當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說課稿> 高中數(shù)學(xué)說課稿

高中數(shù)學(xué)說課稿

時間:2024-06-25 14:20:48 說課稿 我要投稿

高中數(shù)學(xué)說課稿15篇(優(yōu))

  作為一位杰出的老師,可能需要進行說課稿編寫工作,借助說課稿可以提高教學(xué)質(zhì)量,取得良好的教學(xué)效果。怎樣寫說課稿才更能起到其作用呢?以下是小編為大家收集的高中數(shù)學(xué)說課稿,歡迎大家分享。

高中數(shù)學(xué)說課稿15篇(優(yōu))

高中數(shù)學(xué)說課稿1

  各位老師:

  今天我說課的題目是《條件語句》,內(nèi)容選自于新課程人教A版必修3第一章第二節(jié),課時安排為一個課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過程分析等四大方面來闡述我對這節(jié)課的分析和設(shè)計:

  一、教材分析

  1.教材所處的地位和作用

  在此之前,學(xué)生已學(xué)習(xí)了算法的概念、程序框圖與算法的基本邏輯結(jié)構(gòu)、輸入語句、輸出語句和賦值語句,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。這一節(jié)課主要的內(nèi)容為條件語句表示方法、結(jié)構(gòu)以及用法。條件語句與程序圖中的條件結(jié)構(gòu)相對應(yīng),它是五種基本算法語句中的一種,。通過本節(jié)課的學(xué)習(xí),學(xué)生將更加了解算法語句,并能用更全面的眼光看待前面學(xué)過的語句,并為以后的學(xué)習(xí)作好必要的準(zhǔn)備。本節(jié)課對學(xué)生算法語言能力、有條理的思考與清晰地表達的能力,邏輯思維能力的綜合提升具有重要作用。

  2.教學(xué)的重點和難點

  重點:條件語句的表示方法、結(jié)構(gòu)和用法;用條件語句表示算法。

  難點:理解條件語句的表示方法、結(jié)構(gòu)和用法。

  二、教學(xué)目標(biāo)分析

  1.知識與技能目標(biāo):

 、耪_理解條件語句的概念,并掌握其結(jié)構(gòu)。

 、茣(yīng)用條件語句編寫程序。

  2.過程與方法目標(biāo):

  ⑴通過實例,發(fā)展對解決具體問題的過程與步驟進行分析的能力。

  ⑵通過模仿,操作、探索、經(jīng)歷設(shè)計算法、設(shè)計框圖、編寫程序以解決具體問題的過程,發(fā)展應(yīng)用算法的能力。

  ⑶在解決具體問題的過程中學(xué)習(xí)條件語句,感受算法的重要意義。

  3.情感,態(tài)度和價值觀目標(biāo)

 、拍芡ㄟ^具體實例,感受和體會算法思想在解決具體問題中的意義,進一步體會算法思想的重要性,體驗算法的有效性,增進對數(shù)學(xué)的了解,形成良好的數(shù)學(xué)學(xué)習(xí)情感,增強學(xué)習(xí)數(shù)學(xué)的樂趣。

  ⑵通過感受和認識現(xiàn)代信息技術(shù)在解決數(shù)學(xué)問題中的重要作用和威力,形成自覺地將數(shù)學(xué)理論和現(xiàn)代信息技術(shù)結(jié)合的思想。

 、窃诰帉懗绦蚪鉀Q問題的過程中,逐步養(yǎng)成扎實嚴(yán)謹?shù)目茖W(xué)態(tài)度。

  三、教學(xué)方法與手段分析

  1.教學(xué)方法:根據(jù)本節(jié)內(nèi)容邏輯性強,學(xué)生不易理解的特點,本節(jié)教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這種方法的原因是學(xué)生的邏輯能力不是很強,只能通過對實例的認真領(lǐng)會及一定的練習(xí)才能掌握本節(jié)知識。

  2.教學(xué)手段:運用計算機、圖形計算器輔助教學(xué)

  四、教學(xué)過程分析

  1.創(chuàng)設(shè)情境(約4分鐘)

  首先,我要求學(xué)生們編寫程序,輸入一元二次方程

  的.系數(shù),輸出它的實數(shù)根。這樣可以把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強烈的問題意識,因為要解決這一問題,根據(jù)我們之前所學(xué)的三種算法語句是無法解決的,這樣就引出今天我們所要學(xué)習(xí)的內(nèi)容。

  2.探究新知(約8分鐘)

  為了引入概念,我首先給出了一個基本的應(yīng)用條件語句能夠解決的例題:

  例1 編寫一個程序,求實數(shù)x的絕對值。

  整個過程由師生共同分析完成。老師要引導(dǎo)學(xué)生分析、研究例題中的兩個程序,既要讓學(xué)生們看到已知的三種語句,更要注意到未知的語句,即條件語句?偨Y(jié)上述例題的程序可得出條件語句的兩種一般格式,接下來由師生共同對這兩種格式進行研究.

  3.知識應(yīng)用(約15分鐘)

  此環(huán)節(jié)有兩個例題

  例2 編寫程序,寫出輸入兩個數(shù)a和b,將較大的數(shù)打印出來

  例3 編寫程序,使任意輸入的3個整數(shù)按從大到小的順序輸出.

  先把解決問題的思路用程序框圖表示出來,然后再根據(jù)程序框圖給出的算法步驟,逐步把算法用對應(yīng)的程序語句表達出來。(程序框圖先由學(xué)生討論,再統(tǒng)一,然后利用圖形計算器演示,學(xué)生會驚喜的發(fā)現(xiàn):自己也是個編程高手了!這樣可以激發(fā)學(xué)生們的學(xué)習(xí)興趣)

  4.練習(xí)鞏固(約4分鐘)

  課本第30頁第3題

  練習(xí)可鞏固學(xué)生對知識的理解,也可在練習(xí)中發(fā)現(xiàn)問題,使問題得到及時的解決。

  5.課堂小結(jié)(約5分鐘)

  條件語句的步驟、結(jié)構(gòu)及功能.

  知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用

  6.布置作業(yè)

  課本練習(xí)第3、4題

  [設(shè)計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度以及實際接受情況,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。對作業(yè)實施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。

  7.板書設(shè)計

  1.2.2條件語句

  1、條件語句的一般格式

 。1)IF-THEN-ELSE語句

  格式: 框圖:

  (2)IF-THEN語句

  格式: 框圖:

  2、小結(jié)

 。1)

  (2)

  (3)

  2、例1 引例

  例2 例4

  例3

  

高中數(shù)學(xué)說課稿2

  尊敬的各位專家、評委:

  上午好!

  今天我說課的課題是人教A版必修2第二章第二節(jié)《直線與圓的位置關(guān)系》。

  我嘗試?yán)眯抡n標(biāo)的理念來指導(dǎo)教學(xué),對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標(biāo)分析、教法學(xué)法分析、教學(xué)過程分析和評價分析五個方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設(shè)計,敬請各位專家、評委批評指正。

  一、教材分析

  地位和作用

  學(xué)生在初中的學(xué)習(xí)中已經(jīng)了解直線與圓的位置關(guān)系,并知道可以利用直線與圓的焦點的個數(shù)以及圓心與直線的距離d與半徑r的關(guān)系判斷直線與圓的位置關(guān)系。但是,在初中學(xué)習(xí)時,利用圓心與直線的距離d與半徑r的關(guān)系判斷直線與圓的位置關(guān)系的方法卻以結(jié)論性的形式呈現(xiàn)。在高一學(xué)習(xí)了解析幾何后,要考慮的問題是如何掌握由直線和圓的方程判斷直線與圓的位置關(guān)系的方法。解決問題的方法主要是幾何法和代數(shù)法。其中幾何法應(yīng)該是在初中學(xué)習(xí)的基礎(chǔ)上,結(jié)合高中所學(xué)的點到直線的距離公式求出圓心與直線的距離d后,比較與半徑r的關(guān)系。從而作出判斷,適可而止第引進用聯(lián)立方程組轉(zhuǎn)化為二次方程判別根的“純代數(shù)判別法”,并與“幾何法”欣賞比較,以決優(yōu)劣,從而也深化了基本的“幾何法”。含參數(shù)的問題、簡單的弦的問題、切線問題等綜合問題作為進一步的拓展提高或綜合應(yīng)用,也適度第引入課堂教學(xué)中,但以深化“判定直線與圓的位置關(guān)系”為目的,要控制難度。雖然學(xué)生學(xué)習(xí)解析幾何了,但是把幾何問題代數(shù)化無論是思維習(xí)慣還是具體轉(zhuǎn)化方法,學(xué)生仍是似懂非懂,因此應(yīng)不斷強化,逐漸內(nèi)化為學(xué)生的習(xí)慣和基本素質(zhì)。

  二、目標(biāo)分析

  (一)、教學(xué)目標(biāo)

  1、知識與技能

  理解直線與圓的位置的種類;

  利用平面直角坐標(biāo)系中點到直線的距離公式求圓心到直線的距離;

  會用點到直線的距離來判斷直線與圓的位置關(guān)系。

  2、過程與方法

  設(shè)直線L:ax+by+c=o,圓C:x2+y2+Dx+Ey+F=0,圓的半徑為r,圓心(- ,- )到直線的距離為d,則判別直線與圓的位置關(guān)系的根據(jù)有以下幾點:

  當(dāng)d >r時,直線l與圓c相離;

  當(dāng)d =r時,直線l與圓c相切;

  當(dāng)d

  3、情態(tài)與價值觀

  讓學(xué)生通過觀察圖形,理解并掌握直線與圓的位置關(guān)系,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想。

  (二)、教學(xué)重點與難點

  1、重點:直線與圓的位置關(guān)系的幾何圖形及其判斷方法。

  2、難點:用坐標(biāo)判斷直線與圓的位置關(guān)系。

  三、教法學(xué)法分

  (一)、教法

  教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法:

  1、啟發(fā)引導(dǎo)學(xué)生思考、分析、實驗、探索、歸納。

  2、采用“從特殊到一般”、“從具體到抽象”的方法。

  3、體現(xiàn)“對比聯(lián)系”、“數(shù)形結(jié)合”及“分類討論”的思想方法。

  4、投影儀演示法。

  在整個過程中,應(yīng)以學(xué)生看,學(xué)生想,學(xué)生議,學(xué)生練為主體,教師在學(xué)生仔細觀察、類比、想象的基礎(chǔ)上通過問題串的形式加以引導(dǎo)點撥,對照,歸納,整理,只有這樣,才能喚起學(xué)生對原有知識的回憶,自覺地找到新舊知識的聯(lián)系,使新學(xué)知識更牢固,理解更深刻。

  (二)、學(xué)法

  建構(gòu)主義學(xué)習(xí)理論認為,學(xué)習(xí)是學(xué)生積極主動地建構(gòu)知識的過程,學(xué)習(xí)應(yīng)該與學(xué)生熟悉的背景相聯(lián)系。在教學(xué)中,讓學(xué)生在問題情境中,經(jīng)歷知識的形成和發(fā)展,通過觀察、操作、歸納、探索、交流、反思參與學(xué)習(xí),認識和理解數(shù)學(xué)知識,學(xué)會學(xué)習(xí),發(fā)展能力。

  四、教學(xué)過程分析

  (一)、教學(xué)過程設(shè)計

  問題 設(shè)計意圖 師生活動

  1、初中學(xué)過的平面幾何中,直線與圓的位置關(guān)系有幾類? 啟發(fā)學(xué)生由圖形獲取判斷直線與圓的位置關(guān)系的直觀認知,引入新課 師:讓學(xué)生之間進行討論,交流,引導(dǎo)學(xué)生觀察圖形,導(dǎo)入新課

  生:看圖,并說出自己的看法

  2、直線與圓的位置關(guān)系有幾種? 得出直線與圓的'位置關(guān)系的幾何特征與種類 師:引導(dǎo)學(xué)生利用類比,歸納的思想,總結(jié)直線與圓的位置關(guān)系的種類,進一步神話數(shù)形結(jié)合的數(shù)學(xué)思想

  生:學(xué)生觀察圖形,利用類比,歸納的思想,總結(jié)直線與圓的位置關(guān)

  3、在初中,我們怎么樣判斷直線與圓的位置關(guān)系呢?如何用直線與圓的方程判斷他們之間的位置關(guān)系呢?

