當前位置:育文網(wǎng)>初中>初中數(shù)學> 初中數(shù)學知識點

初中數(shù)學知識點

時間:2024-11-13 10:29:36 詩琳 初中數(shù)學

初中數(shù)學知識點大全

  在平日的學習中,大家都沒少背知識點吧?知識點是知識中的最小單位,最具體的內容,有時候也叫“考點”。還在苦惱沒有知識點總結嗎?以下是小編幫大家整理的初中數(shù)學知識點大全,供大家參考借鑒,希望可以幫助到有需要的朋友。

初中數(shù)學知識點大全

  初中數(shù)學知識點 1

  1.有理數(shù):

 。1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負數(shù);—a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);

 。2)有理數(shù)的分類:① ②

  2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。

  3.相反數(shù):

 。1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

 。2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。

  4.絕對值:

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

 。2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

  5.有理數(shù)比大。海1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。

  6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負倒數(shù)。

  7.有理數(shù)加法法則:

 。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  (2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數(shù)與0相加,仍得這個數(shù)。

  8.有理數(shù)加法的運算律:

 。1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c)。

  9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)。

  10.有理數(shù)乘法法則:

  (1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;

 。2)任何數(shù)同零相乘都得零;

  (3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定。

  11.有理數(shù)乘法的'運算律:

 。1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac 。

  12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù)。

  13.有理數(shù)乘方的法則:

  (1)正數(shù)的任何次冪都是正數(shù);

 。2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(—a)n=—an或(a —b)n=—(b—a)n,當n為正偶數(shù)時:(—a)n =an或(a—b)n=(b—a)n 。

  14.乘方的定義:

  (1)求相同因式積的運算,叫做乘方;

  (2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結果叫做冪;

  15.科學記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法。

  16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。

  17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。

  18.混合運算法則:先乘方,后乘除,最后加減。

  本章內容要求學生正確認識有理數(shù)的概念,在實際生活和學習數(shù)軸的基礎上,理解正負數(shù)、相反數(shù)、絕對值的意義所在。重點利用有理數(shù)的運算法則解決實際問題。

  體驗數(shù)學發(fā)展的一個重要原因是生活實際的需要。激發(fā)學生學習數(shù)學的興趣,教師培養(yǎng)學生的觀察、歸納與概括的能力,使學生建立正確的數(shù)感和解決實際問題的能力。教師在講授本章內容時,應該多創(chuàng)設情境,充分體現(xiàn)學生學習的主體性地位。

  初中數(shù)學知識點 2

  一、認識角

  1、 角的特征:一個頂點,兩條邊(直的)

  2、 角的大。号c兩條邊叉開的大小有關,與兩條邊的`長短無關。

  3、 角的畫法:(1)、定頂點。(2)、由這一點引一條直線。(3)、畫另一條邊(直角時,用直角邊對準畫好的一條邊后,沿著另一條直角邊,畫線)

  二、角的分類:

  1、認識直角:直角的特點,

  2、認識銳角和鈍角:銳角比直角小,鈍角比直角大。

  3、會用三角尺來判斷直角、銳角和鈍角:吧三角尺上直角的頂點與被比較角的頂點重疊在一起,再將三角尺上直角的一條邊與被比角的一條邊重合,最后比較三角尺上直角的另一條邊與被比角的另一條邊,線上為直角,內為銳角,外為鈍角。

  4、畫直角、銳角和鈍角。

  初中數(shù)學知識點 3

  1. 兩點確定一條直線,兩點之間線段最短._______________叫兩點間距離.

  2. 1周角=__________平角=_____________直角=____________.

  3. 如果兩個角的和等于90度,就說這兩個角互余,同角或等角的余角相等;如果_____________________互為補角,__________________的補角相等.

  4. ___________________________________叫對頂角,對頂角___________.

  5. 過直線外一點心___________條直線與這條直線平行.

  6. 平行線的`性質:兩直線平行,_________相等,________相等,________互補.

  7. 平行線的判定:________相等,或______相等,或______互補,兩直線平行.

  8. 平面內,過一點有且只有_____條直線與已知直線垂直.

  初中數(shù)學知識點 4

  基于質數(shù)定義的基礎之上而建立的問題有很多世界級的難題,如哥德巴赫猜想等。

  質數(shù)

  質數(shù)又稱素數(shù)。指在一個大于1的自然數(shù)中,除了1和此整數(shù)自身外,不能被其他自然數(shù)整除的數(shù)。

  素數(shù)在數(shù)論中有著很重要的地位。比1大但不是素數(shù)的數(shù)稱為合數(shù)。1和0既非素數(shù)也非合數(shù)。質數(shù)是與合數(shù)相對立的兩個概念,二者構成了數(shù)論當中最基礎的'定義之一。

  算術基本定理證明每個大于1的正整數(shù)都可以寫成素數(shù)的乘積,并且這種乘積的形式是唯一的。這個定理的重要一點是,將1排斥在素數(shù)集合以外。如果1被認為是素數(shù),那么這些嚴格的闡述就不得不加上一些限制條件。

  概念

  只有1和它本身兩個約數(shù)的自然數(shù),叫質數(shù)(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的約數(shù)只有1和它本身2這兩個約數(shù),所以2就是質數(shù)。與之相對立的是合數(shù):“除了1和它本身兩個約數(shù)外,還有其它約數(shù)的數(shù),叫合數(shù)。”如:4÷1=4,4÷2=2,4÷4=1,很顯然,4的約數(shù)除了1和它本身4這兩個約數(shù)以外,還有約數(shù)2,所以4是合數(shù)。)

  100以內的質數(shù)有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100內共有25個質數(shù)。

  注:1既不是質數(shù)也不是合數(shù)。因為它的約數(shù)有且只有1這一個約數(shù)。

  初中數(shù)學知識點 5

  一、數(shù)與式

  易錯點1:有理數(shù)、無理數(shù)以及實數(shù)的有關概念理解錯誤;相反數(shù)、倒數(shù)、絕對值的意義概念混淆,以及絕對值與數(shù)的分類。每年選擇必考。

  易錯點2:實數(shù)的運算,要掌握好與實數(shù)有關的概念、性質,靈活地運用各種運算律,關鍵是把好符號關;在較復雜的運算中,不注意運算順序或者不合理使用運算律,從而使運算出現(xiàn)錯誤。

  易錯點3:平方根、算術平方根、立方根的區(qū)別。填空題必考。

  易錯點4:求分式值為零時,易忽略分母不能為零。

  易錯點5:分式運算時要注意運算法則和符號的變化。當分式的分子、分母是多項式時要先因式分解,因式分解要分解到不能再分解為止。注意計算方法,不能去分母,把分式化為最簡分式。填空題必考。

  易錯點6:非負數(shù)的性質:幾個非負數(shù)的和為0,每個式子都為0;整體代入法;完全平方式。

  易錯點7:計算第一題必考。五個基本數(shù)的計算:0指數(shù),三角函數(shù),絕對值,負指數(shù),二次根式的化簡。

  易錯點8:科學記數(shù)法。精確度,有效數(shù)字。

  易錯點9:代入求值要使式子有意義。各種數(shù)式的計算方法要掌握,一定要注意計算順序。

  二、方程(組)與不等式(組)

  易錯點1:各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。

  易錯點2:運用等式性質時,兩邊同除以一個數(shù)必須要注意不能為0的情況,還要關注解方程與方程組的基本思想。(消元降次)主要陷阱是消除了一個帶未知數(shù)的公因式要回頭檢驗!

