,其中3道理科題,2道文科題,從中無放回地抽取兩次,每次抽取1道題,兩次都抽到理科題的概率是多少?若第一次抽到理科題,則第二次抽到理科題的概率是多少?
每個實例有兩個問題組成,后一個問題多一個限制條件,教師引導學生對比兩個實例中前后問題的區(qū)別和聯(lián)系,概括出條件概率的定義。
由于判斷事件的類型對選擇概率公式起著決定性影響,因此在引入定義后讓學生再做一組判斷題練習以鞏固對定義的理解。
【練習】判斷下列是否屬于條件概率
、薄⒃诠芾硐抵羞x1個人排頭舉旗,恰好選中一個的是三年級男生的概率
⒉、有10把鑰匙,其中只有1把能將門打開,隨機抽出1把試開,若試過的不再用,則第2次能將門打開的概率
、、某小組12人分得1張球票,依次抽簽,已知前4個人未摸到,則第5個人模到球票的概率
、础膳_車床加工同樣的零件,第一臺的次品率未0.03,第二臺的次品率為0.02,兩臺車床加工的零件放在一起,隨機取出一個零件是發(fā)現(xiàn)是次品,則它是第二臺機床加工的概率是多少?
、、箱子里裝有10件產品,其中只有一件是次品,在9件合格品中,有6件是一等品,3件二等品,現(xiàn)從中任取3件,若取得的都是合格,則僅有1件是一等品的概率
通過以上練習使學生能準確區(qū)分條件概率與一般概率。
高二數(shù)學說課稿14
《異面直線所成角》是高中數(shù)學《立體幾何》一章中的第二節(jié)《空間兩直線》中的重要內容!读Ⅲw幾何》是高中數(shù)學教學中相對獨立的一章,而本節(jié)內容恰是把平面內的直線擴展為空間任兩條直線的位置關系問題,是培養(yǎng)學生建立空間想象力的關鍵,下面就從以下四個方面說課。
第一方面:教學設計意圖:
高中《數(shù)學教學大綱》要求學生具有良好的空間想象力和一定的作圖識圖能力,本節(jié)教學也要求培養(yǎng)學生對空間兩直線所成角這一立體概念的理解,在此基礎上,再依據對學生進行素質教育的目標制定了以下教學目標:
1、認知目標:理解空間兩異面直線所成角的概念,并會作出,求出兩異面直線所成角。
2、能力目標:培養(yǎng)學生的識圖,作圖能力,在習題講解中,培養(yǎng)學生的空間想象力和發(fā)散思維。
3、德育目標:在對學生進行創(chuàng)造性思維培養(yǎng)的同時,激發(fā)學生對科學文化知識的探求熱情和邏輯清晰的辯證主義觀點。
本節(jié)課的重,難點:
教學重點:對異面直線所成角的概念的理解和應用。
教學難點:如何在實際問題中求出異面直線所成角。
第二方面:教法的選定
本節(jié)內容作為《立體幾何》中兩大重要概念之一––––"角"的初次接觸,就要求學生能牢固的落實兩異面直線所成角的概念及作法,并能對具體問題求出所成角,這樣才能真正提高其空間想象力,根據上述目標要求和學生思維模式缺乏"立體性"這一特點,我采用了"練習教學法",從習題入手,輔以計算機軟件,將平面圖形"立"起來,為學生創(chuàng)設較好的思維空間,增強了教學的直觀性,再利用"問題中心式"教法,提出問題,對學生進行啟發(fā),讓學生自己動腦,動口,動手,這樣既可以發(fā)揮教師的主導作用,又突出了學生的主體地位。
第三方面:學法的指導
要從兩個方面教會學生落實本節(jié)內容。
1、根據計算機軟件所設計的空間幾何圖形,帶領學生去識圖,讀圖,作圖,并能依據圖形的特點去分析,作出或找出所要求的所成角,從而加強學生的圖形空間想象力。
2、找到所求角后,還需指導學生利用邏輯的分析和學過的平面幾何知識最終解決問題。
第四方面:教學過程和板書設計
第一步:采用"溫故式導入",提問學生"兩異面直線所成角"的定義,加深學生對概念的掌握,在同學回答的同時,由計算機打出概念,并在重點字"銳角或直角"處閃動,突出重點。
再利用計算機演示空間兩異面直線所成角的作法,重點體現(xiàn)選取不同點平移均可。
第二步:進入例題講解:"如何對具體問題求異面直線所成角呢"
首先,由計算機給出本節(jié)第一道例題,及圖。
教師帶領學生一起審題,該題為求證"兩直線平行"的簡單證明題,其目的在于加強學生對異面直線所成角概念的理解,突出選取"空間任一點平移直線均可"這一原則,為此,特由計算機設計出選取不同點平移的.圖及證法,再一次強調概念。