  你能說出判斷直線與圓的位置關(guān)系的兩

  種方法嗎? 使學(xué)生回憶初中的數(shù)學(xué)知識,培養(yǎng)抽象的概括能力。

  抽象判斷呢直線與圓的位置關(guān)系的思路和方法 師:引導(dǎo)學(xué)生回憶初中判斷直線與圓的位置關(guān)系的思想過程

  生:回憶直線與圓的位置關(guān)系的判斷過程

  師:引導(dǎo)學(xué)生從集合的角度判斷直線與圓的方法

  生:利用圖形,尋求兩種方法的數(shù)學(xué)思路

  5、你能用兩種判斷直線與圓的位置關(guān)系的數(shù)學(xué)思路解決例1的問題嗎? 體會判斷直線與圓的位置關(guān)系的思想方法,關(guān)注量與量的之間的關(guān)系 師:指導(dǎo)學(xué)生閱讀教材書上的例1

  生:閱讀教材書上的例1,并完成教材書上的136頁的練習(xí)題2

  6、通過學(xué)習(xí)教材書上的例1,你能總結(jié)下判斷直線與圓的位置 關(guān)系的步驟嗎? 是學(xué)生熟悉判斷直線與圓的位置關(guān)系的基本步驟 生:于都例1

  師:分析例1 ,并展示解答過程,啟發(fā)學(xué)生概括判斷直線與圓的位置關(guān)系的基本步驟,注意給學(xué)生留有思考的時間

  生:交流自己總結(jié)的步驟

  7、通過學(xué)習(xí)教材書上的例2,你能說明例2中體現(xiàn)的數(shù)學(xué)思想方法嗎? 進一步深化數(shù)形結(jié)合的數(shù)學(xué)思想 師:指導(dǎo)學(xué)生閱讀并完成教材書上的例2 ,啟發(fā)學(xué)生利用數(shù)形結(jié)合的數(shù)學(xué)思想解決問題

  生:閱讀教材書上的例2 ,并完成137的練習(xí)題

  8、通過例2的學(xué)習(xí),你發(fā)現(xiàn)了什么? 明確弦長的運算方法 師:引導(dǎo)并啟發(fā)學(xué)生探索直線與圓的相交弦的求法

  生:通過分析,抽象,歸納,得出相交弦的運算方法

  9、完成教材書上的136頁的習(xí)題1234 鞏固所學(xué)過的知識,進一步理解和掌握直線與圓的位置關(guān)系 師:指導(dǎo)學(xué)生完成練習(xí)題

  生:互相討論交流,完成練習(xí)題

  10、課堂小結(jié)

  教師提出下列問題讓學(xué)生思考

  通過直線與圓的位置關(guān)系的判斷,你學(xué)到什么了?

  判斷直線與圓的位置關(guān)系有幾種方法?他們的特點是什么?

  如何求直線與圓的相交弦長?

  (二)、作業(yè)設(shè)計

  作業(yè)分為必做題和選擇題,必做題是對本節(jié)課學(xué)生知識水平的反饋,選擇題是對本節(jié)課內(nèi)容的延伸與連貫,強調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進學(xué)生的自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成。

  我設(shè)計了以下作業(yè):

  必做題:課后習(xí)題A 1,2,3;

  選擇題:課后習(xí)題B1,2,3;

  (三)、板書設(shè)計

  板書要基本體現(xiàn)課堂的內(nèi)容和方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構(gòu)及其相互關(guān)系:能指導(dǎo)教師的教學(xué)進程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。

  五、評價分析

  學(xué)生學(xué)習(xí)的結(jié)果評價固然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用了及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對本節(jié)是否有一個完整的集訓(xùn),并進行及時的調(diào)整和補充。

  以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。

  謝謝!

高中數(shù)學(xué)說課稿3

各位同仁,各位專家:

  我說課的課題是《任意角的三角函數(shù)》,內(nèi)容取自蘇教版高中實驗教科書《數(shù)學(xué)》第四冊 第1。2節(jié)

  先對教材進行分析

  教學(xué)內(nèi)容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號。

  地位和作用: 任意角的三角函數(shù)是本章教學(xué)內(nèi)容的基本概念對三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要。同時它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備,通過這部分內(nèi)容的學(xué)習(xí),又可以幫助學(xué)生更加深入理解函數(shù)這一基本概念。所以這個內(nèi)容要認真探討教材,精心設(shè)計過程。

  教學(xué)重點:任意角三角函數(shù)的定義

  教學(xué)難點:正確理解三角函數(shù)可以看作以實數(shù)為自變量的函數(shù)、初中用邊長比值來定義轉(zhuǎn)變?yōu)樽鴺?biāo)系下用坐標(biāo)比值定義的觀念的轉(zhuǎn)換以及坐標(biāo)定義的合理性的理解;

  學(xué)情分析:

  學(xué)生已經(jīng)掌握的內(nèi)容,學(xué)生學(xué)習(xí)能力

  1。初中學(xué)生已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。

  2。我們南山區(qū)經(jīng)過多年的初中課改,學(xué)生已經(jīng)具備較強的自學(xué)能力,多數(shù)同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。

  3。在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強必須在老師一定的指導(dǎo)下才能進行

  針對對教材內(nèi)容重難點的和學(xué)生實際情況的分析我們制定教學(xué)目標(biāo)如下

  知識目標(biāo):

 。1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號,

  能力目標(biāo):

 。1)理解并掌握任意角的三角函數(shù)的.定義;

 。2)正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù);

 。3)通過對定義域,三角函數(shù)值的符號的推導(dǎo),提高學(xué)生分析探究解決問題的能力。

  德育目標(biāo):

 。1)學(xué)習(xí)轉(zhuǎn)化的思想,(2)培養(yǎng)學(xué)生嚴(yán)謹治學(xué)、一絲不茍的科學(xué)精神;

  針對學(xué)生實際情況為達到教學(xué)目標(biāo)須精心設(shè)計教學(xué)方法

  教法學(xué)法:溫故知新,逐步拓展

 。1)在復(fù)習(xí)初中銳角三角函數(shù)的定義的基礎(chǔ)上一步一步擴展內(nèi)容,發(fā)展新知識,形成新的概念;

 。2)通過例題講解分析,逐步引出新知識,完善三角定義

  運用多媒體工具

 。1)提高直觀性增強趣味性。

  教學(xué)過程分析

  總體來說, 由舊及新,由易及難,

  逐步加強,逐步推進

  先由初中的直角三角形中銳角三角函數(shù)的定義

  過度到直角坐標(biāo)系中銳角三角函數(shù)的定義

  再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義

  給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。

  具體教學(xué)過程安排

  引入: 復(fù)習(xí)提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?

  由學(xué)生回答

  SinA=對邊/斜邊=BC/AB

  cosA=對邊/斜邊=AC/AB

  tanA=對邊/斜邊=BC/AC

  逐步拓展:在高中我們已經(jīng)建立了直角坐標(biāo)系, 把“定義媒介”從直角三角形改為平面直角坐標(biāo)系。

  我們知道,隨著角的概念的推廣,研究角時多放在直角坐標(biāo)系里, 那么三角函數(shù)的定義能否也放到坐標(biāo)系去研究呢?

  引導(dǎo)學(xué)生發(fā)現(xiàn)B的坐標(biāo)和邊長的關(guān)系。進一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導(dǎo)致OB上任一P點都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點的坐標(biāo)來表示, 從而銳角三角函數(shù)可以使用直角坐標(biāo)系來定義,自然地,要想定義任意一個角三角函數(shù),便考慮放在直角坐標(biāo)中進行合理進行定義了

  從而得到

  知識點一:任意一個角的三角函數(shù)的定義

  提醒學(xué)生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關(guān)。

  精心設(shè)計例題,引出新內(nèi)容深化概念,完善定義

  例1已知角A 的終邊經(jīng)過P(2,—3),求角A的三個三角函數(shù)值

 。ù祟}由學(xué)生自己分析獨立動手完成)

  例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數(shù)值

  結(jié)合變式我們發(fā)現(xiàn)三個三角函數(shù)值的大小與角的大小有關(guān),只會隨角的大小而變化,符合當(dāng)初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),

  提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?

  從而引出函數(shù)極其定義域

  由學(xué)生分析討論,得出結(jié)論

  知識點二:三個三角函數(shù)的定義域

  同時教師強調(diào):由于弧度制使角和實數(shù)建立了一一對應(yīng)關(guān)系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù)

  例題變式2, 已知角A 的終邊經(jīng)過P(—2a,—3a)( a不為0),求角A的三個三角函數(shù)值

  解答中需要對變量的正負即角所在象限進行討論, 讓學(xué)生意識到三角函數(shù)值的正負與角所在象限有關(guān),從而導(dǎo)出第三個知識點

  知識點三:三角函數(shù)值的正負與角所在象限的關(guān)系

  由學(xué)生推出結(jié)論,教師總結(jié)符號記憶方法,便于學(xué)生記憶

  例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA

  求cosA,tanA

  綜合練習(xí)鞏固提高,更為下節(jié)的同角關(guān)系式打下基礎(chǔ)

  拓展,如果不限制A的象限呢,可以留作課外探討

  小結(jié)回顧課堂內(nèi)容

  課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解

  課堂作業(yè)P16 1,2,4

 。▽W(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)

  課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)

  必作P23 1(2),5(2),6(2)(4) 選作P23 3,4

  板書設(shè)計(見PPT)

高中數(shù)學(xué)說課稿4

  一、教材地位與作用

  本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時?家恍┙獯痤}。因此,正弦定理的知識非常重要。

  二、學(xué)情分析

  作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問題,就比較困難。

  教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

  教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

  根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點,我制定了如下幾點教學(xué)目標(biāo)

  教學(xué)目標(biāo)分析:

  知識目標(biāo):理解并掌握正弦定理的證明,運用正弦定理解三角形。

  能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論。

  情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)學(xué)的實際應(yīng)用價值。

  三、教法學(xué)法分析

  教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

  學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動手嘗試相結(jié)合,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。

  四、教學(xué)過程

  (一)創(chuàng)設(shè)情境,布疑激趣

  “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進入今天的學(xué)習(xí)課題。

  (二)探尋特例,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的`特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。

  2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

  3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:

  在三角形中,角與所對的邊滿足關(guān)系

  這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認識從感性逐步上升到理性。

  (三)邏輯推理,證明猜想

  1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

  2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。

  3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明。

  (四)歸納總結(jié),簡單應(yīng)用

  1.讓學(xué)生用文字敘述正弦定理,引導(dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

  2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

  3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。

  (五)講解例題,鞏固定理

  1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

  例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

  2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。

  (六)課堂練習(xí),提高鞏固

  1.在△ABC中,已知下列條件,解三角形。

  (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列條件,解三角形。

  (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

  學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。

  (七)小結(jié)反思,提高認識

  通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?

  1.用向量證明了正弦定

  理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  2.它表述了三角形的邊與對角的正弦值的關(guān)系。

  3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。

  (從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)

  (八)任務(wù)后延,自主探究

  如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。

高中數(shù)學(xué)說課稿5

  數(shù)學(xué):人教A版必修3第二章第三節(jié)《變量之間的相關(guān)關(guān)系》說課稿各位老師:

  大家好!我叫***,來自**。我說課的題目是《變量之間的相關(guān)關(guān)系》,內(nèi)容選自于高中教材新課程人教A版必修3第二章第三節(jié),課時安排為三個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計:

  一、教材分析

  1.教材所處的地位和作用

  本章我們所要學(xué)習(xí)的主要內(nèi)容就是統(tǒng)計,在前面的章節(jié)中我們已經(jīng)對統(tǒng)計的相關(guān)知識作了大致的了解。本節(jié)課我們要繼續(xù)探討的是變量之間的相關(guān)關(guān)系,它為接下來要學(xué)習(xí)的兩個變量的線性相關(guān)打下基礎(chǔ)。這是一個與現(xiàn)實實際生活聯(lián)系很緊密的知識,在教師的引導(dǎo)下,可使學(xué)生認識到在現(xiàn)實世界中存在不能用函數(shù)模型描述的變量關(guān)系,從而體會研究變量之間的相關(guān)關(guān)系的重要性.