  易錯點3:運用不等式的性質3時,容易忘記改不變號的方向而導致結果出錯。

  易錯點4:關于一元二次方程的取值范圍的題目,易忽視二次項系數(shù)不為0導致出錯。

  易錯點5:關于一元一次不等式組有解無解的條件,易忽視相等的情況。

  易錯點6:解分式方程時首要步驟是去分母,易忘記根檢驗,導致運算結果出錯。

  易錯點7:不等式(組)的解的問題要先確定解集,確定解集的方法運用數(shù)軸。

  易錯點8:利用函數(shù)圖象求不等式的解集和方程的解。

  三、函數(shù)

  易錯點1:各個待定系數(shù)表示的意義。

  易錯點2:熟練掌握各種函數(shù)解析式的求法,有幾個的待定系數(shù)就要幾個點值。

  易錯點3:利用圖象求不等式的解集和方程(組)的解,利用圖象性質確定增減性。

  易錯點4:兩個變量利用函數(shù)模型解實際問題,注意區(qū)別方程、函數(shù)、不等式模型解決不等領域的問題。

  易錯點5:利用函數(shù)圖象進行分類(平行四邊形、相似、直角、等腰三角形)以及分類的求解方法。

  易錯點6:與坐標軸交點坐標一定要會求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。

  易錯點7:數(shù)形結合思想方法的`運用,還應注意結合圖象性質解題。函數(shù)圖象與圖形結合學會從復雜圖形分解為簡單圖形的方法,圖形為圖象提供數(shù)據(jù)或者圖象為圖形提供數(shù)據(jù)。

  易錯點8:自變量的取值范圍有:二次根式的被開方數(shù)是非負數(shù),分式的分母不為0,0指數(shù)底數(shù)不為0,其它都是全體實數(shù)。

  四、三角形

  易錯點1:三角形的概念以及三角形的角平分線、中線、高線的特征與區(qū)別。

  易錯點2:三角形三邊之間的不等關系,注意其中的“任何兩邊”。求最短距離的方法。

  易錯點3:三角形的內角和,三角形的分類與三角形內外角性質,特別關注外角性質中的“不相鄰”。

  易錯點4:全等三角形及其性質,三角形全等判定。著重學會論證三角形全等,三角形相似與全等的綜合運用,以及線段相等是全等的特征。線段的倍分是相似的特征,以及相似與三角函數(shù)的結合。邊邊角兩個三角形不一定全等。

  易錯點5:兩個角相等和平行是相似的基本構成要素,以及相似三角形對應高之比等于相似比,對應線段成比例,面積之比等于相似比的平方。

  易錯點6:等腰(等邊)三角形的定義以及等腰(等邊)三角形的判定與性質,運用等腰(等邊)三角形的判定與性質解決有關計算與證明問題,這里需注意分類討論思想的滲入。

  易錯點7:運用勾股定理及其逆定理計算線段的長,證明線段的數(shù)量關系。解決與面積有關的問題,以及簡單的實際問題。

  易錯點8:將直角三角形、平面直角坐標系、函數(shù)、開放性問題、探索性問題結合在一起綜合運用,探究各種解題方法。

  易錯點9:中點、中線、中位線,一半定理的歸納以及各自的性質。

  易錯點10:直角三角形判定方法:三角形面積的確定與底上的高(特別是鈍角三角形)易錯點11:三角函數(shù)的定義中對應線段的比經(jīng)常出錯,以及特殊角的三角函數(shù)值。

  五、四邊形

  易錯點1:平行四邊形的性質和判定,如何靈活、恰當?shù)貞。三角形的穩(wěn)定性與四邊形不穩(wěn)定性。

  易錯點2:平行四邊形注意與三角形面積求法的區(qū)分。平行四邊形與特殊平行四邊形之間的轉化關系。

  易錯點3:運用平行四邊形是中心對稱圖形,過對稱中心的直線把它分成面積相等的兩部分。對角線將四邊形分成面積相等的四部分。

  易錯點4:平行四邊形中運用全等三角形和相似三角形的知識解題,突出轉化思想的滲透。

  易錯點5:矩形、菱形、正方形的概念、性質、判定及它們之間的關系,主要考查邊長、對角線長、面積等的計算。矩形與正方形的折疊。

  易錯點6:四邊形中的翻折、平移、旋轉、剪拼等動手操作性問題,掌握其中的不變與旋轉一些性質。

  易錯點7:梯形問題中,主要做輔助線的方法。

  六、圓

  易錯點1:對弧、弦、圓周角等概念理解不深刻,特別是弦所對的圓周角有兩種情況要特別注意,兩條弦之間的距離也要考慮兩種情況。

  易錯點2:對垂徑定理的理解不夠,不會正確添加輔助線運用直角三角形進行解題。

  易錯點3:對切線的定義及性質理解不深,不能準確的利用切線的性質進行解題,以及對切線的判定方法兩種方法使用不熟練。

  易錯點4:考查圓與圓的位置關系時,相切有內切和外切兩種情況,包括相交也存在兩圓圓心在公共弦同側和異側兩種情況,很容易忽視其中的一種情況。

  易錯點5:與圓有關的位置關系把握好d與R、R+r和R-r之間的關系,以及應用上述的方法求解。

  易錯點6:圓周角定理是重點,同。ǖ然。┧鶎Φ膱A周角相等,直徑所對的圓周角是直角。直角的圓周角所對的弦是直徑,一條弧所對的圓周角等于它所對的圓心角的一半。

  易錯點7:一定要牢記的公式:三角形、平行四邊形、菱形、矩形、正方形、梯形、圓的面積公式,圓周長公式,弧長,扇形面積,圓錐的側面積和全面積,以及弧長與底面周長,母線長與扇形的半徑之間的轉化關系。

  七、對稱圖形

  易錯點1:軸對稱、軸對稱圖形,中心對稱、中心對稱圖形概念和性質把握不準。

  易錯點2:圖形的軸對稱或旋轉問題,要充分運用其性質解題,即運用圖形的“不變性”,在軸對稱和旋轉中角的大小不變,線段的長短不變。

  易錯點3:將軸對稱與全等混淆,關于直線對稱與關于軸對稱混淆。

  八、統(tǒng)計與概率

  易錯點1:中位數(shù)、眾數(shù)、平均數(shù)的有關概念理解不透徹,錯求中位數(shù)、眾數(shù)、平均數(shù)。

  易錯點2:在從統(tǒng)計圖獲取信息時,一定要先判斷統(tǒng)計圖的準確性。不規(guī)則的統(tǒng)計圖往往使人產(chǎn)生錯覺,得到不準確的信息。

  易錯點3:對普查與抽樣調查的概念及它們的適用范圍不清楚,造成錯誤。

  易錯點4:極差、方差的概念理解不清晰,從而不能正確求出一組數(shù)據(jù)的極差、方差。

  易錯點5:概率與頻率的意義理解不清晰,不能正確求出事件的概率。

  易錯點6:平均數(shù)、加權平均數(shù)、方差公式,扇形統(tǒng)計圖的圓心角與頻率之間的關系,頻數(shù)、頻率、總數(shù)之間的關系。加權平均數(shù)的權可以是數(shù)據(jù)、比分、百分數(shù),還可以是概率(或頻率)

  易錯點7:求概率的方法:

  (1)簡單事件運用概率概念。(2)兩步及以上的簡單事件求概率的方法:利用樹狀或者列表表示各種可能的情況與事件的可能性的比值。(3)復雜事件求概率的方法運用頻率估算概率。

  易錯點8:判斷是否公平的方法,運用概率是否相等,關注頻率與概率的整合。

  初中數(shù)學知識點 6

  直線、射線、線段

 。1)直線、射線、線段的表示方法

  ①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB。

 、谏渚:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA。注意:用兩個字母表示時,端點的字母放在前邊。

  ③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。

 。2)點與直線的位置關系:

 、冱c經(jīng)過直線,說明點在直線上;

  ②點不經(jīng)過直線,說明點在直線外。

  兩點間的距離

 。1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。

 。2)平面上任意兩點間都有一定距離,它指的'是連接這兩點的線段的長度,學習此概念時,注意強調最后的兩個字“長度”,也就是說,它是一個量,有大小,區(qū)別于線段,線段是圖形。線段的長度才是兩點的距離?梢哉f畫線段,但不能說畫距離。

  正方體

  (1)對于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開圖理解的基礎上直接想象。

 。2)從實物出發(fā),結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉化,建立空間觀念,是解決此類問題的關鍵。

 。3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認真確定哪兩個面的對面。

  初中數(shù)學知識點 7

  名畫<最后的晚餐>中運用到了黃金矩形的知識。接下來的內容是初中數(shù)學黃金矩形的基礎知識點。

  黃金矩形

  黃金矩形(Golden Rectangle)的長寬之比為黃金分割率,換言之,矩形的長邊為短邊 1.618倍。

  黃金分割率和黃金矩形能夠給畫面帶來美感,令人愉悅。

  黃金矩形的分割方法

  1)作任意正方形ABCD.