然后,進入第二道例題,同樣由計算機給出題目和圖,該題為"在已知正方體內求兩組異面直線所成角問題",不同于前題教法處在于,在教師進行了啟發(fā)性提問后,由計算機給出3個不同選點,教師讓同學自己分析并到前面操作電腦,選取解法,用計算機進行演示,并由學生自己講解。最后由教師對學生的解法進行歸納總結,從而得出"對特殊幾何體中異面直線所成角問題應以幾何體為依托,尋找特殊位置進行平移,并利用三角函數(shù)及平面幾何知識進行求解"這一結論。
例3的講解思路及方法同例2相同。
這樣,在計算機創(chuàng)設的空間圖形效果下,充分調動學生的積極性,發(fā)揮學生的主體作用,使學生自己總結并掌握求異面直線所成角的方法和規(guī)律,從而達到落實知識的目的
接下來,由同學們獨立完成一道練習,進一步鞏固本節(jié)內容。
第三步:總結
總結采取讓學生自己總結的方法,對本節(jié)內容所涉及如何求異面直線所成角的方法進行小結,全面突出學生的主動性學習。
第四步:布置作業(yè)
讓學生在回顧本課內容的基礎上,進一步加強練習。
綜觀本節(jié)習題課,作異面直線所成角并求值這一難點的突破,幾乎完全采取由學生自己完成的方法,讓學生在自己動手,動腦分析解決問題的過程中,充分體會本節(jié)內容的重點,再配以教師適當?shù)狞c拔,講解,達到學生真正扎實的落實本課內容,這樣,全面的發(fā)揮學生的主體作用,輔以教師的主導作用,可以最大限度的活躍課堂,提高學生的學習興趣和學習效率,達到較好的教學效果。
本節(jié)課板書設計。
兩條異面直線所成角,習題課:
例1:證明,如果一條直線和兩條平行線中的一條垂直,則和另一條也垂直
例2:已知:在正方體
ABCD—A1B1C1D1中,E為DD1中點,棱長為a
求:
1、CE與AA1所成角的正切值
2、D1B與AC所成的角
例3:在已知正四面體S—ABC中,各邊長均相等,均為1,E為SC中點,F(xiàn)為AB中點。
求:
1、EF與SA所成角
2、EA與CF所成角余弦。
練習:已知:在長方體ABCD—A1B1C1D1中,AA1B=60,DAD1=45
求:AD1與A1B所成的角的余弦值。
高二數(shù)學說課稿15
。ㄒ唬┙滩姆治
1、教學目標:理解命題的含義,掌握判斷命題的方法。
2、重點、難點分析
重點:找出命題的題設和結論。因為找出一個命題的題設和結論,是對該命題深刻理解的前提,而對命題理解能力是我們今后研究數(shù)學必備的能力,也是研究其它學科能力的基礎。
難點:找出一個命題的題設和結論。因為理解和掌握一個命題,一定要分清它的題設和結論,所以找出一個命題的題設和結論是十分重要的問題。
。ǘ┙虒W建議
1、教師在教學過程中,組織或引導學生從具體到抽象,結合學生熟悉的事例,來理解命題的概念、找出一個命題的題設和結論,并能判斷一些簡單命題的真假。
2、命題是數(shù)學中一個非常重要的概念,雖然高中階段我們還要學習,但對于程度好的A層學生還要理解:
。1)假命題可分為兩類情況:
、兕}設只有一種情形,并且結論是錯誤的,例如,“1+3=7”就是一個錯誤的命題。
、陬}設有多種情形,其中至少有一種情形的結論是錯誤的例如,“內錯角互補,兩直線平行”這個命題的題設可分為兩種情形:第一種情形是兩個內錯角都等于90°,這時兩直線平行;第二種情形是兩個內錯角不都等于90°,這時兩直線不平行。整體說來,這是錯誤的命題。
。2)是否是命題:
命題的定義包括兩層涵義:①命題必須是一個完整的句子;②這個句子必須對某件事情做出肯定或者否定的判斷。即命題是判斷某一件事情的句子。在語法上,這樣的句子叫做陳述句,它由“題設+結論”構成。
另外也有一些句子不是陳述句,例如,祈使句(也叫做命令句)“過直線AB外一點作該直線的平行線!币蓡柧洹啊螦是否等于∠B?”感嘆句“竟然得到5>9的結果!”以上三個句子都不是命題。
閱讀會員限時特惠7大會員特權立即嘗鮮
(三)教學過程設計
一、分析語句,理解命題
1、教師讓學生隨意說一句完整的話,每個小組可以派一名同學說,如:(1)我是中國人。(2)我家住在北京。(3)你吃飯了嗎?