  2.教學(xué)的重點和難點

  重點:①通過收集現(xiàn)實問題中兩個有關(guān)聯(lián)變量的數(shù)據(jù)直觀認識變量間的相關(guān)關(guān)系;

 、诶蒙Ⅻc圖直觀認識兩個變量之間的線性關(guān)系;

  難點:①變量之間相關(guān)關(guān)系的理解;②作散點圖和理解兩個變量的正相關(guān)和負相關(guān)

  二、教學(xué)目標(biāo)分析

  1.知識與技能目標(biāo)

  通過收集現(xiàn)實問題中兩個有關(guān)聯(lián)變量的數(shù)據(jù)認識變量間的相關(guān)關(guān)系

  2、過程與方法目標(biāo):

  明確事物間的相互聯(lián)系.認識現(xiàn)實生活中變量間除了存在確定的關(guān)系外,仍存在大量的非確定性的相關(guān)關(guān)系,并利用散點圖直觀體會這種相關(guān)關(guān)系.

  3、情感態(tài)度與價值觀目標(biāo):

  通過對事物之間相關(guān)關(guān)系的了解,讓學(xué)生們認識到現(xiàn)實中任何事物都是相互聯(lián)系的辯證法思想。

  三、教學(xué)方法與手段分析

  1.教學(xué)方法:結(jié)合本節(jié)課的教學(xué)內(nèi)容和學(xué)生的認知水平,在教法上,我采用“問答探究”式的`教學(xué)方法,層層深入。充分發(fā)揮教師的主導(dǎo)作用,讓學(xué)生真正成為教學(xué)活動的主體。

  2。教學(xué)手段:通過多媒體輔助教學(xué),充分調(diào)動學(xué)生參與課堂教學(xué)的主動性與積極性。

  四、教學(xué)過程分析

 、鍐栴}引出:

  請同學(xué)們?nèi)鐚嵦顚懴卤恚ㄔ诳崭裰写颉啊獭保?/p>

  然后回答如下問題:①“你的數(shù)學(xué)成績對你的物理成績有無影響?”②“如果你的數(shù)學(xué)成績好,那么你的物理成績也不會太差,如果你的數(shù)學(xué)成績差,那么你的物理成績也不會太好!睂δ銇碚f,是這樣嗎?同意這種說法的同學(xué)請舉手。

  根據(jù)同學(xué)們回答的結(jié)果,讓學(xué)生討論:我們可以發(fā)現(xiàn)自己的數(shù)學(xué)成績和物理成績存在某種關(guān)系。(似乎就是數(shù)學(xué)好的,物理也好;數(shù)學(xué)差的,物理也差,但又不全對。)教師總結(jié)如下:

  物理成績和數(shù)學(xué)成績是兩個變量,從經(jīng)驗看,由于物理學(xué)習(xí)要用到比較多的數(shù)學(xué)知識和數(shù)學(xué)方法。數(shù)學(xué)成績的高低對物理成績的高低是有一定影響的。但決非唯一因素,還

  有其它因素,如圖所示(幻燈片給出):

  因此,不能通過一個人的數(shù)學(xué)成績是多少就準(zhǔn)確地斷定他的物理成績能達到多少。但這兩個變量是有一定關(guān)系的,它們之間是一種不確定性的關(guān)系。如何通過數(shù)學(xué)成績的結(jié)果對物理成績進行合理估計有非常重要的現(xiàn)實意義。

  「設(shè)計意圖」通過對身邊事例的分析,引出我們今天將要學(xué)習(xí)的主要內(nèi)容,由此可以激起學(xué)

  生們的學(xué)習(xí)興趣,為接下來的學(xué)習(xí)打下良好的基礎(chǔ)。

 、嫣骄啃轮

  ⒈概念形成

  教師提問:“像剛才這種情況在現(xiàn)實生活中是否還有?”學(xué)生們思考之后,請幾位同學(xué)就提出的問題作出回答。老師就舉出的例子,引導(dǎo)學(xué)生作出分析,然后由老師總結(jié)得出相關(guān)關(guān)系的概念。[兩個變量之間的關(guān)系可能是確定的關(guān)系(如:函數(shù)關(guān)系),或非確定性關(guān)系。當(dāng)自變量取值一定時,因變量也確定,則為確定關(guān)系;當(dāng)自變量取值一定時,因變量帶有隨機性,這種變量之間的關(guān)系稱為相關(guān)關(guān)系。相關(guān)關(guān)系是一種非確定性關(guān)系。]

  「設(shè)計意圖」從現(xiàn)實生活入手,抓住學(xué)生們的注意力,引導(dǎo)學(xué)生分析得出概念,讓學(xué)生真正參與到概念的形成過程中來。

 、蔡骄烤性相關(guān)關(guān)系和其他相關(guān)關(guān)系

  「課件展示」

  例1在一次對人體脂肪和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):

  問題:針對于上述數(shù)據(jù)所提供的信息,你認為人體的脂肪含量與年齡之間有怎樣的關(guān)系?

  [教師特別向?qū)W生強調(diào)在研究兩個變量之間是否存在某種關(guān)系時,必須從散點圖入手(向?qū)W生介紹什么是散點圖)。并且引導(dǎo)學(xué)生從散點圖上可以得出如下規(guī)律:(幻燈片給出)

  ①如果所有的樣本點都落在某一函數(shù)曲線上,那么變量之間具有函數(shù)關(guān)系(確定性關(guān)系);②如果所有的樣本點都落在某一函數(shù)曲線的附近,那么變量之間具有相關(guān)關(guān)系(不確定性關(guān)系);③如果所有的樣本點都落在某一直線附近,那么變量之間具有線性相關(guān)關(guān)系(不確定性關(guān)系)。

  「設(shè)計意圖」通過對這個典型事例的分析,向?qū)W生們介紹什么是散點圖,并總結(jié)出如何從散點圖上判斷變量之間關(guān)系的規(guī)律。

  下面我們用TI圖形計算器作出這兩個變量的散點圖。

  學(xué)生實驗:先把數(shù)據(jù)中成對出現(xiàn)的兩個數(shù)分別作為橫坐標(biāo)、縱坐標(biāo),把數(shù)據(jù)輸入到表格當(dāng)中(第一列橫坐標(biāo)、第二列縱坐標(biāo));然后,用TI圖形計算器作散點圖:

  [引導(dǎo)學(xué)生觀察作出的散點圖,體會現(xiàn)實生活中兩個變量之間的關(guān)系存在著不確定性。散點圖中的散點并不在一條直線上,只是分布在一條直線的周圍,即為線性相關(guān)關(guān)系。]

  「設(shè)計意圖」通過實驗讓學(xué)生們感受散點圖的主要形成過程,并由此引出線性相關(guān)關(guān)系。為后面回歸直線和回歸直線方程的學(xué)習(xí)做好鋪墊。

  「課件展示」四組數(shù)據(jù),請學(xué)生作出散點圖,并觀察每組數(shù)據(jù)的特點。

  根據(jù)四組數(shù)據(jù),學(xué)生作出四個散點圖。

  通過學(xué)生討論、交流、用TI圖形計算器展示、對比自己作出的散點圖,我們引出線性相關(guān)關(guān)系,正負相關(guān)關(guān)系的概念。

  「設(shè)計意圖」及時鞏固知識,學(xué)生通過親自動手作散點圖,并交流討論,進一步加深對散點圖的理解,并由此引出正負相關(guān)關(guān)系的概念,突破難點。

 、缋}講解,深化認識

  「課件展示」

  例2一般說來,一個人的身高越高,他的人就越大,相應(yīng)地,他的右手一拃長就越長,因此,人的身高與右手一拃長之間存在著一定的關(guān)系。為了對這個問題進行調(diào)查,我們收集了北京市某中學(xué)20xx年高三年級96名學(xué)生的身高與右手一拃長的數(shù)據(jù)如下表。

  (1)根據(jù)上表中的數(shù)據(jù),制成散點圖。你能從散點圖中發(fā)現(xiàn)身高與右手一拃長之間的近似關(guān)系嗎?

 。2)如果近似成線性關(guān)系,請畫出一條直線來近似地表示這種線性關(guān)系。

 。3)如果一個學(xué)生的身高是188cm,你能估計他的一拃大概有多長嗎?

  「設(shè)計意圖」這個例子很容易激起學(xué)生們的學(xué)習(xí)興趣,由此可達到更好的教學(xué)效果。通過對這道題的解答,使對前面知識的認識更加牢固。

 、璺此夹〗Y(jié)、培養(yǎng)能力

 、抛兞块g相關(guān)關(guān)系、線性關(guān)系和正負相關(guān)關(guān)系

 、迫绾巫錾Ⅻc圖

  「設(shè)計意圖」小節(jié)是一堂課的概括和總結(jié),有利于優(yōu)化學(xué)生的認知結(jié)構(gòu),把課堂教學(xué)傳授的知識較快轉(zhuǎn)化為學(xué)生的素質(zhì),也更進一步培養(yǎng)學(xué)生的歸納概括能力

  ㈤課后作業(yè),自主學(xué)習(xí)

  習(xí)題2.31、2

  [設(shè)計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。

高中數(shù)學(xué)說課稿6

  尊敬的各位考官,大家好,我是今天的X號考生,今天我說課的題目是《分層抽樣》。

  新課標(biāo)指出:高中教育屬于基礎(chǔ)教育,具有基礎(chǔ)性,且具有多樣性與選擇性,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。

  一、說教材

  我認為要真正的教好一節(jié)課,首先就是要對教材熟悉,那么我就先來說一說我對本節(jié)課教材的理解!斗謱映闃印肥侨私藺版必修3第二章第一節(jié)的第三小節(jié),本節(jié)課的內(nèi)容是對分層抽樣進行探討。本小節(jié)通過具體問題情境引出分層抽樣的抽樣方法,并對它的概念、特點和步驟進行了探討。本節(jié)內(nèi)容是第一節(jié)隨機抽樣方法的擴充,這也為后面學(xué)習(xí)用樣本估計總體奠定基礎(chǔ)。學(xué)習(xí)本節(jié)課將會更好的提高學(xué)生解決生活實際問題的能力。

  二、說學(xué)情

  合理把握學(xué)情是上好一堂課的基礎(chǔ),下面我來談?wù)剬W(xué)生的實際情況。本階段的學(xué)生是高中生,他們具有了自主探索學(xué)習(xí)的能力,同時觀察能力、總結(jié)能力、歸納能力、類比能力、抽象能力等已經(jīng)發(fā)展的比較成熟,但本階段的學(xué)生容易脫離生活實際進行機械的學(xué)習(xí),所以在教學(xué)中老師一定要凸顯學(xué)生的自主性,可以將更多的活動交給學(xué)生進行探究,在探究過程中繼續(xù)提高學(xué)生的各方面能力。在學(xué)習(xí)本節(jié)知識之前,學(xué)生已經(jīng)具備了統(tǒng)計的一些基礎(chǔ)知識,但是對統(tǒng)計具體的抽樣方法沒有系統(tǒng)的學(xué)習(xí),故本節(jié)課的學(xué)習(xí)應(yīng)該站在學(xué)生已有經(jīng)驗的基礎(chǔ)上進行教學(xué),幫助學(xué)生提高數(shù)學(xué)的應(yīng)用能力。

  三、說教學(xué)目標(biāo)

  根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):

 。ㄒ唬┲R與技能

  了解隨機抽樣中的分層抽樣的特點和適用情況,并會用分層抽樣解決實際問題。

 。ǘ┻^程與方法

  經(jīng)歷分層抽樣的特點的探索過程,提升概括能力和應(yīng)用能力。

  (三)情感、態(tài)度與價值觀

  在探索的過程中,學(xué)習(xí)如何處理數(shù)據(jù),運用所學(xué)知識和方法解決實際問題,體會數(shù)學(xué)與生活的緊密聯(lián)系。

  四、說教學(xué)重難點

  我認為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。而教學(xué)重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點為:分層抽樣的特點及步驟。難點:分層抽樣特點的探究過程。

  五、說教法和學(xué)法

  依據(jù)新課程改革精神與學(xué)生認知發(fā)展現(xiàn)狀,突破難點有效實現(xiàn)知識的'鞏固,我將采用講授法、探究法、練習(xí)法等教學(xué)方法,并在教學(xué)過程中有意識的培養(yǎng)學(xué)生的合作探究能力,自主探究能力,使之在真正意義上成為學(xué)會學(xué)習(xí)的人。

  六、說教學(xué)過程

  在這節(jié)課的教學(xué)過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調(diào)動學(xué)生參與課堂的積極性、主動性。

 。ㄒ唬⿲(dǎo)入新課

  首先是導(dǎo)入環(huán)節(jié),我會直接讓學(xué)生思考:如果要調(diào)查某校高一學(xué)生的平均身高應(yīng)該怎樣調(diào)查?