  2)用線段MN將正方形平分為兩半.

  3)用圓規(guī),以N為中心,以|CN|為半徑作弧.

  4)延長射線AB直至與以上的弧相交于E點.

  5)延長射線DC.

  6)作線段EF⊥AE,并令射線DC與EF交于F點.

  則ADFE為一黃金矩形.

  初中數(shù)學知識點 8

  因式分解

  1.因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化.

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.

  3.公因式的確定:系數(shù)的公約數(shù)?相同因式的最低次冪.

  注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

  4.因式分解的公式:

  (1)平方差公式:a2-b2=(a+ b)(a- b);

  (2)完全平方公式:a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

  5.因式分解的注意事項:

  (1)選擇因式分解方法的一般次序是:一提取、二公式、三分組、四十字;

  (2)使用因式分解公式時要特別注意公式中的字母都具有整體性;

  (3)因式分解的最后結果要求分解到每一個因式都不能分解為止;

  (4)因式分解的最后結果要求每一個因式的首項符號為正;

  (5)因式分解的最后結果要求加以整理;

  (6)因式分解的最后結果要求相同因式寫成乘方的形式.

  6.因式分解的解題技巧:(1)換位整理,加括號或去括號整理;(2)提負號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數(shù)系數(shù);(9)展開部分括號或全部括號;(10)拆項或補項.

  7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對于二次三項式x2+px+q,有“ x2+px+q是完全平方式? ”.

  分式

  1.分式:一般地,用A、B表示兩個整式,A÷B就可以表示為的形式,如果B中含有字母,式子叫做分式.

  2.有理式:整式與分式統(tǒng)稱有理式;即.

  3.對于分式的兩個重要判斷:(1)若分式的分母為零,則分式無意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無意義.

  4.分式的基本性質與應用:

  (1)若分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變;

  (2)注意:在分式中,分子、分母、分式本身的符號,改變其中任何兩個,分式的值不變;

  即

  (3)繁分式化簡時,采用分子分母同乘小分母的最小公倍數(shù)的方法,比較簡單.

  5.分式的約分:把一個分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經(jīng)常需要先因式分解.

  6.最簡分式:一個分式的分子與分母沒有公因式,這個分式叫做最簡分式;注意:分式計算的最后結果要求化為最簡分式.

  7.分式的乘除法法則:.

  8.分式的乘方:.

  9.負整指數(shù)計算法則:

  (1)公式:a0=1(a≠0), a-n= (a≠0);

  (2)正整指數(shù)的運算法則都可用于負整指數(shù)計算;

  (3)公式:,;

  (4)公式:(-1)-2=1,(-1)-3=-1.

  10.分式的通分:根據(jù)分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡公分母.

  11.最簡公分母的確定:系數(shù)的最小公倍數(shù)?相同因式的次冪.

  12.同分母與異分母的分式加減法法則:.

  13.含有字母系數(shù)的一元一次方程:在方程ax+b=0(a≠0)中,x是未知數(shù),a和b是用字母表示的已知數(shù),對x來說,字母a是x的系數(shù),叫做字母系數(shù),字母b是常數(shù)項,我們稱它為含有字母系數(shù)的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知數(shù),用x、y、z等表示未知數(shù).

  14.公式變形:把一個公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質就是解含有字母系數(shù)的方程.特別要注意:字母方程兩邊同時乘以含字母的代數(shù)式時,一般需要先確認這個代數(shù)式的值不為0.

  15.分式方程:分母里含有未知數(shù)的方程叫做分式方程;注意:以前學過的,分母里不含未知數(shù)的方程是整式方程.

  16.分式方程的增根:在解分式方程時,為了去分母,方程的兩邊同乘以了含有未知數(shù)的代數(shù)式,所以可能產(chǎn)生增根,故分式方程必須驗增根;注意:在解方程時,方程的兩邊一般不要同時除以含未知數(shù)的代數(shù)式,因為可能丟根.

  17.分式方程驗增根的方法:把分式方程求出的根代入最簡公分母(或分式方程的每個分母),若值為零,求出的根是增根,這時原方程無解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數(shù)的值可能是原方程的增根.

  18.分式方程的應用:列分式方程解應用題與列整式方程解應用題的方法一樣,但需要增加“驗增根”的程序.

  數(shù)的開方

  1.平方根的定義:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方數(shù),(2)已知x求a叫乘方,已知a求x叫開方,乘方與開方互為逆運算.

  2.平方根的性質:

  (1)正數(shù)的平方根是一對相反數(shù);

  (2)0的平方根還是0;

  (3)負數(shù)沒有平方根.

  3.平方根的表示方法:a的平方根表示為和.注意:可以看作是一個數(shù),也可以認為是一個數(shù)開二次方的運算.

  4.算術平方根:正數(shù)a的正的平方根叫a的算術平方根,表示為.注意:0的算術平方根還是0.

  5.三個重要非負數(shù):a2≥0 ,|a|≥0,≥0 .注意:非負數(shù)之和為0,說明它們都是0.

  6.兩個重要公式:

  (1) ; (a≥0)

  (2) .

  7.立方根的`定義:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方數(shù);(2)a的立方根表示為;即把a開三次方.

  8.立方根的性質:

  (1)正數(shù)的立方根是一個正數(shù);

  (2)0的立方根還是0;

  (3)負數(shù)的立方根是一個負數(shù).

  9.立方根的特性:.

  10.無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù).注意:?和開方開不盡的數(shù)是無理數(shù).

  11.實數(shù):有理數(shù)和無理數(shù)統(tǒng)稱實數(shù).

  12.實數(shù)的分類:(1) (2) .

  13.數(shù)軸的性質:數(shù)軸上的點與實數(shù)一一對應.

  14.無理數(shù)的近似值:實數(shù)計算的結果中若含有無理數(shù)且題目無近似要求,則結果應該用無理數(shù)表示;如果題目有近似要求,則結果應該用無理數(shù)的近似值表示.注意:(1)近似計算時,中間過程要多保留一位;(2)要求記憶:.

  三角形

  幾何A級概念:(要求深刻理解、熟練運用、主要用于幾何證明)

  1.三角形的角平分線定義:

  三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線.(如圖)幾何表達式舉例:

  (1) ∵AD平分∠BAC

  ∴∠BAD=∠CAD

  (2) ∵∠BAD=∠CAD

  ∴AD是角平分線

  2.三角形的中線定義:

  在三角形中,連結一個頂點和它的對邊的中點的線段叫做三角形的中線.(如圖)

  幾何表達式舉例:

  (1) ∵AD是三角形的中線

  ∴ BD = CD

  (2) ∵ BD = CD

  ∴AD是三角形的中線

  3.三角形的高線定義:

  從三角形的一個頂點向它的對邊畫垂線,頂點和垂足間的線段叫做三角形的高線.

  (如圖)

  幾何表達式舉例:

  (1) ∵AD是ΔABC的高

  ∴∠ADB=90°

  (2) ∵∠ADB=90°

  ∴AD是ΔABC的高

  ※4.三角形的三邊關系定理:

  三角形的兩邊之和大于第三邊,三角形的兩邊之差小于第三邊.(如圖)

  幾何表達式舉例:

  (1) ∵AB+BC>AC

  ∴……………

  (2) ∵ AB-BC

  ∴……………

  5.等腰三角形的定義:

  有兩條邊相等的三角形叫做等腰三角形. (如圖)

  幾何表達式舉例:

  (1) ∵ΔABC是等腰三角形

  ∴ AB = AC

  (2) ∵AB = AC

  ∴ΔABC是等腰三角形

  6.等邊三角形的定義:

  有三條邊相等的三角形叫做等邊三角形. (如圖)

  幾何表達式舉例:

  (1)∵ΔABC是等邊三角形

  ∴AB=BC=AC

  (2) ∵AB=BC=AC

  ∴ΔABC是等邊三角形

  7.三角形的內角和定理及推論:

  (1)三角形的內角和180°;(如圖)

  (2)直角三角形的兩個銳角互余;(如圖)

  (3)三角形的一個外角等于和它不相鄰的兩個內角的和;(如圖)

  ※(4)三角形的一個外角大于任何一個和它不相鄰的內角.