。4)兩條直線平行,內錯角相等。(5)畫一個45°的角。(6)平角與周角一定不相等。
2、找出哪些是判斷某一件事情的句子?學生答:(1),(2),(4),(6)。3。教師給出命題的概念,并舉例。
命題:判斷一件事情的句子,叫做命題,分析(3),(5)為什么不是命題。教師分析以上命題中,每句話都判斷什么事情。所謂判斷,就是肯定一個事物是什么或不是什么,不能含混不清。在數(shù)學課中,只研究數(shù)學命題,請學生舉幾個數(shù)學命題的例子,每組再選一個同學說。(不要讓說過的再說)如:
。1)對頂角相等。
。2)等角的余角相等。
。3)一條射線把一個角分成兩個相等的角,這條射線一定是這個角的平分線。
。4)如果a>0,b>0,那么a+b>0。
。5)當a>0時|a|=a。
。6)小于直角的角一定是銳角。
在學生舉例的基礎上,教師有意說出以下兩個例子,并問這是不是命題。
(7)a>0,b>0,a+b=0。
。8)2與3的和是4。
有些學生可能給與否定,這時教師再與學生共同回憶命題的定義,加以肯定,先不要給出假命題的概念,而是從“判斷”的角度來加深對命題這一概念的理解。二、分析命題,理解真、假命題1。讓學生分析兩個命題的不同之處。(l)若a>0,b>0,則a+b>0。(2)若a>0,b>0,則a+b<0。
相同之處:都是命題。為什么?都是對a>0,b>0時,a+b的和的正負,做出判斷,都有題設和結論。
不同之處:(1)中的結論是正確的,(2)中的結論是錯誤的
教師及時指出:同學們發(fā)現(xiàn)了命題的.兩種情況。結論是正確的或結論是錯誤的,那么我們就有了對命題的一種分類:真命題和假命題。2。給出真、假命題定義。
真命題:如果題設成立,那么結論一定成立,這樣的命題,叫做真命題。假命題:如果題設成立,結論不成立,這樣的命題都是錯誤的命題,叫做假命題。
注意:(1)真命題中的“一定成立”不能有一個例外,如命題:“a≥0,b>0,則ab>0”。顯然當a=0時,ab>0不成立,所以該題是假命題,不是真命題。
。2)假命題中“結論不成立”是指“不能保證結論總是正確”,如:“a的倒數(shù)一定是”,顯然當a=0時命題不正確,所以也是假命題。
。3)注意命題與假命題的區(qū)別。如:“延長直線AB”。這本身不是命題。也更不是假命題。
(4)命題是一個判斷,判斷的結果就有對錯之分。因此就要引入真假命題,強調真假命題的大前提,首先是命題。
3、運用概念,判斷真假命題。例請判斷以下命題的真假。
。1)若ab>0,則a>0,b>0。(2)兩條直線相交,只有一個交點。(3)如果n是整數(shù),那么2n是偶數(shù)。(4)如果兩個角不是對頂角,那么它們不相等。(5)直角是平角的一半。
解:(l)(4)都是假命題,(2)(3)(5)是真命題。
4、介紹一個不辨真?zhèn)蔚拿}。
“每一個大于4的偶數(shù)都可以表示成兩個質數(shù)之和”。(即著名的哥德巴赫猜想)
我們可以舉出很多數(shù)字,說明這個結論是正確的,而且至今沒有人舉出一個反例,但也沒有一個人能證明它對一切大于4的偶數(shù)正確。我國著名的數(shù)學家陳景潤,已證明了“每一個大于4的偶數(shù)都可以表示成一個質數(shù)與兩個質數(shù)之積的和”。即已經證明了“1+2”,離“1+1”只差“一步之遙”。所以這個命題的真假還不能做最好的判定。
5、怎樣辨別一個命題的真假。
。╨)實際生活問題,實踐是檢驗真理的唯一標準。(2)數(shù)學中判定一個命題是真命題,要經過證明。(3)要判斷一個命題是假命題,只需舉一個反例即可。
四、總結
師生共同回憶本節(jié)的學習內容。1、什么叫命題?真命題?假命題?2、初步會判斷真假命題。教師提示應注意的問題:
1、命題與真、假命題的關系。
2、抓住命題的兩部分構成,判斷一些語句是否為命題。
3、判斷假命題,只需舉一個反例,而判斷真命題,數(shù)學問題要經過證明。
五、作業(yè)
1、選用課本習題和本節(jié)學案相應習題。
【高二數(shù)學說課稿】相關文章:
高二數(shù)學說課稿06-21
高二英語說課稿07-06
高二語文的說課稿11-07
高二政治說課稿范例11-20
高二語文說課稿01-13
高二的語文說課稿11-17
高二數(shù)學《任意角三角函數(shù)定義》說課稿01-06
數(shù)學統(tǒng)計說課稿07-02
數(shù)學說課稿01-19