  學(xué)生根據(jù)生活經(jīng)驗?zāi)軌蛑溃耗猩砀哂泻艽蟛顒e,簡單隨機抽樣和系統(tǒng)抽樣都不能夠使樣本具有代表性。

  接下來,我會根據(jù)學(xué)生的疑惑進行講解:選擇抽樣方法之前,充分利用事先對總體情況的已有了解是非常重要的,并明確用新的抽樣方法——分層抽樣來解決這個問題。

  通過生活實例來導(dǎo)入新課,一方面能夠調(diào)動學(xué)生的積極性,另一方面也能夠降低數(shù)學(xué)的難度,便于學(xué)生的理解。

 。ǘ┲v解新知

  接下來是新課講授環(huán)節(jié),我將分為三部分,分別為分層抽樣的探究、分層抽樣的概念及步驟、三種抽樣方法的辨析。

  首先是第一部分探索分層抽樣。在這里我會出示書上的問題情境:某地區(qū)有高中生2400人,初中生10900人,小學(xué)生11000人。此地區(qū)教育部門為了了解本地區(qū)中小學(xué)生的近視情況及其形成的原因,要從本地區(qū)的中小學(xué)生中抽取1%的學(xué)生進行調(diào)查,你認為應(yīng)當(dāng)怎樣抽取樣本?并提出問題:你認為哪些因素可能影響學(xué)生的視力?設(shè)計抽樣方法時需要考慮這些因素嗎?學(xué)生可能回答:不同年齡階段的近視情況可能存在明顯差異,三個部分的人數(shù)相差較大,我們需要考慮到三個年齡段各自的情況。在此先讓學(xué)生感知用分層抽樣的具體情境,為后面在具體情境中探究分層抽樣的特點和步驟奠定基礎(chǔ)。

  我會向?qū)W生提問:簡單隨機抽樣、系統(tǒng)抽樣和分層抽樣各有其特點和適用范圍,請對這三種抽樣方法進行比較,說說它們各自的優(yōu)點和缺點。

  通過這樣的環(huán)節(jié),加深學(xué)生對三種抽樣方法的理解。

  我之所以設(shè)置這樣由淺入深、層層遞進的問題,是為了符合學(xué)生的接受水平,同時在學(xué)習(xí)的過程中也能夠體現(xiàn)學(xué)生的主體性。

 。ㄈ┱n堂練習(xí)

  當(dāng)然光得出結(jié)論還是不夠的,作為一節(jié)數(shù)學(xué)課要及時對知識進行應(yīng)用。我設(shè)計了如下課堂練習(xí):

  練習(xí):某地區(qū)中小學(xué)生人數(shù)的分布情況如下表所示(單位:人)

高中數(shù)學(xué)說課稿7

  各位評委、各位老師:大家好!

  我叫李長杉,來自甘肅省嘉峪關(guān)市第一中學(xué)。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節(jié)課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個問題,從教材內(nèi)容分析、教法學(xué)法分析、教學(xué)過程分析和課堂意外預(yù)案等幾個方面逐一加以分析和說明。

  一。教材內(nèi)容分析:

  1.本節(jié)課內(nèi)容在整個教材中的地位和作用。

  概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強的基礎(chǔ)性,體現(xiàn)出很大的工具作用。

  2.教學(xué)目標(biāo)定位。

  根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認知特征,我確定了四個層面的教學(xué)目標(biāo)。第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標(biāo),培養(yǎng)學(xué)生運用數(shù)形結(jié)合與等價轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運算和作圖能力。第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認識,向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。

  3.教學(xué)重點、難點確定。

  本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。

  二。教法學(xué)法分析:

  數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅強的意志品質(zhì)、形成良好的.道德情感。為了更好地體現(xiàn)課堂教學(xué)中"教師為主導(dǎo),學(xué)生為主體"的教學(xué)關(guān)系和"以人為本,以學(xué)定教"的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動。我設(shè)計了①創(chuàng)設(shè)情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié)。

  三。教學(xué)過程分析:

  1.創(chuàng)設(shè)情景——引入新課。我們常說"興趣是最好的老師",長期以來,學(xué)生對學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習(xí)的情感體驗,教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設(shè)置一個練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點,相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當(dāng)點撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。

  2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會有太大的問題。在這個過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達成共識,如果二次項系數(shù)為負數(shù)時,先做等價轉(zhuǎn)化,把二次項系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時我及時提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應(yīng)方程都有兩個不等實根,例3對應(yīng)方程有兩相等實根,例4對應(yīng)方程無實根)。兩個題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。

  3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項系數(shù)化為正數(shù),②求解二次方程 ax2+bx+c=0 的根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為"三步曲"法)。

  4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學(xué)生進行課堂練習(xí),完成課本21頁練習(xí)1-4題。本環(huán)節(jié)請不同層次的學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。

  5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個體差異。體現(xiàn)分類推進,分層教學(xué)的原則。為此,我又設(shè)計了一個提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進一步的提高。

  四。課堂意外預(yù)案:

  新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個性發(fā)展,鼓勵學(xué)生勇于提出問題,培養(yǎng)學(xué)生思維的批評性。在課堂上學(xué)生往往會提出讓老師感到"意外"的問題,我在平時的教學(xué)中重視對"課堂意外預(yù)案"的探索和思考,備課時盡量設(shè)想課堂中可能會出現(xiàn)的各種情況,做到有備無患,以免在課堂中學(xué)生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結(jié)合以往經(jīng)驗,在本節(jié)課,我提出兩個"意外預(yù)案".

  1.學(xué)生在做課本練習(xí)1(x+2)(x-3)>0 時,可能會問到轉(zhuǎn)化為不等式組{ 或{ 求解對不對。學(xué)生提出的問題,想法非常好,應(yīng)給予肯定和鼓勵,這與下節(jié)簡單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價轉(zhuǎn)化法,不在本節(jié)課之列。

  2.根據(jù)以往的經(jīng)驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0 可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會出現(xiàn)將不等式轉(zhuǎn)化為不等式組{ 來求解的錯誤做法,教師要關(guān)注學(xué)生,及時發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價轉(zhuǎn)化。

  以上是我對本節(jié)課的一些粗淺的認識和構(gòu)想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!

高中數(shù)學(xué)說課稿8

  各位評委老師,上午好,我是xx號考生葉新穎。今天我的說課題目是集合。首先我們來進行教材分析。

  教材分析

  集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。

  本節(jié)課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。

  教學(xué)目標(biāo)

  1、學(xué)習(xí)目標(biāo)

 。1)通過實例,了解集合的含義,體會元素與集合之間的關(guān)系以及理解“屬于”關(guān)系;

  (2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

  2、能力目標(biāo)

  (1)能夠把一句話一個事件用集合的方式表示出來。

 。2)準(zhǔn)確理解集合與及集合內(nèi)的元素之間的關(guān)系。

  3、情感目標(biāo)

  通過本節(jié)的把實際事件用集合的方式表示出來,從而培養(yǎng)數(shù)學(xué)敏感性,了解到數(shù)學(xué)于生活中。

  教學(xué)重點與難點

  重點:集合的基本概念與表示方法;

  難點:運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;

  教學(xué)方法

 。1)本課將采用探究式教學(xué),讓學(xué)生主動去探索,激發(fā)學(xué)生的學(xué)習(xí)興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達到優(yōu)生得到培養(yǎng),后進生也有所收獲的效果;

 。2)學(xué)生在老師的引導(dǎo)下,通過閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而完成本節(jié)課的教學(xué)目標(biāo)。

  學(xué)習(xí)方法

 。1)主動學(xué)習(xí)法:舉出例子,提出問題,讓學(xué)生在獲得感性認識的同時,

  教師層層深入,啟發(fā)學(xué)生積極思維,主動探索知識,培養(yǎng)學(xué)生思維想象的綜合能力。

 。2)反饋補救法:在練習(xí)中,注意觀察學(xué)生對學(xué)習(xí)的反饋情況,以實現(xiàn)“培

  優(yōu)扶差,滿足不同!

  教學(xué)思路,具體的思路如下

  一、引入課題

  軍訓(xùn)前學(xué)校通知:8月15日8點,高一年段在體育館集合進行軍訓(xùn)動員;試問這個通知的對象是全體的高一學(xué)生還是個別學(xué)生?

  在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學(xué)習(xí)一個新的概念——集合,即是一些研究對象的總體。

  二、正體部分

  學(xué)生閱讀教材,并思考下列問題:

 。1)集合有那些概念?

 。2)集合有那些符號?

 。3)集合中元素的特性是什么?

 。4)如何給集合分類?

 。ㄒ唬┘系挠嘘P(guān)概念

 。1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象.

 。2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構(gòu)成的集合.

 。3)元素:集合中每個對象叫做這個集合的元素.集合通常用大寫的拉丁字母表示,如A、B、C、元素通常用小寫的

  拉丁字母表示,如a、b、c、

  1.思考:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,對學(xué)生的例子予以討論、點評,進而講解下面的問題。

  2、元素與集合的關(guān)系

 。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)

  集合A={2,3,4,6,9}a=2因此我們知道a∈A(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作aA

  要注意“∈”的方向,不能把a∈A顛倒過來寫.(舉例)集合A={3,4,6,9}a=2因此我們知道aA

  3、集合中元素的特性(1)確定性:(2)互異性:(3)無序性:

  4、集合分類

  根據(jù)集合所含元素個屬不同,可把集合分為如下幾類:

 。1)把不含任何元素的集合叫做空集Ф

 。2)含有有限個元素的集合叫做有限集

 。3)含有無窮個元素的集合叫做無限集注:應(yīng)區(qū)分,{},{0},0等符號的含義

  5、常用數(shù)集及其表示方法

  (1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合.記作N

 。2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集.記作N*或N+

 。3)整數(shù)集:全體整數(shù)的集合.記作Z

 。4)有理數(shù)集:全體有理數(shù)的集合.記作Q

  (5)實數(shù)集:全體實數(shù)的集合.記作R注:

 。1)自然數(shù)集包括數(shù)0.

 。2)非負整數(shù)集內(nèi)排除0的.集.記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)排除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

  (二)集合的表示方法

  我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

  (1)列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},;例1.(課本例1)思考2,引入描述法

  說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

 。2)描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內(nèi)。具體方法:在大括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},;例2.(課本例2)說明:(課本P5最后一段)思考3:(課本P6思考)

  強調(diào):描述法表示集合應(yīng)注意集合的代表元素

  {(x,y)|y=x2+3x+2}與{y|y=x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。

  辨析:這里的{}已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。

  說明:列舉法與描述法各有優(yōu)點,應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

 。ㄈ┱n堂練習(xí)(課本P6練習(xí))

  三、歸納小結(jié)與作業(yè)

  本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

  書面作業(yè):習(xí)題1.1,第1-4題。

高中數(shù)學(xué)說課稿9

各位老師:

  大家好!