  (1) (2) (3)(4)幾何表達式舉例:

  (1) ∵∠A+∠B+∠C=180°

  ∴…………………

  (2) ∵∠C=90°

  ∴∠A+∠B=90°

  (3) ∵∠ACD=∠A+∠B

  ∴…………………

  (4) ∵∠ACD >∠A

  ∴…………………

  8.直角三角形的定義:

  有一個角是直角的三角形叫直角三角形.(如圖)

  幾何表達式舉例:

  (1) ∵∠C=90°

  ∴ΔABC是直角三角形

  (2) ∵ΔABC是直角三角形

  ∴∠C=90°

  9.等腰直角三角形的定義:

  兩條直角邊相等的直角三角形叫等腰直角三角形.(如圖)

  幾何表達式舉例:

  (1) ∵∠C=90° CA=CB

  ∴ΔABC是等腰直角三角形

  (2) ∵ΔABC是等腰直角三角形

  ∴∠C=90° CA=CB

  10.全等三角形的性質:

  (1)全等三角形的對應邊相等;(如圖)

  (2)全等三角形的對應角相等.(如圖)

  幾何表達式舉例:

  (1) ∵ΔABC≌ΔEFG

  ∴ AB = EF ………

  (2) ∵ΔABC≌ΔEFG

  ∴∠A=∠E ………

  11.全等三角形的判定:

  “SAS”“ASA”“AAS”“SSS”“HL”. (如圖)

  (3)幾何表達式舉例:

  (1) ∵ AB = EF

  ∵ ∠B=∠F

  又∵ BC = FG

  ∴ΔABC≌ΔEFG

  (2) ………………

  (3)在RtΔABC和RtΔEFG中

  ∵ AB=EF

  又∵ AC = EG

  ∴RtΔABC≌RtΔEFG

  12.角平分線的性質定理及逆定理:

  (1)在角平分線上的點到角的兩邊距離相等;(如圖)

  (2)到角的兩邊距離相等的點在角平分線上.(如圖)

  幾何表達式舉例:

  (1)∵OC平分∠AOB

  又∵CD⊥OA CE⊥OB

  ∴ CD = CE

  (2) ∵CD⊥OA CE⊥OB

  又∵CD = CE

  ∴OC是角平分線

  13.線段垂直平分線的定義:

  垂直于一條線段且平分這條線段的直線,叫做這條線段的垂直平分線.(如圖)

  幾何表達式舉例:

  (1) ∵EF垂直平分AB

  ∴EF⊥AB OA=OB

  (2) ∵EF⊥AB OA=OB

  ∴EF是AB的垂直平分線

  14.線段垂直平分線的性質定理及逆定理:

  (1)線段垂直平分線上的點和這條線段的兩個端點的距離相等;(如圖)

  (2)和一條線段的兩個端點的距離相等的點,在這條線段的垂直平分線上.(如圖)

  幾何表達式舉例:

  (1) ∵MN是線段AB的垂直平分線

  ∴ PA = PB

  (2) ∵PA = PB

  ∴點P在線段AB的垂直平分線上

  15.等腰三角形的性質定理及推論:

  (1)等腰三角形的兩個底角相等;(即等邊對等角)(如圖)

  (2)等腰三角形的“頂角平分線、底邊中線、底邊上的高”三線合一;(如圖)

  (3)等邊三角形的各角都相等,并且都是60°.(如圖)

  (1) (2) (3)幾何表達式舉例:

  (1) ∵AB = AC

  ∴∠B=∠C

  (2) ∵AB = AC

  又∵∠BAD=∠CAD

  ∴BD = CD

  AD⊥BC

  ………………

  (3) ∵ΔABC是等邊三角形

  ∴∠A=∠B=∠C =60°

  16.等腰三角形的判定定理及推論:

  (1)如果一個三角形有兩個角都相等,那么這兩個角所對邊也相等;(即等角對等邊)(如圖)

  (2)三個角都相等的三角形是等邊三角形;(如圖)

  (3)有一個角等于60°的等腰三角形是等邊三角形;(如圖)

  (4)在直角三角形中,如果有一個角等于30°,那么它所對的直角邊是斜邊的一半.(如圖)

  (1) (2)(3) (4)幾何表達式舉例:

  (1) ∵∠B=∠C

  ∴ AB = AC

  (2) ∵∠A=∠B=∠C

  ∴ΔABC是等邊三角形

  (3) ∵∠A=60°

  又∵AB = AC

  ∴ΔABC是等邊三角形

  (4) ∵∠C=90°∠B=30°

  ∴AC = AB

  17.關于軸對稱的定理

  (1)關于某條直線對稱的兩個圖形是全等形;(如圖)

  (2)如果兩個圖形關于某條直線對稱,那么對稱軸是對應點連線的垂直平分線.(如圖)

  幾何表達式舉例:

  (1) ∵ΔABC、ΔEGF關于MN軸對稱

  ∴ΔABC≌ΔEGF

  (2) ∵ΔABC、ΔEGF關于MN軸對稱

  ∴OA=OE MN⊥AE

  18.勾股定理及逆定理:

  (1)直角三角形的兩直角邊a、b的平方和等于斜邊c的平方,即a2+b2=c2;(如圖)

  (2)如果三角形的三邊長有下面關系: a2+b2=c2,那么這個三角形是直角三角形.(如圖)

  幾何表達式舉例:

  (1) ∵ΔABC是直角三角形

  ∴a2+b2=c2

  (2) ∵a2+b2=c2

  ∴ΔABC是直角三角形

  19.RtΔ斜邊中線定理及逆定理:

  (1)直角三角形中,斜邊上的中線是斜邊的一半;(如圖)

  (2)如果三角形一邊上的中線是這邊的一半,那么這個三角形是直角三角形.(如圖)

  幾何表達式舉例:

  (1) ∵ΔABC是直角三角形

  ∵D是AB的中點

  ∴CD = AB

  (2) ∵CD=AD=BD

  ∴ΔABC是直角三角形

  幾何B級概念:(要求理解、會講、會用,主要用于填空和選擇題)

  一基本概念:

  三角形、不等邊三角形、銳角三角形、鈍角三角形、三角形的外角、全等三角形、角平分線的集合定義、原命題、逆命題、逆定理、尺規(guī)作圖、輔助線、線段垂直平分線的集合定義、軸對稱的定義、軸對稱圖形的定義、勾股數(shù).

  二常識:

  1.三角形中,第三邊長的判斷:另兩邊之差<第三邊<另兩邊之和.

  2.三角形中,有三條角平分線、三條中線、三條高線,它們都分別交于一點,其中前兩個交點都在三角形內,而第三個交點可在三角形內,三角形上,三角形外.注意:三角形的角平分線、中線、高線都是線段.

  3.如圖,三角形中,有一個重要的面積等式,即:若CD⊥AB,BE⊥CA,則CD?AB=BE?CA.

  4.三角形能否成立的條件是:最長邊<另兩邊之和.

  5.直角三角形能否成立的條件是:最長邊的平方等于另兩邊的平方和.

  6.分別含30°、45°、60°的直角三角形是特殊的直角三角形.

  7.如圖,雙垂圖形中,有兩個重要的性質,即:

  (1) AC?CB=CD?AB ; (2)∠1=∠B,∠2=∠A .

  8.三角形中,最多有一個內角是鈍角,但最少有兩個外角是鈍角.

  9.全等三角形中,重合的點是對應頂點,對應頂點所對的角是對應角,對應角所對的邊是對應邊.

  10.等邊三角形是特殊的等腰三角形.

  11.幾何習題中,“文字敘述題”需要自己畫圖,寫已知、求證、證明.

  12.符合“AAA”“SSA”條件的三角形不能判定全等.

  13.幾何習題經(jīng)常用四種方法進行分析:(1)分析綜合法;(2)方程分析法;(3)代入分析法;(4)圖形觀察法.

  14.幾何基本作圖分為:(1)作線段等于已知線段;(2)作角等于已知角;(3)作已知角的平分線;(4)過已知點作已知直線的垂線;(5)作線段的中垂線;(6)過已知點作已知直線的平行線.

  15.會用尺規(guī)完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等邊三角形”、“等腰直角三角形”的作圖.

  16.作圖題在分析過程中,首先要畫出草圖并標出字母,然后確定先畫什么,后畫什么;注意:每步作圖都應該是幾何基本作圖.