  我叫xxx,來自xx。我說課的題目是《用樣本的數(shù)字特征估計總體的數(shù)字特征》,內(nèi)容選自于高中教材新課程人教A版必修3第二章第二節(jié),課時安排為三個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計:

  一、教材分析

  1、教材所處的地位和作用

  在上一節(jié)我們已經(jīng)學(xué)習(xí)了用圖、表來組織樣本數(shù)據(jù),并且學(xué)習(xí)了如何通過圖、表所提供的信息,用樣本的頻率分布估計總體的分布情況。本節(jié)課是在前面所學(xué)內(nèi)容的基礎(chǔ)上,進一步學(xué)習(xí)如何通過樣本的情況來估計總體,從而使我們能從整體上更好地把握總體的規(guī)律,為現(xiàn)實問題的解決提供更多的幫助。

  2教學(xué)的重點和難點

  重點:⑴能利用頻率頒布直方圖估計總體的眾數(shù),中位數(shù),平均數(shù)。

 、企w會樣本數(shù)字特征具有隨機性

  難點:能應(yīng)用相關(guān)知識解決簡單的實際問題。

  二、教學(xué)目標(biāo)分析

  1、知識與技能目標(biāo)

 。1)能利用頻率頒布直方圖估計總體的眾數(shù),中位數(shù),平均數(shù)。

 。2)能用樣本的眾數(shù),中位數(shù),平均數(shù)估計總體的眾數(shù),中位數(shù),平均數(shù),并結(jié)合實際,對問題作出合理判斷,制定解決問題的有效方法。

  2、過程與方法目標(biāo):

  通過對本節(jié)課知識的學(xué)習(xí),初步體會、領(lǐng)悟"用數(shù)據(jù)說話"的統(tǒng)計思想方法。

  3、情感態(tài)度與價值觀目標(biāo):

  通過對有關(guān)數(shù)據(jù)的搜集、整理、分析、判斷培養(yǎng)學(xué)生"實事求是"的科學(xué)態(tài)度和嚴(yán)謹?shù)墓ぷ髯黠L(fēng)。

  三、教學(xué)方法與手段分析

  1、教學(xué)方法:結(jié)合本節(jié)課的教學(xué)內(nèi)容和學(xué)生的認知水平,在教法上,我采用"問答探究"式的教學(xué)方法,層層深入。充分發(fā)揮教師的主導(dǎo)作用,讓學(xué)生真正成為教學(xué)活動的主體。

  2、教學(xué)手段:通過多媒體輔助教學(xué),充分調(diào)動學(xué)生參與課堂教學(xué)的主動性與積極性。

  四、教學(xué)過程分析

  1、復(fù)習(xí)回顧,問題引入

  「屏幕顯示」

  〈問題1〉在日常生活中,我們往往并不需要了解總體的分布形態(tài),而是更關(guān)心總體的某一數(shù)字特征,例如:買燈泡時,我們希望知道燈泡的平均使用壽命,我們怎樣了解燈泡的的使用壽命呢?當(dāng)然不能把所有燈泡一一測試,因為測試后燈泡則報廢了。于是,需要通過隨機抽樣,把這批燈泡的壽命看作總體,從中隨機取出若干個個體作為樣本,算出樣本的數(shù)字特征,用樣本的數(shù)字特征來估計總體的數(shù)字特征。

  提出問題:什么是平均數(shù),眾數(shù),中位數(shù)?

 。ń處熖釂枺亯|復(fù)習(xí),學(xué)生思考、積極回答。根據(jù)學(xué)生回答,給出補充總結(jié),借助用多媒體分別給出他們的定義)

  「設(shè)計意圖」使學(xué)生對本節(jié)課的學(xué)習(xí)做好知識準(zhǔn)備。

 。ㄟM一步提出實例、導(dǎo)入新課。)

  「屏幕顯示」

  〈問題2〉選擇薪水高的職業(yè)是人之常情,假如你大學(xué)畢業(yè)有兩個工作相當(dāng)?shù)膯挝豢晒┻x擇,現(xiàn)各從甲乙兩單位分別隨機抽取了50名員工的月工資資料如下(單位:元)

  分組計算這兩組50名員工的月工資平均數(shù),眾數(shù),中位數(shù)并估計這兩個公司員工的平均工資。你選擇哪一個公司,并說明你的`理由。

  (學(xué)生分組分別求兩組數(shù)據(jù)的平均工資。

  學(xué)生:甲、乙平均工資分別為:甲:1320元,乙:1530元。

  所以我選乙公司。

  學(xué)生乙:甲、乙兩公司的眾數(shù)分別為甲:1200,乙:1000,所以我選擇甲公司。

  學(xué)生丙:我要根據(jù)我的能力選擇。)

  「設(shè)計意圖」學(xué)生按"常理"做出選擇,教師指出只憑平均工資做出判斷的依據(jù)并不可靠,從而引導(dǎo)學(xué)生進一步深入問題。

  2講授新課,深入認識

 、拧钙聊伙@示」

  例如,在上一節(jié)抽樣調(diào)查的100位居民的月均用水量的數(shù)據(jù)中,我們畫出了這組數(shù)據(jù)的頻率分布直方圖,F(xiàn)在,觀察這組數(shù)據(jù)的頻率分布直方圖,能否得出這組數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù)?

  (把學(xué)生分成若干小組,分別計算平均數(shù)、中位數(shù)、眾數(shù),或估計平均數(shù)、中位數(shù)、眾數(shù)。然后比較結(jié)果,會發(fā)現(xiàn)通過計算的結(jié)果和通過估計的結(jié)果出現(xiàn)了一定的誤差。引導(dǎo)學(xué)生分析產(chǎn)生誤差的原因。原因是由于樣本數(shù)據(jù)的頻率分布直方圖把原始的一些數(shù)據(jù)給遺失了。讓學(xué)生明白產(chǎn)生這樣的誤差對總體的估計沒有大的影響,因為樣本本身也有隨機性。)

  「設(shè)計意圖」讓學(xué)生懂得如何根據(jù)頻率分布直方圖估計樣本的平均數(shù)、中位數(shù)和眾數(shù)。使學(xué)生明白從直方圖中估計樣本的數(shù)字特征雖然會有一些誤差,但直觀、快速、可避免繁瑣的計算和閱讀數(shù)據(jù)的過程。

 、啤刺岢鰡栴}〉根據(jù)樣本的眾數(shù)、中位數(shù)、平均數(shù)估計總體平均數(shù)的基本數(shù)據(jù),并對上一節(jié)的探究問題制定一個合理平價用水量的的標(biāo)準(zhǔn)。

 。◣熒ㄟ^共同交流探討得知僅以平均數(shù)或只使用中位數(shù)或眾數(shù)制定出平價用水標(biāo)準(zhǔn)都是不合理的,必須綜合考慮才能做出合理的選擇)

  「設(shè)計意圖」使學(xué)生會依據(jù)眾數(shù)、中位數(shù)、平均數(shù)對數(shù)據(jù)進行綜合判斷,并做出合理選擇。也為接下來對他們優(yōu)缺點的總結(jié)打下基礎(chǔ)。

 、强偨Y(jié)出眾數(shù)、中位數(shù)、平均數(shù)三種數(shù)字特征的優(yōu)缺點。

 。ㄏ扔蓪W(xué)生思考,然后再老師的引導(dǎo)下做出總結(jié))

  「設(shè)計意圖」使學(xué)生能更準(zhǔn)確更全面地依據(jù)樣本的眾數(shù)、中位數(shù)、平均數(shù)對數(shù)據(jù)進行綜合判斷,并做出合理選擇,使實際問題得到正確的解決。

  3、反思小結(jié)、培養(yǎng)能力

 、賹W(xué)習(xí)利用頻率直方圖估計總體的眾數(shù)、中位數(shù)和平均數(shù)的方法。

 、诮榻B眾數(shù)、中位數(shù)和平均數(shù)這三個特征數(shù)的優(yōu)點和缺點。

 、蹖W(xué)習(xí)如何利用眾數(shù)、中位數(shù)和平均數(shù)的特征去分析解決實際問題。

  「設(shè)計意圖」小節(jié)是一堂課的概括和總結(jié),有利于優(yōu)化學(xué)生的認知結(jié)構(gòu),把課堂教學(xué)傳授的知識較快轉(zhuǎn)化為學(xué)生的素質(zhì),也更進一步培養(yǎng)學(xué)生的歸納概括能力

  4、課后作業(yè),自主學(xué)習(xí)

  課本練習(xí)

  [設(shè)計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。

  5、板書設(shè)計

高中數(shù)學(xué)說課稿10

  今天我說課的題目是《二次函數(shù)的圖像》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計五方面逐一加以分析和說明。

  一、教材分析

  教材的地位和作用

  本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第4.1節(jié)。二次函數(shù)的圖像在教材中起著承上啟下的作用。

  學(xué)情分析

  本節(jié)課的學(xué)生是高一學(xué)生,他們在初中的時候已經(jīng)學(xué)習(xí)過有關(guān)內(nèi)容,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ),另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對二次函數(shù)的圖像由感性認識上升到理性認識,能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問題的能力。

  二、教學(xué)目標(biāo)分析

  基于以上對教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個部分:

  1、知識與技能

  理解二次函數(shù)中參數(shù)a,b,c,h,k對其圖像的影響;

  2、過程與方法

  通過體驗對二次函數(shù)圖像平移的研究方法,能遷移到其他函數(shù)圖像的研究。

  3、情感態(tài)度與價值觀

  通過本節(jié)的學(xué)習(xí),進一步體會數(shù)形結(jié)合思想的作用,感受到數(shù)學(xué)中數(shù)與形的辯證統(tǒng)一。

  三、教學(xué)重難點分析

  通過以上對教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點確定如下

  重點:

  二次函數(shù)圖像的平移變換規(guī)律及應(yīng)用。

  難點:

  探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律求函數(shù)解析式,并能把平移變換規(guī)律遷移到其他函數(shù)。

  四、教法與學(xué)法分析

  1、教法分析

  基于以上對教材、學(xué)情的分析以及新課改的要求,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。

  2、學(xué)法分析

  新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法進行學(xué)習(xí)。

  五、教學(xué)過程

  為了更好的實現(xiàn)本課的三維目標(biāo),并突破重難點,我將設(shè)計以下五個環(huán)節(jié)來進行我的.教學(xué)。

 。1)知識導(dǎo)入

  溫故而知新,我將先從之前學(xué)習(xí)的知識引入,給出一些函數(shù),比如y=x2、y=2x2,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生比較這些函數(shù)圖像的相同點和不同點,由此引入我的新課。一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗。

 。2)講授新課

  例1:畫出函數(shù)y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像

  讓學(xué)生畫出他們的圖像并觀察函數(shù)圖像的特點,再讓學(xué)生與多媒體課件展示的圖像進行對比,得出結(jié)論:若二次函數(shù)的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。

  前面的練習(xí)和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學(xué)生將實例的結(jié)論進行總結(jié),得出y=x2到y(tǒng)=ax2,y=ax2到y(tǒng)=a(x+h)2+k,y=ax2到y(tǒng)=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a

 。3)鞏固練習(xí)

  我將組織學(xué)生進行練習(xí),完成課本44頁1-3題。通過這種練習(xí)的方式,幫助學(xué)生鞏固和加深二次函數(shù)中參數(shù)對圖像的影響。

 。4)歸納總結(jié)

  我先讓學(xué)生進行小結(jié),然后教師進行補充,在這樣一個過程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習(xí)情況有一定的了解,可以進行適當(dāng)反思,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。

 。5)布置作業(yè)

  略

高中數(shù)學(xué)說課稿11

  一、教材分析

  本課時的內(nèi)容是數(shù)列的定義,通項公式及運用;本課是在學(xué)習(xí)映射、函數(shù)知識基礎(chǔ)上研究數(shù)列,既對進一步理解數(shù)列,又為今后研究等差、等比數(shù)列打下基礎(chǔ),起著承前啟后的重要作用.