  17.幾何畫圖的類型:(1)估畫圖;(2)工具畫圖;(3)尺規(guī)畫圖.

  ※18.幾何重要圖形和輔助線:

  (1)選取和作輔助線的原則:

 、贅嬙焯厥鈭D形,使可用的定理增加;

  ②一舉多得;

 、劬酆项}目中的分散條件,轉移線段,轉移角;

 、茏鬏o助線必須符合幾何基本作圖.

  (2)已知角平分線.(若BD是角平分線)

  ①在BA上截取BE=BC構造全等,轉移線段和角;

  ②過D點作DE‖BC交AB于E,構造等腰三角形.

  (3)已知三角形中線(若AD是BC的中線)

  ①過D點作DE‖AC交AB于E,構造中位線;

 、谘娱LAD到E,使DE=AD

  連結CE構造全等,轉移線段和角;

 、 ∵AD是中線

  ∴SΔABD= SΔADC

  (等底等高的三角形等面積)

  (4)已知等腰三角形ABC中,AB=AC

 、僮鞯妊切蜛BC底邊的中線AD

  (頂角的平分線或底邊的高)構造全

  等三角形;

 、谧鞯妊切蜛BC一邊的平行線DE,構造

  新的等腰三角形.

  (5)其它

 、僮鞯冗吶切蜛BC

  一邊的平行線DE,構造新的等邊三角形;

 、谧鰿E‖AB,轉移角;

 、垩娱LBD與AC交于E,不規(guī)則圖形轉化為規(guī)則圖形;

 、芏噙呅无D化為三角形;

 、菅娱LBC到D,使CD=BC,連結AD,直角三角形轉化為等腰三角形;

 、奕鬭‖b,AC,BC是角平

  分線,則∠C=90°.

  初中數(shù)學知識點 9

  銳角介紹

  兩條相交直線中的任何一條與另一條相疊合時必須轉動的量的量度,轉動在這兩條直線的所在平面上并繞交點進行。

  角度是用以量度角的單位,符號為°。一周角分為360等份,每份定義為1度(1°)。

  采用360這數(shù)字,因為它容易被整除。360除了1和自己,還有22個真因數(shù),包括了7以外從2到10的數(shù)字,所以很多特殊的角的角度都是整數(shù)。

  實際應用中,整數(shù)的角度已足夠準確。有時需要更準確的量度,如天文學或地球的經(jīng)度和緯度,除了用小數(shù)表示度,還可以把度細分為分和秒:1度為60分(60′),1分為60秒(60″)。例如40.1875°=40°11′15″。要更準確便用小數(shù)表示秒,而不再加設單位。

  銳角則是指大于0°而小于90°的角。

  鈍角性質

  1、鈍角是由兩條射線構成的。

  2、鈍角是劣角的一種。

  3、鈍角一定是第二象限角,第二象限角不一定是鈍角。

  4、鈍角的三角函數(shù)值中,正弦值(sin)是正值,余弦值(cos)、正切值(tan)、余切值(cot)是負值。

  什么叫分數(shù)的相對性

  分數(shù)的相對性是這個分數(shù)的倒數(shù),分數(shù)乘以這個分數(shù)的倒數(shù)的積等于1.1是由分數(shù)和這個分數(shù)的'倒數(shù)的二元組成,這是絕對的,這就是二元論。大道至簡就是自然界的二元法則,九九歸一。

  分數(shù)的歷史

  最早的分數(shù)是整數(shù)倒數(shù):代表二分之一的古代符號,三分之一,四分之一,等等。埃及人使用埃及分數(shù)c。1000bc。大約4000年前,埃及人用分數(shù)略有不同的方法分開。他們使用最小公倍數(shù)與單位分數(shù)。他們的方法給出了與現(xiàn)代方法相同的答案。埃及人對于Akhmim木片和二代數(shù)學紙莎草的問題也有不同的表示法。

  希臘人使用單位分數(shù)和(后)持續(xù)分數(shù)。希臘哲學家畢達哥拉斯(c。530bc)的追隨者發(fā)現(xiàn),兩個平方根不能表示為整數(shù)的一部分。(通常這可能是錯誤的歸因于Metapontum的Hippasus,據(jù)說他已被處決以揭示這一事實)。在印度的150名印度人中,耆那教數(shù)學家寫了“Sthananga Sutra”,其中包含數(shù)字理論,算術學操作和操作。

  現(xiàn)代的稱為bhinnarasi的分數(shù)似乎起源于印度在Aryabhatta(c。ad500),[引用需要]Brahmagupta(c。628)和Bhaskara(c。1150)的工作。他們的作品通過將分子(Sanskrit:amsa)放在分母(cheda)上,但沒有它們之間的條紋,形成分數(shù)。在梵文文獻中,分數(shù)總是表示為一個整數(shù)的加和減。整數(shù)被寫在一行上,其分數(shù)在兩行的下一行寫成。如果分數(shù)用小圓?0was或交叉?+was標記,則從整數(shù)中減去;如果沒有這樣的標志出現(xiàn),就被理解為被添加。

  常數(shù)的極限值是什么

  常數(shù)的極限值就是常數(shù)本身。極限值就是一個函數(shù),當它的自變量趨于無窮,或者某個點時(可以不是該函數(shù)定義域里的點),存在極限,這個極限的值便簡稱為極限值。

  常數(shù)的含義

  1、規(guī)定的數(shù)量與數(shù)字。

  2、一定的重復規(guī)律。

  3、一定之數(shù)或通常之數(shù)。

  4、一定的次序。

  5、數(shù)學名詞。固定不變的數(shù)值。如圓的周長和直徑的比值(π)約為3.14159﹑鐵的膨脹系數(shù)為0.000012等。常數(shù)是具有一定含義的名稱,用于代替數(shù)字或字符串,其值從不改變。一個數(shù)學常數(shù)是指一個數(shù)值不變的常量,與之相反的是變量。

  跟大多數(shù)物理常數(shù)不一樣的地方是,數(shù)學常數(shù)的定義是獨立于所有物理測量的。數(shù)學常數(shù)通常是實數(shù)或復數(shù)域的元素。數(shù)學常數(shù)可以被稱為是可定義的數(shù)字(通常都是可計算的)。

  其他可選的表示方法可以在數(shù)學常數(shù)(以連分數(shù)表示排列)中找到。常數(shù)又稱定數(shù),是指一個數(shù)值不變的常量,與之相反的是變量。(常數(shù)多指大于零的數(shù))

  初中數(shù)學知識點 10

  1.分數(shù)的意義:把單位“1”平均分成若干份,表示這樣的一份或幾份的數(shù)叫做分數(shù)。

  2.分數(shù)單位:把單位“1”平均分成若干份,表示其中一份的數(shù),叫做分數(shù)單位。

  3.分數(shù)和除法的聯(lián)系:分數(shù)的分子就是除法中的被除數(shù),分母就是除法中的除數(shù)。

  分數(shù)和小數(shù)的聯(lián)系:小數(shù)實際上就是分母是10、100、1000……的分數(shù)。

  分數(shù)和比的聯(lián)系:分數(shù)的分子就是比的前項,分數(shù)的分母就是比的后項。

  4.分數(shù)的分類:分數(shù)可以分為真分數(shù)和假分數(shù)。

  5.真分數(shù):分子小于分母的分數(shù)叫做真分數(shù)。真分數(shù)小于1。

  假分數(shù):分子大于或等于分母的分數(shù)叫做假分數(shù)。假分數(shù)大于或者等于1。

  6.最簡分數(shù):分子與分母互質的.分數(shù)叫做最簡分數(shù)。

  7.分數(shù)的基本性質:分數(shù)的分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。

  8.這樣的分數(shù)可以化成有限小數(shù):前提是這

  個分數(shù)要是最簡分數(shù),如果分母只含有2、5這2個質因數(shù),這樣的分數(shù)就能化成有限小數(shù)。

  9.百分數(shù):表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)叫做百分數(shù)。百分數(shù)也叫做百分率或者百分比。百分數(shù)通常用“%”來表示。