  首先,數(shù)列,特別是等差數(shù)列與等比數(shù)列,有著較為廣泛的應(yīng)用。值得一提的是,數(shù)列在產(chǎn)品尺寸標(biāo)準(zhǔn)化方面有著重要作用。例如在我國已頒布的供各種生產(chǎn)部門設(shè)計產(chǎn)品尺寸用的國家標(biāo)準(zhǔn),就是按等比數(shù)列對產(chǎn)品尺寸進行分級的。

  其次,數(shù)列在整個中學(xué)數(shù)學(xué)教學(xué)內(nèi)容中,處于一個知識匯合點的地位,很多知識都與數(shù)列有著密切聯(lián)系,過去學(xué)過的數(shù)、式、方程、函數(shù)、簡易邏輯等知識在這一章均得到了較為充分的應(yīng)用,而學(xué)習(xí)數(shù)列又為后面學(xué)習(xí)數(shù)列與函數(shù)的極限等內(nèi)容作了鋪墊。應(yīng)該說:新課本采取將代數(shù)、幾何打通的混編體系的主要目的是強化數(shù)學(xué)知識的內(nèi)在聯(lián)系,而數(shù)列正是將各知識勾通方面發(fā)揮了重要作用。

  最后,由于不少關(guān)系恒等變形、解方程(組)以及一些帶有綜合性的數(shù)學(xué)問題都與等差數(shù)列、等比數(shù)列有關(guān),從而有助于培養(yǎng)學(xué)生綜合運用知識解決問題的能力。因此本節(jié)內(nèi)容起到一個鞏固舊知,熟練方法,拓展新知的承接作用。

  二、學(xué)生情況分析

  學(xué)習(xí)障礙:

  本節(jié)課是學(xué)習(xí)數(shù)列的起始課,在學(xué)習(xí)中會遇到下列障礙:

  1.對數(shù)列定義中的關(guān)鍵詞"按一定次序"的理解有些模糊.

  2.對數(shù)列與函數(shù)的關(guān)系認識不清.

  3.對數(shù)列的表示,特別是通項公式an=f(n)感到困惑.對數(shù)列的通項公式可以不只一個覺得不可思議.

  4.由數(shù)列的前幾項寫不出數(shù)列的通項公式.

  學(xué)習(xí)策略:

 。1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子等.

  (2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強調(diào)數(shù)列的項是按一定順序排列的,"次序"便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法。

  (3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,這一例題為寫通項公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,可多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助.

 。4)由數(shù)列的前幾項寫出數(shù)列的.一個通項公式是學(xué)生學(xué)習(xí)中的一個難點,要幫助學(xué)生分析各項中的結(jié)構(gòu)特征,讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系。最后老師與學(xué)生共同歸納一些規(guī)律性的結(jié)論。

  1、并非所有數(shù)列都能寫出它的通項公式;如④

  2、有些數(shù)列的通項公式在形式上不一定是唯一的。如數(shù)列1,-1,1,-1,1,-1,...的通項可寫成或或等

  3、當(dāng)一個數(shù)列出現(xiàn)""、"-"相間時,應(yīng)先把符號分離出來,用等來控制;

  4、有些數(shù)列的通項公式可以用分段的形式來表示;

  5、熟悉常見數(shù)列的通項:三、教學(xué)方法及教學(xué)手段分析

  考慮到學(xué)生已學(xué)過映射、函數(shù)的特點,為突破難點,在教學(xué)上,我著重從以下幾個方面:(1)數(shù)列的定義,通項公式;(2)歸納通項公式;(3)畫出數(shù)列的圖像;(4)把數(shù)列的通項公式理解為一種特殊函數(shù),采取了講解、引導(dǎo)、探索式相結(jié)合的教學(xué)方法啟發(fā)學(xué)生積極思考、勇于創(chuàng)新.

 。ㄒ唬﹩l(fā)誘導(dǎo)式:舉實例讓學(xué)生找規(guī)律,得到數(shù)列的基本知識。

  (二)自主學(xué)習(xí)式:根據(jù)數(shù)列的定義和前面所學(xué)的函數(shù)關(guān)系,由學(xué)生自己通過聯(lián)想、類比、對比、歸納的方法遷移到新情境中,將新的知識內(nèi)化到學(xué)生原有的認知結(jié)構(gòu)中去。

 。ㄈ﹩栴}解決式:設(shè)計的每一個探究問題的解答過程。

 。ㄋ模├枚嗝襟w教學(xué)手段,引入課題,能激發(fā)學(xué)生學(xué)習(xí)興趣,增加數(shù)學(xué)人文色彩,同時也闡述了數(shù)列來源于實際,化抽象為具體,增強動感與直觀性,同時也提高教學(xué)效果和教學(xué)質(zhì)量

  總之1、本節(jié)課是數(shù)列的起始課,設(shè)置情景、激發(fā)興趣有利于學(xué)生學(xué)好本章知識;

  2、把數(shù)列與集合、函數(shù)對比學(xué)習(xí),有利于鞏固舊知識,掌握新知識,使所學(xué)知識形成系統(tǒng)化;

  3、教法和學(xué)法上突出教材重點、力求突破難點,加深學(xué)生對知識的理解。較多地采用提問(包括設(shè)問);在教學(xué)材料呈現(xiàn)上以多媒體形式給出。例題的配備由淺入深、滲透了思維活動組織上由此及彼的類比推理概括的方法。貫徹"教師為主導(dǎo)、學(xué)生為主體、探究為主線、思維為主攻"的教學(xué)思想,采取"精講、善導(dǎo)、激趣、引思"的八字方針。

高中數(shù)學(xué)說課稿12

  一、教材分析

  集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。

  本節(jié)課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。

  二、教學(xué)目標(biāo)

  1、學(xué)習(xí)目標(biāo)

  (1)通過實例,了解集合的含義,體會元素與集合之間的關(guān)系以及理解“屬

  于”關(guān)系;

 。2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

  2、能力目標(biāo)

  (1)能夠把一句話一個事件用集合的方式表示出來。

  (2)準(zhǔn)確理解集合與及集合內(nèi)的元素之間的關(guān)系。

  3、情感目標(biāo)

  通過本節(jié)的把實際事件用集合的方式表示出來,從而培養(yǎng)數(shù)學(xué)敏感性,了 解到數(shù)學(xué)于生活中。

  三、教學(xué)重點與難點

  重點 集合的基本概念與表示方法;

  難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;

  四、教學(xué)方法

 。1)本課將采用探究式教學(xué),讓學(xué)生主動去探索,激發(fā)學(xué)生的學(xué)習(xí)興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達到優(yōu)生得到培養(yǎng),后進生也有所收獲的效果;

 。2)學(xué)生在老師的引導(dǎo)下,通過閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而完成本節(jié)課的教學(xué)目標(biāo)。

  五、學(xué)習(xí)方法

 。1)主動學(xué)習(xí)法:舉出例子,提出問題,讓學(xué)生在獲得感性認識的同時,

  教師層層深入,啟發(fā)學(xué)生積極思維,主動探索知識,培養(yǎng)學(xué)生思維想象 的綜合能力。

 。2)反饋補救法:在練習(xí)中,注意觀察學(xué)生對學(xué)習(xí)的反饋情況,以實現(xiàn)“培

  優(yōu)扶差,滿足不同!

  六、教學(xué)思路

  具體的思路如下

  復(fù)習(xí)的引入:講一些集合的相關(guān)數(shù)學(xué)及相關(guān)數(shù)學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數(shù)學(xué)史從何使學(xué)生對數(shù)學(xué)更加感興趣,有助于上課的效率!因為時間關(guān)系這里我就不說相關(guān)數(shù)學(xué)史咯。

  一、 引入課題

  軍訓(xùn)前學(xué)校通知:8月15日8點,高一年段在體育館集合進行軍訓(xùn)動員;試問這個通知的對象是全體的高一學(xué)生還是個別學(xué)生?

  在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學(xué)習(xí)一個新的概念——集合,即是一些研究對象的總體。

  二、 正體部分

  學(xué)生閱讀教材,并思考下列問題:

 。1)集合有那些概念?

 。2)集合有那些符號?

 。3)集合中元素的特性是什么?

 。4)如何給集合分類?

  (一)集合的有關(guān)概念

 。1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,

  都可以稱作對象.

 。2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由

  這些對象的全體構(gòu)成的集合.

 。3)元素:集合中每個對象叫做這個集合的元素.

  集合通常用大寫的.拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、??

  1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,

  對學(xué)生的例子予以討論、點評,進而講解下面的問題。

  2、元素與集合的關(guān)系

  (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

 。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A

  要注意“∈”的方向,不能把a∈A顛倒過來寫. (舉例)

  集合A={3,4,6,9}a=2 因此我們知道a?A

  3、集合中元素的特性

 。1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.

 。2)互異性:集合中的元素一定是不同的.

 。3)無序性:集合中的元素沒有固定的順序.

  4、集合分類

  根據(jù)集合所含元素個屬不同,可把集合分為如下幾類:

 。1)把不含任何元素的集合叫做空集Ф

 。2)含有有限個元素的集合叫做有限集

 。3)含有無窮個元素的集合叫做無限集

  注:應(yīng)區(qū)分?,{?},{0},0等符號的含義

  5、常用數(shù)集及其表示方法

 。1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合.記作N

 。2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集.記作N*或N+

 。3)整數(shù)集:全體整數(shù)的集合.記作Z

 。4)有理數(shù)集:全體有理數(shù)的集合.記作Q

 。5)實數(shù)集:全體實數(shù)的集合.記作R

  注:(1)自然數(shù)集包括數(shù)0.

  (2)非負整數(shù)集內(nèi)排除0的集.記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)排

  除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

  (二)集合的表示方法

  我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

  (1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(課本例1)

  思考2,引入描述法

  說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

 。2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內(nèi)。 具體方法:在大括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(課本例2)

  說明:(課本P5最后一段)

  思考3:(課本P6思考) 強調(diào):描述法表示集合應(yīng)注意集合的代表元素

  {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。

  說明:列舉法與描述法各有優(yōu)點,應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

  (三)課堂練習(xí)(課本P6練習(xí))

  三、 歸納小結(jié)與作業(yè)

  本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

  書面作業(yè):習(xí)題1.1,第1- 4題

高中數(shù)學(xué)說課稿13

  一、說設(shè)計理念

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出要讓學(xué)生感受生活中處處有數(shù)學(xué),用數(shù)學(xué)知識解決生活中的實際問題。

  基于這一理念,我在教學(xué)過程中力求聯(lián)系學(xué)生生活實際和已有的知識經(jīng)驗,從學(xué)生感興趣的素材,設(shè)計新穎的導(dǎo)入與例題教學(xué),給數(shù)學(xué)課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學(xué)氛圍,讓學(xué)生經(jīng)歷知識的探究過程,培養(yǎng)學(xué)生感受生活中的數(shù)學(xué)和用數(shù)學(xué)知識解決生活問題的能力,體驗數(shù)學(xué)的應(yīng)用價值。

  二、教材分析:

 。ㄒ唬┙滩牡牡匚缓妥饔

  有關(guān)統(tǒng)計圖的認識,小學(xué)階段主要認識條形統(tǒng)計圖、折線統(tǒng)計圖和扇形統(tǒng)計圖?紤]到扇形統(tǒng)計圖在日常生活中的廣泛應(yīng)用,《標(biāo)準(zhǔn)》把它作為必學(xué)內(nèi)容安排在本單元。本單元是在前面學(xué)習(xí)了條形統(tǒng)計圖和折線統(tǒng)計圖的特點和作用的基礎(chǔ)上進行教學(xué)的。主要通過熟悉的事例使學(xué)生體會到扇形統(tǒng)計圖的實用價值。

 。ǘ┙虒W(xué)目標(biāo)

  1、聯(lián)系生活情境了解扇形統(tǒng)計圖的.特點和作用

  2、能讀懂扇形統(tǒng)計圖,從中獲取有效的信息。

  3、讓學(xué)生在觀察、比較、討論和交流中體會扇形統(tǒng)計圖反映的是整體和部分的關(guān)系。

 。ㄈ┙虒W(xué)重點:

  1、能讀懂扇形統(tǒng)計圖,理解扇形統(tǒng)計圖的特點和作用,并能從中獲取有效信息。

  2、認識折線統(tǒng)計圖,了解折線統(tǒng)計圖的特點。

 。ㄋ模┙虒W(xué)難點:

  1、能從扇形統(tǒng)計圖中獲得有用信息,并做出合理推斷。

  2、能根據(jù)統(tǒng)計圖和數(shù)據(jù)進行數(shù)據(jù)變化趨勢的分析。

  二、學(xué)情分析

  本單元的教學(xué)是在學(xué)生已有統(tǒng)計經(jīng)驗的基礎(chǔ)上,學(xué)習(xí)新知的。六年級的學(xué)生已經(jīng)學(xué)習(xí)了條形統(tǒng)計圖和折線統(tǒng)計圖,知道他們的特點,并具有一定的概括、分析能力,在此基礎(chǔ)上,通過新舊知識對比,自然生成新知識點。

  三、設(shè)計理念和教法分析

  1、本堂課力爭做到由“關(guān)注知識”轉(zhuǎn)向“關(guān)注學(xué)生”,由“傳授知識”轉(zhuǎn)向“引導(dǎo)探索”,“教師是組織者、領(lǐng)導(dǎo)者!睂⒄n堂設(shè)置問題給學(xué)生,讓學(xué)生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構(gòu)建。

  2、運用探究法。探究學(xué)習(xí)的內(nèi)容以問題的形式出現(xiàn)在教師的引導(dǎo)下,學(xué)生自主探究,讓學(xué)生在課堂上多活動、多思考,自主構(gòu)建知識體系。引導(dǎo)學(xué)生獲取信息并合作交流。

  四、說學(xué)法

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出有效的數(shù)學(xué)學(xué)習(xí)不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。教學(xué)時,我通過學(xué)生感興趣的話題引入,引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),使學(xué)生體會到觀察、概括、想象、遷移等數(shù)學(xué)學(xué)習(xí)方法,在師生互動中讓每個學(xué)生都動口,動手,動腦。培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性。

  五、說教學(xué)程序

  本課分成創(chuàng)設(shè)情境,感知特點——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實踐應(yīng)用,全課總結(jié)四環(huán)節(jié)。

  六、說教學(xué)過程

  (一)復(fù)習(xí)引新

  1、復(fù)習(xí)舊知

  提問:我們學(xué)習(xí)過哪些統(tǒng)計方法?其中條形統(tǒng)計圖和折線統(tǒng)計圖各有什么特點?