  初中數(shù)學知識點 11

  顧名思義。中位線就是圖形的中點的連線,包括三角形中位線和梯形中位線兩種。

  中位線

  中位線概念

  (1)三角形中位線定義:連接三角形兩邊中點的線段叫做三角形的中位線。

  (2)梯形中位線定義:連結梯形兩腰中點的線段叫做梯形的中位線。

  注意:

  (1)要把三角形的中位線與三角形的'中線區(qū)分開。三角形中線是連結一頂點和它對邊的中點,而三角形中位線是連結三角形兩邊中點的線段。

  (2)梯形的中位線是連結兩腰中點的線段而不是連結兩底中點的線段。

  (3)兩個中位線定義間的聯(lián)系:可以把三角形看成是上底為零時的梯形,這時梯形的中位線就變成三角形的中位線。

  初中數(shù)學知識點 12

  初一數(shù)學三角函數(shù)知識點

  1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方a2+b2=c2。

  2、如下圖,在Rt△ABC中,∠C為直角,則∠A的銳角三角函數(shù)為(∠A可換成∠B):

  3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。

  4、任意銳角的正切值等于它的余角的余切值;任意銳角的余切值等于它的余角的正切值。

  5、0°、30°、45°、60°、90°特殊角的三角函數(shù)值(重要)

  6、正弦、余弦的增減性:

  當0°≤α≤90°時,sinα隨α的增大而增大,cosα隨α的增大而減小。

  7、正切、余切的增減性:當0°<α<90°時,tanα隨α的增大而增大,cotα隨α的增大而減小。

  初一數(shù)學知識點總結

  1.有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);

  (2)有理數(shù)的分類: ① ②

  2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.

  3.相反數(shù):

  (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

  (2)相反數(shù)的和為0 ? a+b=0 ? a、b互為相反數(shù).

  4.絕對值:

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

  (2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

  5.有理數(shù)比大。(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)> 0,小數(shù)-大數(shù)< 0.

  6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1? a、b互為倒數(shù);若ab=-1?a、b互為負倒數(shù).

  7.有理數(shù)加法法則:

  (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  (2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數(shù)與0相加,仍得這個數(shù).

  8.有理數(shù)加法的運算律:

  (1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

  9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).

  10有理數(shù)乘法法則:

  (1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;

  (2)任何數(shù)同零相乘都得零;

  (3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.

  11有理數(shù)乘法的運算律:

  (1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac .

  12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),.

  13.有理數(shù)乘方的法則:

  (1)正數(shù)的任何次冪都是正數(shù);

  (2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時: (-a)n=-an或(a -b)n=-(b-a)n ,當n為正偶數(shù)時:(-a)n =an或(a-b)n=(b-a)n .

  14.乘方的定義:

  (1)求相同因式積的運算,叫做乘方;

  (2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結果叫做冪;

  15.科學記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法.

  16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.

  17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.

  18.混合運算法則:先乘方,后乘除,最后加減.

  七年級數(shù)學知識點

  難點

  三角形內角和定理的推理的過程;

  在具體的圖形中不重復,且不遺漏地識別所有三角形;

  用三角形三邊不等關系判定三條線段可否組成三角形。

  知識點、概念總結

  1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  2.三角形的分類

  3.三角形的三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

  5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

  6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

  7.高線、中線、角平分線的意義和做法

  8.三角形的.穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩(wěn)定性。

  9.三角形內角和定理:三角形三個內角的和等于180°

  推論1直角三角形的兩個銳角互余;

  推論2三角形的一個外角等于和它不相鄰的兩個內角和;

  推論3三角形的一個外角大于任何一個和它不相鄰的內角;

  三角形的內角和是外角和的一半。

  10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

  2分數(shù)與小數(shù)的互化

  重要程度--四顆星。最早接觸到分數(shù)是在三年級的課本上,學習了分數(shù)的意義、比較大小和同分母的加減法,這里的分數(shù)則是更加全面的去學習、認識分數(shù)。其中分數(shù)的基本性質里面會有分數(shù)的化簡、約分,這也是接下來數(shù)學中非常常用的運算性質(類似四年級學習的乘法分配率);分數(shù)的大小比較也不再是簡單的同分母或者一個個體的比較,復雜的一些還需要用到“放縮法”;分數(shù)的乘除運算法則則是數(shù)學運算的基本功了,越熟練越好(讓孩子多練)。孩子在學習過程中遇到的第一個難點,那就屬分數(shù)的應用題了(學生不明白什么時候用乘法什么時候用除法),往年很多學生都分不清題目中的:整體(單位“1”)、部分和占比(率),誤區(qū)是學生們總認為整體比部分要大,但是學習分數(shù)以后就不一定了;

  3多邊形外角和定理:

  (1) n邊形外角和等于n·180°-(n-2)·180°=360°

  (2)多邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等于n·180°

  4多邊形對角線的條數(shù):

  (1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。 (2)n邊形共有n(n-3)/2條對角線。

  初中數(shù)學知識點 13

  一.列方程解應用題的一般步驟:

  1.認真審題:分析題中已知和未知,明確題中各數(shù)量之間的關系;

  2.尋找等量關系:可借助圖表分析題中的已知量和未知量之間關系,找出能夠表示應用題全部含義的相等關系;

  3.設未知數(shù):用字母表示題目中的未知數(shù)時一般采用直接設法,當直接設法使列方程有困難可采用間接設法;

  4.列方程:根據(jù)這個相等關系列出所需要的代數(shù)式,從而列出方程注意它們的量要一致,使它們都表示一個相等或相同的量;

  列方程應滿足三個條件:方程各項是同類量,單位一致,左右兩邊是等量;

  5.解方程:解所列出的方程,求出未知數(shù)的值;

  6.寫出答案:檢查方程的解是否符合應用題的實際意義,進行取舍,并注意單位。

  簡記為六個字:審、找、設、列、解、答。

  二.列一元一次方程解應用題的幾點注意:

  1.注意語言與解析式的互化:

  如,“多”、“少”、“增加了”、“增加為(到)”、“同時”、“擴大為(到)”、“擴大了”、……

  2.注意從語言敘述中寫出相等關系:

  如,x比y大3,則x-y=3或x=y+3或x-3=y。

  3.注意單位換算:

  如,“小時”、“分鐘”的換算;s、v、t單位的一致等。

  三.一元一次方程的'實際應用:

  常見考法

  一元一次方程應用題的題型很多,每種題型又不完全孤立,其中有些題型的解題思想有相似之處,如工程問題和行程問題。所以一直受命題者青睞,近年來中考考查的實際問題多貼近生活,而且立意新穎,設計巧妙,所以決不能靠死背題型,要具體分析每一題的實際情況。

  誤區(qū)提醒

  由于對題意理解不透,不能正確的找出相等關系列出方程。

  初中數(shù)學知識點 14

  初中數(shù)學集合的運算中考知識點集錦

  集合的.運算知識:它包括有交換律、結合律、分配對偶律、對偶律、同一律等。

  集合的運算定律

  交換律:A∩B=B∩A

  A∪B=B∪A

  結合律:A∪(B∪C)=(A∪B)∪C

  A∩(B∩C)=(A∩B)∩C

  分配對偶律:A∩(B∪C)=(A∩B)∪(A∩C)

  A∪(B∩C)=(A∪B)∩(A∪C)

  對偶律:(A∪B)^C=A^C∩B^C

  (A∩B)^C=A^C∪B^C

  同一律:A∪Φ=A

  A∩U=A

  求補律:A∪A=U

  A∩A=Φ

  對合律:(A)=A

  等冪律:A∪A=A

  A∩A=A

  零一律:A∪U=U

  A∩U=A

  吸收律:A∪(A∩B)=A

  A∩(A∪B)=A

  德·摩根定律(反演律):(A∪B)=A∩B

  (A∩B)=A∪B

  知識拓展:容斥原理(特殊情況):card(A∪B)=card(A)+card(B)-card(A∩B)

  初中數(shù)學知識點 15

  用間接配方法解一元二次方程

  已知未知先分離,因式分解是其次。

  調整系數(shù)等互反,和差積套恒等式。

  完全平方等常數(shù),間接配方顯優(yōu)勢。

  一元二次方程的一般形式

  a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關問題時,多數(shù)習題要先化為一般形式,目的是確定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式.

  一元二次方程解法口訣

  含有一個未知數(shù),最高指數(shù)是二次;

  整式方程最常見,一元二次方程式。

  左邊二次三項式,右邊是零一般式。

  方程缺少常數(shù)項,求根提取公因式;

  方程沒有一次項,直接開方最合適;

  方程如果合家歡,十字相乘先去試;

  分解二次常數(shù)項,叉乘求和湊中式;

  如能做到這一點,十字相乘根求之;

  否則可以去配方,自然能夠套公式。

  一元二次方程常見考法

  (1)考查一元二次方程的'根與系數(shù)的關系(韋達定理):這類題目有著解題規(guī)律性強的特點,題目設置會很靈活,所以一直很吸引命題者。主要考查①根與系數(shù)的推導,有關規(guī)律的探究②已知兩根或一根構造一元二次方程,這類題目一般比較開放;

  (2)在一元二次方程和幾何問題、函數(shù)問題的交匯處出題。(幾何問題:主要是將數(shù)字及數(shù)字間的關系隱藏在圖形中,用圖形表示出來,這樣的圖形主要有三角形、四邊形、圓等涉及到三角形三邊關系、三角形全等、面積計算、體積計算、勾股定理等);

  (3)列一元二次方程解決實際問題,以實際生活為背景,命題廣泛。(常見的題型是增長率問題,注:平均增長率公式

  初中數(shù)學知識點 16

  誘導公式的本質

  所謂三角函數(shù)誘導公式,就是將角n(/2)的三角函數(shù)轉化為角的三角函數(shù)。

  常用的誘導公式

  公式一: 設為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 設為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角與 -的三角函數(shù)值之間的'關系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

  初中數(shù)學知識點 17

  一、一次函數(shù)圖象 y=kx+b

  一次函數(shù)的圖象可以由k、b的正負來決定:

  k大于零是一撇(由左下至右上,增函數(shù))

  k小于零是一捺(由右上至左下,減函數(shù))

  b等于零必過原點;

  b大于零交點(指圖象與y軸的交點)在上方(指x軸上方)

  b小于零交點(指圖象與y軸的交點)在下方(指x軸下方)

  其圖象經(jīng)過(0,b) 和 (-b/k , 0) 這兩點(兩點就可以決定一條直線),且(0,b) 在 y軸上, (-b/k , 0) 在x軸上。

  b的數(shù)值就是一次函數(shù)在y軸上的截距(不是距離,有正、負、零之分)。

  二、不等式組的解集

  1、步驟:去分母(后分子應加上括號)、去括號、移項、合并同類項、系數(shù)化為1 。

  2、解一元一次不等式組時,先求出各個不等式的解集,然后按不等式組解集的四種類型所反映的規(guī)律,寫出不等式組的解集:不等式組解集的確定方法,若a

  A 的解集是 解集 小小的取小

  B 的解集是 解集 大大的取大

  C 的解集是 解集 大小的 小大的取中間

  D 的.解集是空集 解集 大大的 小小的無解

  另需注意等于的問題。

  三、零的描述

  1、零既不是正數(shù)也不是負數(shù),是介于正數(shù)和負數(shù)之間的數(shù)。零是自然數(shù),是整數(shù),是偶數(shù)。

  A、零是表示具有相反意義的量的基準數(shù)。

  B、零是判定正、負數(shù)的界限。

  C、在一切非負數(shù)中有一個最小值是0;在一切非正數(shù)中有一個最大值是0。

  初中數(shù)學知識點 18

  1、不在同一直線上的三點確定一個圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1

 、(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2

  圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對稱中心的中心對稱圖形

  4、圓是定點的距離等于定長的點的集合

  5、圓的內部可以看作是圓心的距離小于半徑的點的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點的集合

  7、同圓或等圓的半徑相等

  8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的`圓

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  11、定理:圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

  12、①直線L和⊙O相交d

  ②直線L和⊙O相切d=r

 、壑本L和⊙O相離d>r

  13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14、切線的性質定理:圓的切線垂直于經(jīng)過切點的半徑

  15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角

  19、如果兩個圓相切,那么切點一定在連心線上

  20、

  ①兩圓外離d>R+r

 、趦蓤A外切d=R+r

  ③兩圓相交R-rr)

 、軆蓤A內切d=R-r(R>r)

 、輧蓤A內含dr)

  初中數(shù)學知識點 19

  不等式的判定知識點

  1.常見的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

  2.在不等式“a>b”或“a

  3.不等號的開口所對的數(shù)較大,不等號的尖頭所對的數(shù)較小;

  4.在列不等式時,一定要注意不等式關系的關鍵字,如:正數(shù)、非負數(shù)、不大于、小于等。

  初中數(shù)學不等式的性質知識點

  不等式的`性質

  ①如果x>y,那么yy;(對稱性)

  ②如果x>y,y>z;那么x>z;(傳遞性)

 、廴绻鹸>y,而z為任意實數(shù)或整式,那么x+z>y+z;(加法原則)

 、苋绻鹸>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

  ⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

 、奕绻鹸>y,m>n,那么x+m>y+n;(充分不必要條件)

  ⑦如果x>y>0,m>n>0,那么xm>yn;

  ⑧如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù))[1]

  初中數(shù)學不等式知識點歸納

  1、概念:

  在一個式子中的數(shù)的關系,不全是等號,含不等符號的式子,那它就是一個不等式、例如2x+2y≥2xy,sinx≤1,ex>0,2x<3,5x≠5等>x是超越不等式。

  2、分類:

  不等式分為嚴格不等式與非嚴格不等式。

  一般地,用純粹的大于號、小于號“>”“<”連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)

  “≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴格不等式,或稱廣義不等式。

  通常不等式中的數(shù)是實數(shù),字母也代表實數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號也可以為<,≥,>中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。

  我們大家在判定不等式時要記得,在一個式子中的數(shù)的關系,不全是等號,含不等符號的式子,那它就是一個不等式。

  初三數(shù)學不等式證明知識點總結

  1、比較法:包括比差和比商兩種方法。

  2、綜合法

  證明不等式時,從命題的已知條件出發(fā),利用公理、定理、法則等,逐步推導出要證明的命題的方法稱為綜合法,它是由因導果的方法。

  3、分析法

  證明不等式時,從待證命題出發(fā),分析使其成立的充分條件,利用已知的一些基本原理,逐步探索,最后將命題成立的條件歸結為一個已經(jīng)證明過的定理、簡單事實或題設的條件,這種證明的方法稱為分析法,它是執(zhí)果索因的方法。

  4、放縮法

  證明不等式時,有時根據(jù)需要把需證明的不等式的值適當放大或縮小,使其化繁為簡,化難為易,達到證明的目的,這種方法稱為放縮法。

  5、數(shù)學歸納法

  用數(shù)學歸納法證明不等式,要注意兩步一結論。

  在證明第二步時,一般多用到比較法、放縮法和分析法。

  6、反證法

  證明不等式時,首先假設要證明的命題的反面成立,把它作為條件和其他條件結合在一起,利用已知定義、定理、公理等基本原理逐步推證出一個與命題的條件或已證明的定理或公認的簡單事實相矛盾的結論,以此說明原假設的結論不成立,從而肯定原命題的結論成立的方法稱為反證法。

  初中數(shù)學知識點 20

  構造方程是初中數(shù)學的基本方法之一。

  在解題過程中要善于觀察、善于發(fā)現(xiàn)、認真分析,根據(jù)問題的結構特征、及其問題中的數(shù)量關系,挖掘潛在已知和未知之間的因素,從而構造出方程,使問題解答巧妙、簡潔、合理。

  1、某些題目根據(jù)條件、仔細觀察其特點,構造一個"一元一次方程" 求解,從而獲得問題解決。

  例1:如果關于x的方程ax+b=2(2x+7)+1有無數(shù)多個解,那么a、b的值分別是多少?