  2、引入新課

 。ǘ┳灾魈剿,學(xué)習(xí)新知

  新知識教學(xué)分二步教學(xué):第一步整體感知,看懂統(tǒng)計圖,理解特征,這是本節(jié)課的重點。在教學(xué)中,以知識遷移的方式建立新舊知識之間的聯(lián)系,放手讓學(xué)生獨立思考,互相合作,進一步了解統(tǒng)計圖的特征。

  第二步實踐應(yīng)用環(huán)節(jié)。在教學(xué)中,精心地選取了大量的生活素材,使統(tǒng)計知識與生活建立緊密的聯(lián)系。根據(jù)統(tǒng)計圖回答問題,是讓學(xué)生運用到剛才學(xué)習(xí)到的知識來解決生活中的一些問題,并鞏固剛才所學(xué)的知識,為學(xué)生自己發(fā)現(xiàn)問題、提出問題及自己解決問題提供了較大的空間。同時,讓學(xué)生感悟由于數(shù)據(jù)變化帶來的啟示,并能合理地進行推理與判斷

  三、課堂總結(jié)

  四、布置作業(yè)。

  五、板書設(shè)計:

高中數(shù)學(xué)說課稿14

  1、教學(xué)目標(biāo):

  一、借助單位圓理解任意角的三角函數(shù)的定義。

  二、根據(jù)三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號。

  三、通過學(xué)生積極參與知識的"發(fā)現(xiàn)"與"形成"的過程,培養(yǎng)合情猜測的能力,從中感悟數(shù)學(xué)概念的嚴(yán)謹性與科學(xué)性。

  四、讓學(xué)生在任意角三角函數(shù)概念的形成過程中,體會函數(shù)思想,體會數(shù)形結(jié)合思想。

  2、教學(xué)重點與難點:

  重點:任意角的正弦、余弦、正切的定義;三角函數(shù)值的符號。

  難點:任意角的三角函數(shù)概念的建構(gòu)過程。

  授課過程:

  一、引入

  在我們的現(xiàn)實世界中的許多運動變化都有循環(huán)往復(fù)、周而復(fù)始的現(xiàn)象,這種變化規(guī)律稱為周期性。如何用數(shù)學(xué)的方法來刻畫這種變化?從這節(jié)課開始,我們要來學(xué)習(xí)刻畫這種規(guī)律的數(shù)學(xué)模型之一――三角函數(shù)。

  二、創(chuàng)設(shè)情境

  三角函數(shù)是與角有關(guān)的函數(shù),在學(xué)習(xí)任意角概念時,我們知道在直角坐標(biāo)系中研究角,可以給學(xué)習(xí)帶來許多方便,比如我們可以根據(jù)角終邊的位置把它們進行歸類,現(xiàn)在大家考慮:若在直角坐標(biāo)系中來研究銳角,則銳角三角函數(shù)又可怎樣定義呢?

  學(xué)生情況估計:學(xué)生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點P的坐標(biāo)。

  問題:

  1、銳角三角函數(shù)能否表示成第二種比值方式?

  2、點P能否取在終邊上的其它位置?為什么?

  3、點P在哪個位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數(shù)依舊表示一個比值,不過其分母為1而已。

  練習(xí):計算的各三角函數(shù)值。

  三、任意角的三角函數(shù)的定義

  角的概念已經(jīng)推廣道了任意角,那么三角函數(shù)的定義在任意角的范圍里改怎么定義呢?

  嘗試:根據(jù)銳角三角函數(shù)的定義,你能嘗試著給出任意角三角函數(shù)的定義嗎?

  評價學(xué)生給出的定義。給出任意角三角函數(shù)的定義。

  四、解析任意角三角函數(shù)的定義

  三角函數(shù)首先是函數(shù)。你能從函數(shù)觀點解析三角函數(shù)嗎?(定義域)

  對于確定的角a,上面三個函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。由于角的集合和實數(shù)集之間可以建立一一對應(yīng)的關(guān)系,三角函數(shù)可以看成是自變量為實數(shù)的函數(shù)。

  五、三角函數(shù)的應(yīng)用。

  1、已知角,求a的三角函數(shù)值。

  2、已知角a終邊上的一點P(-3,-4),求各三角函數(shù)值。

  以上兩道書上的例題,讓學(xué)生自習(xí)看書,學(xué)生看書的同時,老師提出問題:

  1、已知角如何求三角函數(shù)值?

  2、利用角a的'終邊上任意一點的坐標(biāo)也可以定義三角函數(shù),你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點?)

  3、變式:已知角a終邊上點P(-3b,-4b),(b0),求角a的各三角函數(shù)值。

  4、探究:三角函數(shù)的值在各象限的符號。

  六、小結(jié)及作業(yè)

  教案設(shè)計說明:

  新教材的教學(xué)理念之一是讓學(xué)生去體驗新知識的發(fā)生過程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點來設(shè)計。

  首先,角的概念推廣了,那么銳角三角函數(shù)的定義是否也該推廣到任意角的三角函數(shù)的定義呢?通過這個問題,讓學(xué)生體會到新知識的發(fā)生是可能的,自然的。

  其次,到底應(yīng)該怎樣去合理定義任意角的三角函數(shù)呢?讓學(xué)生提出自己的想法,同時讓學(xué)生去辨證這個想法是否是科學(xué)的?因為一個概念是嚴(yán)謹?shù),科學(xué)的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數(shù)的定義有所沖突。在這個立-破的過程中,讓學(xué)生去體驗一個新的數(shù)學(xué)概念可能是如何形成,在形成的過程中可以從哪些角度加以科學(xué)的辯思。這樣也有助于學(xué)生對任意角三角函數(shù)概念的理解。

  再次,讓學(xué)生充分體會在任意角三角函數(shù)定義的推廣中,是如何將直角三角形這個"形"的問題,轉(zhuǎn)換到直角坐標(biāo)系下點的坐標(biāo)這個"數(shù)"的過程的。培養(yǎng)數(shù)形結(jié)合的思想。

高中數(shù)學(xué)說課稿15

  一、教材分析

  1、教材的地位和作用

  推理與證明是人教版普通高中課程標(biāo)準(zhǔn)實驗教科書選修1—2第二章第一節(jié)內(nèi)容,思想貫穿于高中數(shù)學(xué)的整個知識體系,是新課標(biāo)教材的亮點之一。本節(jié)內(nèi)容將歸納推理的一般方法進行了必要的總結(jié)和歸納,同時也對后繼知識的學(xué)習(xí)起到引領(lǐng)的作用、

  2、教材處理

  《歸納推理》是培養(yǎng)學(xué)生觀察、分析、發(fā)現(xiàn)、概括、猜想和探索能力的極好素材。根據(jù)本節(jié)課標(biāo)要求:從演示觀察,先形象地真實舉例,然后轉(zhuǎn)化為猜想,引導(dǎo)探究典型例子分析,加強對概念的理解。

  二、教學(xué)目標(biāo)分析:

  1、知識技能目標(biāo):理解歸納推理的概念,了解歸納推理的作用,掌握歸納推理的一般步驟,會利用歸納進行一些簡單的歸納推理。

  2、過程方法目標(biāo):學(xué)生自主學(xué)習(xí)歸納推理的一般方法,建構(gòu)歸納推理的思維方式、讓學(xué)生明白數(shù)學(xué)發(fā)現(xiàn)的過程和方法,培養(yǎng)學(xué)生分析解決問題的能力,鍛煉他們探索規(guī)律,融會貫通的能力,并使學(xué)生思維能力得到提升。

  3、情感態(tài)度,價值觀目標(biāo):通過學(xué)生主動探究、合作學(xué)習(xí)、相互交流,培養(yǎng)不怕困難、勇于探索的優(yōu)良作風(fēng),增強學(xué)生的數(shù)學(xué)應(yīng)用意識,提高學(xué)生數(shù)學(xué)思維的情趣,給學(xué)生成功的體驗,形成學(xué)習(xí)數(shù)學(xué)知識、了解數(shù)學(xué)文化的積極態(tài)度、

  三、教學(xué)的重點、難點分析:

  1、教學(xué)重點:了解歸納推理含義、能利用歸納進行簡單推理。

  教學(xué)策略:演示觀察,先形象地真實舉例,然后轉(zhuǎn)化為猜想,引導(dǎo)探究典型例子分析,加強對概念的理解

  2、教學(xué)難點:用歸納進行推理,做出猜想。

  教學(xué)策略:第一,創(chuàng)設(shè)情景;第二,觀察規(guī)律,得出猜想;第三,實際應(yīng)用,提出質(zhì)疑。

  四、教法分析、教學(xué)手段與教具選擇:

  1、教學(xué)方法:自主探究、協(xié)作學(xué)習(xí)、啟發(fā)發(fā)現(xiàn)、課堂討論法

  2、教具:多媒體、粉筆、黑板。

  3、教學(xué)手段:多媒體教學(xué)課件。

  五、學(xué)法分析:

  本課教給學(xué)生的學(xué)法是“發(fā)現(xiàn)問題、分析問題、解決問題”。因此本課教學(xué)過程中,讓學(xué)生帶著學(xué)習(xí)任務(wù)通過自主學(xué)習(xí)發(fā)現(xiàn)、課堂討論、相互合作等方式,使學(xué)生在完成任務(wù)的過程中不知不覺實現(xiàn)知識的傳遞、遷移和融合。

  六、教學(xué)過程設(shè)計分析:

  1、創(chuàng)設(shè)情景、引入新課

  游戲:袋子里裝有大小質(zhì)地一樣的玻璃球,摸一個出來是紅色,摸第二個出來也是紅色,第三、第四還是紅色…

  問題1:有什么猜想?

  師生活動:老師把玻璃球攪拌均勻,可叫一個學(xué)生摸球,其他學(xué)生細心觀察。

  設(shè)計意圖:游戲吸引學(xué)生注意力,提高學(xué)習(xí)興趣,形象地引出歸納推理。

  問題2:觀察10=3+7,12=5+7,32=13+19 …等式特征,有怎樣的規(guī)律?

  師生活動:這里要引導(dǎo)學(xué)生觀察:這是一個等式,左右兩邊數(shù)字有什么特征,學(xué)生的猜想多種多樣,不要抹殺學(xué)生的洞察力,可進一步引導(dǎo)學(xué)生嘗試:其它的偶數(shù)有同樣的規(guī)律嗎?