  解:原方程整理得(a-4)

  ∵此方程有無數(shù)多解,∴a-4=0且

  分別解得a=4,

  2、有些問題,直接求解比較困難,但如果根據(jù)問題的特征,通過轉化,構造"一元二次方程",再用根與系數(shù)的關系求解,使問題得到解決。此方法簡明、功能獨特,應用比較廣泛,特別在數(shù)學競賽中的應用。

  3、有時可根據(jù)題目的條件和結論的特征,構造出方程組,從而可找到解題途徑。

  例3:已知3,5,2x,3y的平均數(shù)是4。 20,18,5x,-6y的平均數(shù)是1。求的`值。

  分析:這道題考查了平均數(shù)概念,根據(jù)題目的特征構造二元一次方程組,從而解出x、y的值,再求出的值。

  初中數(shù)學知識點 21

  一、一次函數(shù)圖象 y=kx+b

  一次函數(shù)的圖象可以由k、b的正負來決定:

  k大于零是一撇(由左下至右上,增函數(shù))

  k小于零是一捺(由右上至左下,減函數(shù))

  b等于零必過原點;

  b大于零交點(指圖象與y軸的交點)在上方(指x軸上方)

  b小于零交點(指圖象與y軸的交點)在下方(指x軸下方)

  其圖象經(jīng)過(0,b) 和 (-b/k , 0) 這兩點(兩點就可以決定一條直線),且(0,b) 在 y軸上, (-b/k , 0) 在x軸上。

  b的數(shù)值就是一次函數(shù)在y軸上的截距(不是距離,有正、負、零之分)。

  二、不等式組的解集

  1、步驟:去分母(后分子應加上括號)、去括號、移項、合并同類項、系數(shù)化為1 。

  2、解一元一次不等式組時,先求出各個不等式的解集,然后按不等式組解集的四種類型所反映的規(guī)律,寫出不等式組的解集:不等式組解集的確定方法,若a

  A 的解集是 解集 小小的取小

  B 的解集是 解集 大大的取大

  C 的解集是 解集 大小的 小大的取中間

  D 的解集是空集 解集 大大的 小小的.無解

  另需注意等于的問題。

  三、零的描述

  1、零既不是正數(shù)也不是負數(shù),是介于正數(shù)和負數(shù)之間的數(shù)。零是自然數(shù),是整數(shù),是偶數(shù)。

  A、零是表示具有相反意義的量的基準數(shù)。

  B、零是判定正、負數(shù)的界限。

  C、在一切非負數(shù)中有一個最小值是0;在一切非正數(shù)中有一個最大值是0。

  初中數(shù)學知識點 22

  一、數(shù)與代數(shù)

  1.有理數(shù)

  有理數(shù):包括正整數(shù)、0和負整數(shù)。

  數(shù)軸:包括原點、正方向和單位長度。

  相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。

  絕對值:正數(shù)的絕對值是其本身,負數(shù)的絕對值是它的相反數(shù),0的絕對值是0。

  2.整式與分式

  整式:包括單項式和多項式。

  分式:包括一般形式和特殊形式。

  代數(shù)式:包括單字母、單項式和多項式。

  二、空間與圖形

  1.點、線、面

  點:沒有大小,沒有長度。

  線:沒有寬度,只有長度。

  面:有長度和寬度,沒有高度。

  2.基本圖形

  直線:包括直線、射線、線段。

  角:包括平角、周角和一般的角。

  三角形:包括等邊三角形、等腰三角形和一般三角形。

  四邊形:包括矩形、正方形、梯形和平行四邊形。

  圓:包括圓的性質和圓的定理。

  三、統(tǒng)計與概率

  1.統(tǒng)計

  統(tǒng)計圖:包括扇形統(tǒng)計圖、折線統(tǒng)計圖和條形統(tǒng)計圖。

  統(tǒng)計表:包括簡單統(tǒng)計表和復合統(tǒng)計表。

  數(shù)據(jù)的收集與整理:包括抽樣調查、全面調查和自主調查。

  2.概率

  隨機事件:包括必然事件、不可能事件和隨機事件。

  概率:包括計算事件發(fā)生的概率和隨機事件的.概率。

  以上是初中數(shù)學知識點總結的主要內容,這些知識點是數(shù)學學習的基礎,需要學生熟練掌握和應用。

  初中數(shù)學知識點 23

  直線、射線、線段

 。1)直線、射線、線段的表示方法

 、僦本:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB。

 、谏渚:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA。注意:用兩個字母表示時,端點的字母放在前邊。

 、劬段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。

 。2)點與直線的位置關系:

 、冱c經(jīng)過直線,說明點在直線上;

  ②點不經(jīng)過直線,說明點在直線外。

  兩點間的距離

 。1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。

  (2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調最后的兩個字“長度”,也就是說,它是一個量,有大小,區(qū)別于線段,線段是圖形。線段的長度才是兩點的距離?梢哉f畫線段,但不能說畫距離。

  正方體

 。1)對于此類問題一般方法是用紙按圖的`樣子折疊后可以解決,或是在對展開圖理解的基礎上直接想象。

 。2)從實物出發(fā),結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉化,建立空間觀念,是解決此類問題的關鍵。

 。3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認真確定哪兩個面的對面。

  初中數(shù)學知識點 24

  1、有理數(shù)的'加法運算:

  同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好、

  2、合并同類項:

  合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣、

  3、去、添括號法則:

  去括號、添括號,關鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號、

  4、一元一次方程:

  已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒、

  5、平方差公式:

  平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆、

  1、完全平方公式:

  完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;

  首±尾括號帶平方,尾項符號隨中央、

  2、因式分解:

  一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(shù)(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚、

  3、單項式運算:

  加、減、乘、除、乘(開)方,三級運算分得清,系數(shù)進行同級(運)算,指數(shù)運算降級(進)行、

  4、一元一次不等式解題的一般步驟:

  去分母、去括號,移項時候要變號,同類項合并好,再把系數(shù)來除掉,兩邊除(以)負數(shù)時,不等號改向別忘了、

  5、一元一次不等式組的解集:

  大大取較大,小小取較小,小大、大小取中間,大小、小大無處找、

  一元二次不等式、一元一次絕對值不等式的解集:

  大(魚)于(吃)取兩邊,。~)于(吃)取中間。

  初中數(shù)學知識點 25

  1.相似三角形定義:

  對應角相等,對應邊成比例的三角形,叫做相似三角形。

  2.相似三角形的表示方法:用符號"∽"表示,讀作"相似于"。

  3.相似三角形的相似比:

  相似三角形的對應邊的比叫做相似比。

  4.相似三角形的預備定理:

  平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所截成的三角形與原三角形相似。

  從表中可以看出只要將全等三角形判定定理中的"對應邊相等"的條件改為"對應邊

  成比例"就可得到相似三角形的判定定理,這就是我們數(shù)學中的用類比的方法,在舊知識的基礎上找出新知識并從中探究新知識掌握的方法。

  6.直角三角形相似:

  (1)直角三角形被斜邊上的.高分成兩個直角三角形和原三角形相似。

  (2)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似。

  7.相似三角形的性質定理:

  (1)相似三角形的對應角相等。

  (2)相似三角形的對應邊成比例。

  (3)相似三角形的對應高線的比,對應中線的比和對應角平分線的比都等于相似比。

  (4)相似三角形的周長比等于相似比。

  (5)相似三角形的面積比等于相似比的平方。

  8. 相似三角形的傳遞性

  如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

  初中數(shù)學知識點 26

  1、相交線

  對頂角相等。

  過一點有且只有一條直線與已知直線垂直。

  連接直線外一點與直線上各點的'所有線段中,垂線段最短(簡單說成:垂線段最短)。

  2、平行線

  經(jīng)過直線外一點,有且只有一條直線與這條直線平行。

  如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

  直線平行的條件:

  兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。

  兩條直線被第三條直線所截,如果內錯角相等,那么兩直線平行。

  兩條直線被第三條直線所截,如果同旁內角互補,那么兩直線平行。

  3、平行線的性質

  兩條平行線被第三條直線所截,同位角相等。

  兩條平行線被第三條直線所截,內錯角相等。

  兩條平行線被第三條直線所截,同旁內角互補。

  判斷一件事情的語句,叫做命題。

【初中數(shù)學知識點】相關文章:

初中數(shù)學倒數(shù)的知識點08-01

(經(jīng)典)初中數(shù)學知識點07-19

(精選)初中數(shù)學知識點07-19

初中數(shù)學概率知識點06-14

初中數(shù)學角的知識點05-31

初中數(shù)學代數(shù)知識點01-13

初中數(shù)學蘇教版知識點08-22

初中數(shù)學角的知識點10-29

初中數(shù)學垂直知識點12-07

初中數(shù)學總結知識點08-26