  設(shè)計意圖:通過欣賞一些偉大猜想產(chǎn)生的過程,探索出歌德巴赫猜想:一個偶數(shù)(不小于6)總可以表示成兩個奇質(zhì)數(shù)之和。帶領(lǐng)學(xué)生走進歸納推理的領(lǐng)域。學(xué)生主動探究、自我發(fā)現(xiàn),培養(yǎng)勇于探索的優(yōu)良作風(fēng)。

  問題3:歌德巴赫猜想的歷史了解嗎?

  師生活動:通過多媒體讓學(xué)生閱讀材料。

  設(shè)計意圖:提高學(xué)生數(shù)學(xué)思維的情趣,了解數(shù)學(xué)文化,對數(shù)學(xué)充滿信心的積極態(tài)度,培養(yǎng)愛國精神。

  問題4:歌德巴赫猜想的推理過程如何?

  師生活動:讓學(xué)生探究歌德巴赫是怎樣提出這個猜想的。

  設(shè)計意圖:通過自己發(fā)現(xiàn)歌德巴赫猜想的推理過程———歸納推理的產(chǎn)生,為理解歸納推理的含義做鋪墊。

  問題5:由上述推理過程能否用自己語言描述歸納推理的含義?

  師生活動:學(xué)生自己總結(jié),教師個別提問,學(xué)生修改,該問題只有部分同學(xué)能及時地回答出來。有些同學(xué)猶疑不答,有些同學(xué)會說出不同的語句獲不全面、不十分準(zhǔn)確。教師通過評價學(xué)生的結(jié)論引入歸納推理含義——是由部分到整體、由個別到一般的推理。

  設(shè)計意圖:使學(xué)生更深刻理解和記憶歸納推理的含義,培養(yǎng)學(xué)生歸納、總結(jié)、理解能力,這比老師直接給出概念效果要好得多。

  問題6:你能用歸納推理提出一個猜想嗎?

  師生活動:學(xué)生各抒己見,踴躍回答,有生活的,有數(shù)學(xué)的,其它學(xué)科的等。例如:

 、 金、銀、銅、鐵、鋁等金屬能導(dǎo)電,歸納出“一切金屬都能導(dǎo)電”

 、 硫酸、硝酸、碳酸等含有氧元素,歸納出“所有的酸都含有氧元素”

 、刍@球、排球、乒乓球等是圓的,歸納出“所有的球都是圓的”

  ……

  可以讓同學(xué)們相互補充,老師適當(dāng)點評和肯定。

  設(shè)計意圖:更深一步具體理解歸納推理的含義,初步形成能用歸納推理得出結(jié)論的步驟。感受歸納推理無處不在,自然而有趣,創(chuàng)造和諧積極的學(xué)習(xí)氣氛。這比直接解釋概念記憶要深刻和通俗易懂。

  2、典型例題、知識應(yīng)用

  例:觀察右圖,可以發(fā)現(xiàn)

  1+3=4=22,

  1+3+5=9=32,

  1+3+5+7=16=42,

  1+3+5+7+9=25=52,

  問題7:上面等式如何由圖中觀察出來?1+3+ …+1999=?由上述具體事實能得出怎樣的一般性規(guī)律?能用一條等式表示出來嗎?

  師生活動:問題逐個解決,個別回答,集體回答相結(jié)合。部分學(xué)生會觀察上式,但不會從圖中總結(jié)規(guī)律,這里要從小正方形的個數(shù)或面積去引導(dǎo)他們觀察,引導(dǎo)學(xué)生得出等式的'規(guī)律要看等號左右兩邊存在什么規(guī)律。

  總結(jié):由幾條特殊的等式存在的規(guī)律,歸納出一般性的結(jié)論1+3+…+(2n-1)=n2(n∈N*)成立,這就是歸納推理。

  設(shè)計意圖:給出例子讓學(xué)生通過直觀感知、觀察分析、歸納體會歸納推理的一般步驟,進一步感受歸納推理的作用。讓他們懂得數(shù)形結(jié)合去做題。

  問題8:

  師生活動:

  題目沒有直接給出部分事物特征,應(yīng)先找出來再觀察、歸納、猜想、引導(dǎo)學(xué)生做題方向,個別提問,師生共同完成、總結(jié)。

  設(shè)計意圖:體會歸納推理的一般步驟,進一步感受歸納推理的作用。讓學(xué)生感受歸納推理起到了能夠提供研究方向的作用,培養(yǎng)學(xué)生進行歸納推理的能力。

  問題9、歸納推理的一般步驟如何?

  師生活動:通過兩個例題,學(xué)生自行總結(jié),教師綜合結(jié)論得出

  一般步驟:⑴對有限的資料進行觀察、分析、歸納整理;⑵提出帶有規(guī)律性的結(jié)論,即猜想;

  設(shè)計意圖:總結(jié)步驟,為后面應(yīng)用打基礎(chǔ),讓學(xué)生自行總結(jié)充分體現(xiàn)學(xué)生的自主性。

  3、思考練習(xí)

  1)、觀察下面的“三角陣”

  1

  1 1

  1 2 1

  1 3 3 1

  1 4 6 4 1

  1 5 10 a 5 1

  ……

  1 10 45 … … 45 10 1

  試找出相鄰兩行數(shù)之間的關(guān)系,并求a

  師生活動:學(xué)生觀察,尋找規(guī)律,老師和學(xué)生共同評價學(xué)生的觀察結(jié)果并接著問:上面“三角陣”還有其它規(guī)律嗎?讓學(xué)生分組討論回答

  設(shè)計意圖:感受數(shù)學(xué)美和發(fā)現(xiàn)規(guī)律的喜悅,激發(fā)學(xué)生更積極地去尋找規(guī)律、認識規(guī)律。同時讓學(xué)生感受到只要做個有心人,發(fā)現(xiàn)規(guī)律并非難事。

  2)、在數(shù)列{an}中,若a1=1,

  an+1=(n∈N﹡),試猜想這個數(shù)列的通項公式、

  師生活動:請三位學(xué)生上黑板板書,并另請三位批改,讓學(xué)生自己掌握做題方法和步驟

  答案:通過運算a2、a3、a4等的值得出an=

  3)、畫一畫、猜一猜:根據(jù)下列圖案中圓圈的排列規(guī)則,猜想第(5)個圖形是怎樣排列的,由多少個圓圈組成;第n個圖形中共有多少個圓圈?

  n=1 n=2 n=3 n=4

  師生活動:由學(xué)生在講義上作圖,發(fā)現(xiàn)規(guī)律并總結(jié),再通過學(xué)生之間充分討論之后相互交流,教師點評。

  設(shè)計意圖:學(xué)生主動探究規(guī)律,感受歸納推理對發(fā)現(xiàn)新事實、得出新結(jié)論的作用。引導(dǎo)學(xué)生發(fā)現(xiàn)并總結(jié)規(guī)律。給學(xué)生創(chuàng)建一個開放的、有活力、有個性的數(shù)學(xué)學(xué)習(xí)環(huán)境,感受數(shù)學(xué)美和發(fā)現(xiàn)規(guī)律的喜悅,激發(fā)學(xué)生更積極地去尋找規(guī)律、認識規(guī)律。同時讓學(xué)生感受到只要做個有心人,發(fā)現(xiàn)規(guī)律并非難事。

  答案:第5個圖形中共有圓圈21個;第n個圖形中共有圓圈:n(n—1)+1個

  4、質(zhì)疑、解疑

  問題9:猜想的一般結(jié)論是否成立?即歸納推理的可靠性如何?為什么要學(xué)習(xí)歸納推理?

  師生活動:教師生動講述歐拉發(fā)現(xiàn)第五個費馬數(shù)的過程,激發(fā)學(xué)生的好奇心與求知欲,同時,通過“猜想——驗證——再猜想”說明科學(xué)的進步與發(fā)展處在一個螺旋上升的過程。

  再例:硫酸、硝酸、碳酸等酸中含有氧元素,歸納出“所有的酸都含有氧元素”。反例:鹽酸是酸,但不含氧元素

  設(shè)計意圖:通過這個問題情境的設(shè)置,引起學(xué)生對歸納推理的結(jié)論可靠性進行思考。其結(jié)論具有猜測性、或然性,不能作為數(shù)學(xué)證明的依據(jù)。但它是一種具有創(chuàng)造性的推理,為研究問題提供一個方向讓學(xué)生在解決問題的過程中發(fā)現(xiàn)歸納推理需要檢驗過程,從而自我修正歸納推理的一般步驟。

  問題10:組織學(xué)生進行分組討論,引導(dǎo)學(xué)生從生活和學(xué)習(xí)兩大方面對歸納推理的應(yīng)用進行舉例。

  師生活動:分組競賽,挑1、2個小組的題目出來讓其他小組進行分析。

  設(shè)計意圖:分組討論降低了概念學(xué)習(xí)的難度,加深對歸納推理的應(yīng)用使學(xué)生能夠更多的圍繞重點展開探索和研究。學(xué)生的主體意識在這里獲得充分的體現(xiàn)。

  七、課堂小結(jié):

  1、你在知識方面學(xué)會了什么?

  2、你注意到過程與方法了嗎?

  3、你在思維和情感方面有何收益?

  師生活動:學(xué)生討論總結(jié),相互補充,教師點評。

  設(shè)計意圖:讓學(xué)生自己小結(jié),這是一個多維整合的過程,是一個高層次的自我認識過程。

  八、作業(yè)

  1、(必做題)課本P30第1題

  2、(選做題):猜想10條直線的交點最多有多少個?(畫圖分析)答案:45個

  3、課后學(xué)習(xí):上網(wǎng)查找了解有關(guān)“四色猜想”、“哥尼斯堡七橋猜想”、“敘拉古猜想”、“費馬猜想”等資料

  設(shè)計意圖:設(shè)計必做題是知識的初步應(yīng)用和基礎(chǔ)知識的鞏固選做題是針對學(xué)有余力的同學(xué)提升高度,鏈接高考。思考題是開放性題目,拓展學(xué)生思維,用資料進行數(shù)學(xué)學(xué)習(xí),同時讓學(xué)生了解網(wǎng)絡(luò)是自主學(xué)習(xí)和拓展知識面的一個重要平臺。這是本節(jié)內(nèi)容的一個提高與拓展。

  九、教學(xué)效果分析:

  本節(jié)課以問題為載體,設(shè)計情景,生活、數(shù)學(xué)實力生動地學(xué)習(xí)了歸納推理的知識,體現(xiàn)了學(xué)生主動,教師指導(dǎo)的地位。本節(jié)課在注重基礎(chǔ)知識的同時培養(yǎng)學(xué)生歸納推理的能力,在尊重學(xué)生個性差異的基礎(chǔ)上選擇合適的例題、習(xí)題,為不同層次學(xué)生的學(xué)習(xí)提供了廣闊的空間。以分組討論為探究的基本形式,激勵學(xué)生積極主動地探索結(jié)論,同時利用著名猜想讓學(xué)生體會數(shù)學(xué)的人文價值。通過生活實例和數(shù)學(xué)實例,使學(xué)生了解歸納推理的涵義,感受歸納推理能猜測和發(fā)現(xiàn)一些新結(jié)論,探索和提供解決一些問題的思路和方向的作用,并能運用歸納進行簡單的推理、

  十、板書設(shè)計

  歸納推理

  一、推理

  二、歸納推理的含義

  三、歸納推理的應(yīng)用

  四、歸納推理的一般步驟

  五、小結(jié)

  例1

  例2

  練習(xí)

【高中數(shù)學(xué)說課稿】相關(guān)文章:

高中數(shù)學(xué)經(jīng)典說課稿優(yōu)秀11-20

高中數(shù)學(xué)《向量》說課稿01-06

高中數(shù)學(xué)說課稿05-20

高中數(shù)學(xué)《集合》說課稿07-22

高中數(shù)學(xué)說課稿07-09

(優(yōu))高中數(shù)學(xué)說課稿05-20

高中數(shù)學(xué)教學(xué)說課稿06-20

[熱]高中數(shù)學(xué)說課稿06-08

關(guān)于高中數(shù)學(xué)說課稿11-26

高中數(shù)學(xué)說課稿 15篇11-14